module GHC.CmmToAsm.X86.Regs ( -- squeese functions for the graph allocator virtualRegSqueeze, realRegSqueeze, -- immediates Imm(..), strImmLit, litToImm, -- addressing modes AddrMode(..), addrOffset, -- registers spRel, argRegs, allArgRegs, allIntArgRegs, callClobberedRegs, instrClobberedRegs, allMachRegNos, classOfRealReg, showReg, -- machine specific EABase(..), EAIndex(..), addrModeRegs, eax, ebx, ecx, edx, esi, edi, ebp, esp, rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp, r8, r9, r10, r11, r12, r13, r14, r15, lastint, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm, firstxmm, lastxmm, ripRel, allFPArgRegs, allocatableRegs ) where import GHC.Prelude import GHC.Platform.Regs import GHC.Platform.Reg import GHC.Platform.Reg.Class import GHC.Cmm import GHC.Cmm.CLabel ( CLabel ) import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Platform import qualified Data.Array as A -- | regSqueeze_class reg -- Calculate the maximum number of register colors that could be -- denied to a node of this class due to having this reg -- as a neighbour. -- {-# INLINE virtualRegSqueeze #-} virtualRegSqueeze :: RegClass -> VirtualReg -> Int virtualRegSqueeze cls vr = case cls of RcInteger -> case vr of VirtualRegI{} -> 1 VirtualRegHi{} -> 1 _other -> 0 RcDouble -> case vr of VirtualRegD{} -> 1 VirtualRegF{} -> 0 _other -> 0 _other -> 0 {-# INLINE realRegSqueeze #-} realRegSqueeze :: RegClass -> RealReg -> Int realRegSqueeze cls rr = case cls of RcInteger -> case rr of RealRegSingle regNo | regNo < firstxmm -> 1 | otherwise -> 0 RcDouble -> case rr of RealRegSingle regNo | regNo >= firstxmm -> 1 | otherwise -> 0 _other -> 0 -- ----------------------------------------------------------------------------- -- Immediates data Imm = ImmInt Int | ImmInteger Integer -- Sigh. | ImmCLbl CLabel -- AbstractC Label (with baggage) | ImmLit SDoc -- Simple string | ImmIndex CLabel Int | ImmFloat Rational | ImmDouble Rational | ImmConstantSum Imm Imm | ImmConstantDiff Imm Imm strImmLit :: String -> Imm strImmLit s = ImmLit (text s) litToImm :: CmmLit -> Imm litToImm (CmmInt i w) = ImmInteger (narrowS w i) -- narrow to the width: a CmmInt might be out of -- range, but we assume that ImmInteger only contains -- in-range values. A signed value should be fine here. litToImm (CmmFloat f W32) = ImmFloat f litToImm (CmmFloat f W64) = ImmDouble f litToImm (CmmLabel l) = ImmCLbl l litToImm (CmmLabelOff l off) = ImmIndex l off litToImm (CmmLabelDiffOff l1 l2 off _) = ImmConstantSum (ImmConstantDiff (ImmCLbl l1) (ImmCLbl l2)) (ImmInt off) litToImm _ = panic "X86.Regs.litToImm: no match" -- addressing modes ------------------------------------------------------------ data AddrMode = AddrBaseIndex EABase EAIndex Displacement | ImmAddr Imm Int data EABase = EABaseNone | EABaseReg Reg | EABaseRip data EAIndex = EAIndexNone | EAIndex Reg Int type Displacement = Imm addrOffset :: AddrMode -> Int -> Maybe AddrMode addrOffset addr off = case addr of ImmAddr i off0 -> Just (ImmAddr i (off0 + off)) AddrBaseIndex r i (ImmInt n) -> Just (AddrBaseIndex r i (ImmInt (n + off))) AddrBaseIndex r i (ImmInteger n) -> Just (AddrBaseIndex r i (ImmInt (fromInteger (n + toInteger off)))) AddrBaseIndex r i (ImmCLbl lbl) -> Just (AddrBaseIndex r i (ImmIndex lbl off)) AddrBaseIndex r i (ImmIndex lbl ix) -> Just (AddrBaseIndex r i (ImmIndex lbl (ix+off))) _ -> Nothing -- in theory, shouldn't happen addrModeRegs :: AddrMode -> [Reg] addrModeRegs (AddrBaseIndex b i _) = b_regs ++ i_regs where b_regs = case b of { EABaseReg r -> [r]; _ -> [] } i_regs = case i of { EAIndex r _ -> [r]; _ -> [] } addrModeRegs _ = [] -- registers ------------------------------------------------------------------- -- @spRel@ gives us a stack relative addressing mode for volatile -- temporaries and for excess call arguments. @fpRel@, where -- applicable, is the same but for the frame pointer. spRel :: Platform -> Int -- ^ desired stack offset in bytes, positive or negative -> AddrMode spRel platform n | target32Bit platform = AddrBaseIndex (EABaseReg esp) EAIndexNone (ImmInt n) | otherwise = AddrBaseIndex (EABaseReg rsp) EAIndexNone (ImmInt n) -- The register numbers must fit into 32 bits on x86, so that we can -- use a Word32 to represent the set of free registers in the register -- allocator. firstxmm :: RegNo firstxmm = 16 -- on 32bit platformOSs, only the first 8 XMM/YMM/ZMM registers are available lastxmm :: Platform -> RegNo lastxmm platform | target32Bit platform = firstxmm + 7 -- xmm0 - xmmm7 | otherwise = firstxmm + 15 -- xmm0 -xmm15 lastint :: Platform -> RegNo lastint platform | target32Bit platform = 7 -- not %r8..%r15 | otherwise = 15 intregnos :: Platform -> [RegNo] intregnos platform = [0 .. lastint platform] xmmregnos :: Platform -> [RegNo] xmmregnos platform = [firstxmm .. lastxmm platform] floatregnos :: Platform -> [RegNo] floatregnos platform = xmmregnos platform -- argRegs is the set of regs which are read for an n-argument call to C. -- For archs which pass all args on the stack (x86), is empty. -- Sparc passes up to the first 6 args in regs. argRegs :: RegNo -> [Reg] argRegs _ = panic "MachRegs.argRegs(x86): should not be used!" -- | The complete set of machine registers. allMachRegNos :: Platform -> [RegNo] allMachRegNos platform = intregnos platform ++ floatregnos platform -- | Take the class of a register. {-# INLINE classOfRealReg #-} classOfRealReg :: Platform -> RealReg -> RegClass -- On x86, we might want to have an 8-bit RegClass, which would -- contain just regs 1-4 (the others don't have 8-bit versions). -- However, we can get away without this at the moment because the -- only allocatable integer regs are also 8-bit compatible (1, 3, 4). classOfRealReg platform reg = case reg of RealRegSingle i | i <= lastint platform -> RcInteger | i <= lastxmm platform -> RcDouble | otherwise -> panic "X86.Reg.classOfRealReg registerSingle too high" -- | Get the name of the register with this number. -- NOTE: fixme, we dont track which "way" the XMM registers are used showReg :: Platform -> RegNo -> String showReg platform n | n >= firstxmm && n <= lastxmm platform = "%xmm" ++ show (n-firstxmm) | n >= 8 && n < firstxmm = "%r" ++ show n | otherwise = regNames platform A.! n regNames :: Platform -> A.Array Int String regNames platform = if target32Bit platform then A.listArray (0,8) ["%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp"] else A.listArray (0,8) ["%rax", "%rbx", "%rcx", "%rdx", "%rsi", "%rdi", "%rbp", "%rsp"] -- machine specific ------------------------------------------------------------ {- Intel x86 architecture: - All registers except 7 (esp) are available for use. - Only ebx, esi, edi and esp are available across a C call (they are callee-saves). - Registers 0-7 have 16-bit counterparts (ax, bx etc.) - Registers 0-3 have 8 bit counterparts (ah, bh etc.) The fp registers are all Double registers; we don't have any RcFloat class regs. @regClass@ barfs if you give it a VirtualRegF, and mkVReg above should never generate them. TODO: cleanup modelling float vs double registers and how they are the same class. -} eax, ebx, ecx, edx, esp, ebp, esi, edi :: Reg eax = regSingle 0 ebx = regSingle 1 ecx = regSingle 2 edx = regSingle 3 esi = regSingle 4 edi = regSingle 5 ebp = regSingle 6 esp = regSingle 7 {- AMD x86_64 architecture: - All 16 integer registers are addressable as 8, 16, 32 and 64-bit values: 8 16 32 64 --------------------- al ax eax rax bl bx ebx rbx cl cx ecx rcx dl dx edx rdx sil si esi rsi dil si edi rdi bpl bp ebp rbp spl sp esp rsp r10b r10w r10d r10 r11b r11w r11d r11 r12b r12w r12d r12 r13b r13w r13d r13 r14b r14w r14d r14 r15b r15w r15d r15 -} rax, rbx, rcx, rdx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 :: Reg rax = regSingle 0 rbx = regSingle 1 rcx = regSingle 2 rdx = regSingle 3 rsi = regSingle 4 rdi = regSingle 5 rbp = regSingle 6 rsp = regSingle 7 r8 = regSingle 8 r9 = regSingle 9 r10 = regSingle 10 r11 = regSingle 11 r12 = regSingle 12 r13 = regSingle 13 r14 = regSingle 14 r15 = regSingle 15 xmm0 = regSingle 16 xmm1 = regSingle 17 xmm2 = regSingle 18 xmm3 = regSingle 19 xmm4 = regSingle 20 xmm5 = regSingle 21 xmm6 = regSingle 22 xmm7 = regSingle 23 xmm8 = regSingle 24 xmm9 = regSingle 25 xmm10 = regSingle 26 xmm11 = regSingle 27 xmm12 = regSingle 28 xmm13 = regSingle 29 xmm14 = regSingle 30 xmm15 = regSingle 31 ripRel :: Displacement -> AddrMode ripRel imm = AddrBaseIndex EABaseRip EAIndexNone imm -- so we can re-use some x86 code: {- eax = rax ebx = rbx ecx = rcx edx = rdx esi = rsi edi = rdi ebp = rbp esp = rsp -} xmm :: RegNo -> Reg xmm n = regSingle (firstxmm+n) -- | these are the regs which we cannot assume stay alive over a C call. callClobberedRegs :: Platform -> [Reg] -- caller-saves registers callClobberedRegs platform | target32Bit platform = [eax,ecx,edx] ++ map regSingle (floatregnos platform) | platformOS platform == OSMinGW32 = [rax,rcx,rdx,r8,r9,r10,r11] -- Only xmm0-5 are caller-saves registers on 64-bit windows. -- For details check the Win64 ABI: -- https://docs.microsoft.com/en-us/cpp/build/x64-software-conventions ++ map xmm [0 .. 5] | otherwise -- all xmm regs are caller-saves -- caller-saves registers = [rax,rcx,rdx,rsi,rdi,r8,r9,r10,r11] ++ map regSingle (floatregnos platform) allArgRegs :: Platform -> [(Reg, Reg)] allArgRegs platform | platformOS platform == OSMinGW32 = zip [rcx,rdx,r8,r9] (map regSingle [firstxmm ..]) | otherwise = panic "X86.Regs.allArgRegs: not defined for this arch" allIntArgRegs :: Platform -> [Reg] allIntArgRegs platform | (platformOS platform == OSMinGW32) || target32Bit platform = panic "X86.Regs.allIntArgRegs: not defined for this platform" | otherwise = [rdi,rsi,rdx,rcx,r8,r9] -- | on 64bit platforms we pass the first 8 float/double arguments -- in the xmm registers. allFPArgRegs :: Platform -> [Reg] allFPArgRegs platform | platformOS platform == OSMinGW32 = panic "X86.Regs.allFPArgRegs: not defined for this platform" | otherwise = map regSingle [firstxmm .. firstxmm + 7 ] -- Machine registers which might be clobbered by instructions that -- generate results into fixed registers, or need arguments in a fixed -- register. instrClobberedRegs :: Platform -> [Reg] instrClobberedRegs platform | target32Bit platform = [ eax, ecx, edx ] | otherwise = [ rax, rcx, rdx ] -- -- allocatableRegs is allMachRegNos with the fixed-use regs removed. -- i.e., these are the regs for which we are prepared to allow the -- register allocator to attempt to map VRegs to. allocatableRegs :: Platform -> [RealReg] allocatableRegs platform = let isFree i = freeReg platform i in map RealRegSingle $ filter isFree (allMachRegNos platform)