{-# LANGUAGE CPP #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow] -- in module Language.Haskell.Syntax.Extension {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} -- See Note [Language.Haskell.Syntax.* Hierarchy] for why not GHC.Hs.* -- | Source-language literals module Language.Haskell.Syntax.Lit where #include "HsVersions.h" import GHC.Prelude import {-# SOURCE #-} Language.Haskell.Syntax.Expr ( HsExpr ) import GHC.Types.Basic (PprPrec(..), topPrec ) import GHC.Types.SourceText import GHC.Core.Type import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Data.FastString import Language.Haskell.Syntax.Extension import Data.ByteString (ByteString) import Data.Data hiding ( Fixity ) {- ************************************************************************ * * \subsection[HsLit]{Literals} * * ************************************************************************ -} -- Note [Literal source text] in GHC.Types.Basic for SourceText fields in -- the following -- Note [Trees that grow] in Language.Haskell.Syntax.Extension for the Xxxxx fields in the following -- | Haskell Literal data HsLit x = HsChar (XHsChar x) {- SourceText -} Char -- ^ Character | HsCharPrim (XHsCharPrim x) {- SourceText -} Char -- ^ Unboxed character | HsString (XHsString x) {- SourceText -} FastString -- ^ String | HsStringPrim (XHsStringPrim x) {- SourceText -} !ByteString -- ^ Packed bytes | HsInt (XHsInt x) IntegralLit -- ^ Genuinely an Int; arises from -- "GHC.Tc.Deriv.Generate", and from TRANSLATION | HsIntPrim (XHsIntPrim x) {- SourceText -} Integer -- ^ literal @Int#@ | HsWordPrim (XHsWordPrim x) {- SourceText -} Integer -- ^ literal @Word#@ | HsInt64Prim (XHsInt64Prim x) {- SourceText -} Integer -- ^ literal @Int64#@ | HsWord64Prim (XHsWord64Prim x) {- SourceText -} Integer -- ^ literal @Word64#@ | HsInteger (XHsInteger x) {- SourceText -} Integer Type -- ^ Genuinely an integer; arises only -- from TRANSLATION (overloaded -- literals are done with HsOverLit) | HsRat (XHsRat x) FractionalLit Type -- ^ Genuinely a rational; arises only from -- TRANSLATION (overloaded literals are -- done with HsOverLit) | HsFloatPrim (XHsFloatPrim x) FractionalLit -- ^ Unboxed Float | HsDoublePrim (XHsDoublePrim x) FractionalLit -- ^ Unboxed Double | XLit !(XXLit x) instance Eq (HsLit x) where (HsChar _ x1) == (HsChar _ x2) = x1==x2 (HsCharPrim _ x1) == (HsCharPrim _ x2) = x1==x2 (HsString _ x1) == (HsString _ x2) = x1==x2 (HsStringPrim _ x1) == (HsStringPrim _ x2) = x1==x2 (HsInt _ x1) == (HsInt _ x2) = x1==x2 (HsIntPrim _ x1) == (HsIntPrim _ x2) = x1==x2 (HsWordPrim _ x1) == (HsWordPrim _ x2) = x1==x2 (HsInt64Prim _ x1) == (HsInt64Prim _ x2) = x1==x2 (HsWord64Prim _ x1) == (HsWord64Prim _ x2) = x1==x2 (HsInteger _ x1 _) == (HsInteger _ x2 _) = x1==x2 (HsRat _ x1 _) == (HsRat _ x2 _) = x1==x2 (HsFloatPrim _ x1) == (HsFloatPrim _ x2) = x1==x2 (HsDoublePrim _ x1) == (HsDoublePrim _ x2) = x1==x2 _ == _ = False -- | Haskell Overloaded Literal data HsOverLit p = OverLit { ol_ext :: (XOverLit p), ol_val :: OverLitVal, ol_witness :: HsExpr p} -- Note [Overloaded literal witnesses] | XOverLit !(XXOverLit p) -- Note [Literal source text] in GHC.Types.Basic for SourceText fields in -- the following -- | Overloaded Literal Value data OverLitVal = HsIntegral !IntegralLit -- ^ Integer-looking literals; | HsFractional !FractionalLit -- ^ Frac-looking literals | HsIsString !SourceText !FastString -- ^ String-looking literals deriving Data negateOverLitVal :: OverLitVal -> OverLitVal negateOverLitVal (HsIntegral i) = HsIntegral (negateIntegralLit i) negateOverLitVal (HsFractional f) = HsFractional (negateFractionalLit f) negateOverLitVal _ = panic "negateOverLitVal: argument is not a number" {- Note [Overloaded literal witnesses] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *Before* type checking, the HsExpr in an HsOverLit is the name of the coercion function, 'fromInteger' or 'fromRational'. *After* type checking, it is a witness for the literal, such as (fromInteger 3) or lit_78 This witness should replace the literal. This dual role is unusual, because we're replacing 'fromInteger' with a call to fromInteger. Reason: it allows commoning up of the fromInteger calls, which wouldn't be possible if the desugarer made the application. The PostTcType in each branch records the type the overload literal is found to have. -} -- Comparison operations are needed when grouping literals -- for compiling pattern-matching (module GHC.HsToCore.Match.Literal) instance (Eq (XXOverLit p)) => Eq (HsOverLit p) where (OverLit _ val1 _) == (OverLit _ val2 _) = val1 == val2 (XOverLit val1) == (XOverLit val2) = val1 == val2 _ == _ = panic "Eq HsOverLit" instance Eq OverLitVal where (HsIntegral i1) == (HsIntegral i2) = i1 == i2 (HsFractional f1) == (HsFractional f2) = f1 == f2 (HsIsString _ s1) == (HsIsString _ s2) = s1 == s2 _ == _ = False instance (Ord (XXOverLit p)) => Ord (HsOverLit p) where compare (OverLit _ val1 _) (OverLit _ val2 _) = val1 `compare` val2 compare (XOverLit val1) (XOverLit val2) = val1 `compare` val2 compare _ _ = panic "Ord HsOverLit" instance Ord OverLitVal where compare (HsIntegral i1) (HsIntegral i2) = i1 `compare` i2 compare (HsIntegral _) (HsFractional _) = LT compare (HsIntegral _) (HsIsString _ _) = LT compare (HsFractional f1) (HsFractional f2) = f1 `compare` f2 compare (HsFractional _) (HsIntegral _) = GT compare (HsFractional _) (HsIsString _ _) = LT compare (HsIsString _ s1) (HsIsString _ s2) = s1 `uniqCompareFS` s2 compare (HsIsString _ _) (HsIntegral _) = GT compare (HsIsString _ _) (HsFractional _) = GT instance Outputable OverLitVal where ppr (HsIntegral i) = pprWithSourceText (il_text i) (integer (il_value i)) ppr (HsFractional f) = ppr f ppr (HsIsString st s) = pprWithSourceText st (pprHsString s) -- | @'hsLitNeedsParens' p l@ returns 'True' if a literal @l@ needs -- to be parenthesized under precedence @p@. hsLitNeedsParens :: PprPrec -> HsLit x -> Bool hsLitNeedsParens p = go where go (HsChar {}) = False go (HsCharPrim {}) = False go (HsString {}) = False go (HsStringPrim {}) = False go (HsInt _ x) = p > topPrec && il_neg x go (HsIntPrim _ x) = p > topPrec && x < 0 go (HsWordPrim {}) = False go (HsInt64Prim _ x) = p > topPrec && x < 0 go (HsWord64Prim {}) = False go (HsInteger _ x _) = p > topPrec && x < 0 go (HsRat _ x _) = p > topPrec && fl_neg x go (HsFloatPrim _ x) = p > topPrec && fl_neg x go (HsDoublePrim _ x) = p > topPrec && fl_neg x go (XLit _) = False -- | @'hsOverLitNeedsParens' p ol@ returns 'True' if an overloaded literal -- @ol@ needs to be parenthesized under precedence @p@. hsOverLitNeedsParens :: PprPrec -> HsOverLit x -> Bool hsOverLitNeedsParens p (OverLit { ol_val = olv }) = go olv where go :: OverLitVal -> Bool go (HsIntegral x) = p > topPrec && il_neg x go (HsFractional x) = p > topPrec && fl_neg x go (HsIsString {}) = False hsOverLitNeedsParens _ (XOverLit { }) = False