{-# LANGUAGE CPP #-} module GHC.Types.Name.Ppr ( mkPrintUnqualified , mkQualModule , mkQualPackage , pkgQual ) where #include "HsVersions.h" import GHC.Prelude import GHC.Unit import GHC.Unit.Env import GHC.Unit.State import GHC.Core.TyCon import GHC.Types.Name import GHC.Types.Name.Reader import GHC.Builtin.Types import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.Misc {- Note [Printing original names] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Deciding how to print names is pretty tricky. We are given a name P:M.T, where P is the package name, M is the defining module, and T is the occurrence name, and we have to decide in which form to display the name given a GlobalRdrEnv describing the current scope. Ideally we want to display the name in the form in which it is in scope. However, the name might not be in scope at all, and that's where it gets tricky. Here are the cases: 1. T uniquely maps to P:M.T ---> "T" NameUnqual 2. There is an X for which X.T uniquely maps to P:M.T ---> "X.T" NameQual X 3. There is no binding for "M.T" ---> "M.T" NameNotInScope1 4. Otherwise ---> "P:M.T" NameNotInScope2 (3) and (4) apply when the entity P:M.T is not in the GlobalRdrEnv at all. In these cases we still want to refer to the name as "M.T", *but* "M.T" might mean something else in the current scope (e.g. if there's an "import X as M"), so to avoid confusion we avoid using "M.T" if there's already a binding for it. Instead we write P:M.T. There's one further subtlety: in case (3), what if there are two things around, P1:M.T and P2:M.T? Then we don't want to print both of them as M.T! However only one of the modules P1:M and P2:M can be exposed (say P2), so we use M.T for that, and P1:M.T for the other one. This is handled by the qual_mod component of PrintUnqualified, inside the (ppr mod) of case (3), in Name.pprModulePrefix Note [Printing unit ids] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In the old days, original names were tied to PackageIds, which directly corresponded to the entities that users wrote in Cabal files, and were perfectly suitable for printing when we need to disambiguate packages. However, with instantiated units, the situation can be different: if the key is instantiated with some holes, we should try to give the user some more useful information. -} -- | Creates some functions that work out the best ways to format -- names for the user according to a set of heuristics. mkPrintUnqualified :: UnitEnv -> GlobalRdrEnv -> PrintUnqualified mkPrintUnqualified unit_env env = QueryQualify qual_name (mkQualModule unit_state home_unit) (mkQualPackage unit_state) where unit_state = ue_units unit_env home_unit = ue_home_unit unit_env qual_name mod occ | [gre] <- unqual_gres , right_name gre = NameUnqual -- If there's a unique entity that's in scope -- unqualified with 'occ' AND that entity is -- the right one, then we can use the unqualified name | [] <- unqual_gres , any is_name forceUnqualNames , not (isDerivedOccName occ) = NameUnqual -- Don't qualify names that come from modules -- that come with GHC, often appear in error messages, -- but aren't typically in scope. Doing this does not -- cause ambiguity, and it reduces the amount of -- qualification in error messages thus improving -- readability. -- -- A motivating example is 'Constraint'. It's often not -- in scope, but printing GHC.Prim.Constraint seems -- overkill. | [gre] <- qual_gres = NameQual (greQualModName gre) | null qual_gres = if null (lookupGRE_RdrName (mkRdrQual (moduleName mod) occ) env) then NameNotInScope1 else NameNotInScope2 | otherwise = NameNotInScope1 -- Can happen if 'f' is bound twice in the module -- Eg f = True; g = 0; f = False where is_name :: Name -> Bool is_name name = ASSERT2( isExternalName name, ppr name ) nameModule name == mod && nameOccName name == occ forceUnqualNames :: [Name] forceUnqualNames = map tyConName [ constraintKindTyCon, heqTyCon, coercibleTyCon ] ++ [ eqTyConName ] right_name gre = greDefinitionModule gre == Just mod unqual_gres = lookupGRE_RdrName (mkRdrUnqual occ) env qual_gres = filter right_name (lookupGlobalRdrEnv env occ) -- we can mention a module P:M without the P: qualifier iff -- "import M" would resolve unambiguously to P:M. (if P is the -- current package we can just assume it is unqualified). -- | Creates a function for formatting modules based on two heuristics: -- (1) if the module is the current module, don't qualify, and (2) if there -- is only one exposed package which exports this module, don't qualify. mkQualModule :: UnitState -> HomeUnit -> QueryQualifyModule mkQualModule unit_state home_unit mod | isHomeModule home_unit mod = False | [(_, pkgconfig)] <- lookup, mkUnit pkgconfig == moduleUnit mod -- this says: we are given a module P:M, is there just one exposed package -- that exposes a module M, and is it package P? = False | otherwise = True where lookup = lookupModuleInAllUnits unit_state (moduleName mod) -- | Creates a function for formatting packages based on two heuristics: -- (1) don't qualify if the package in question is "main", and (2) only qualify -- with a unit id if the package ID would be ambiguous. mkQualPackage :: UnitState -> QueryQualifyPackage mkQualPackage pkgs uid | uid == mainUnit || uid == interactiveUnit -- Skip the lookup if it's main, since it won't be in the package -- database! = False | Just pkgid <- mb_pkgid , searchPackageId pkgs pkgid `lengthIs` 1 -- this says: we are given a package pkg-0.1@MMM, are there only one -- exposed packages whose package ID is pkg-0.1? = False | otherwise = True where mb_pkgid = fmap unitPackageId (lookupUnit pkgs uid) -- | A function which only qualifies package names if necessary; but -- qualifies all other identifiers. pkgQual :: UnitState -> PrintUnqualified pkgQual pkgs = alwaysQualify { queryQualifyPackage = mkQualPackage pkgs }