{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 \section[Id]{@Ids@: Value and constructor identifiers} -} {-# LANGUAGE CPP #-} -- | -- #name_types# -- GHC uses several kinds of name internally: -- -- * 'GHC.Types.Name.Occurrence.OccName': see "GHC.Types.Name.Occurrence#name_types" -- -- * 'GHC.Types.Name.Reader.RdrName': see "GHC.Types.Name.Reader#name_types" -- -- * 'GHC.Types.Name.Name': see "GHC.Types.Name#name_types" -- -- * 'GHC.Types.Id.Id' represents names that not only have a 'GHC.Types.Name.Name' but also a -- 'GHC.Core.TyCo.Rep.Type' and some additional details (a 'GHC.Types.Id.Info.IdInfo' and -- one of LocalIdDetails or GlobalIdDetails) that are added, -- modified and inspected by various compiler passes. These 'GHC.Types.Var.Var' names -- may either be global or local, see "GHC.Types.Var#globalvslocal" -- -- * 'GHC.Types.Var.Var': see "GHC.Types.Var#name_types" module GHC.Types.Id ( -- * The main types Var, Id, isId, -- * In and Out variants InVar, InId, OutVar, OutId, -- ** Simple construction mkGlobalId, mkVanillaGlobal, mkVanillaGlobalWithInfo, mkLocalId, mkLocalCoVar, mkLocalIdOrCoVar, mkLocalIdWithInfo, mkExportedLocalId, mkExportedVanillaId, mkSysLocal, mkSysLocalM, mkSysLocalOrCoVar, mkSysLocalOrCoVarM, mkUserLocal, mkUserLocalOrCoVar, mkTemplateLocals, mkTemplateLocalsNum, mkTemplateLocal, mkScaledTemplateLocal, mkWorkerId, -- ** Taking an Id apart idName, idType, idMult, idScaledType, idUnique, idInfo, idDetails, recordSelectorTyCon, recordSelectorTyCon_maybe, -- ** Modifying an Id setIdName, setIdUnique, GHC.Types.Id.setIdType, setIdMult, updateIdTypeButNotMult, updateIdTypeAndMult, updateIdTypeAndMultM, setIdExported, setIdNotExported, globaliseId, localiseId, setIdInfo, lazySetIdInfo, modifyIdInfo, maybeModifyIdInfo, zapLamIdInfo, zapIdDemandInfo, zapIdUsageInfo, zapIdUsageEnvInfo, zapIdUsedOnceInfo, zapIdTailCallInfo, zapFragileIdInfo, zapIdStrictness, zapStableUnfolding, transferPolyIdInfo, scaleIdBy, scaleVarBy, -- ** Predicates on Ids isImplicitId, isDeadBinder, isStrictId, isExportedId, isLocalId, isGlobalId, isRecordSelector, isNaughtyRecordSelector, isPatSynRecordSelector, isDataConRecordSelector, isClassOpId_maybe, isDFunId, isPrimOpId, isPrimOpId_maybe, isFCallId, isFCallId_maybe, isDataConWorkId, isDataConWorkId_maybe, isDataConWrapId, isDataConWrapId_maybe, isDataConId_maybe, idDataCon, isConLikeId, isDeadEndId, idIsFrom, hasNoBinding, -- ** Join variables JoinId, isJoinId, isJoinId_maybe, idJoinArity, asJoinId, asJoinId_maybe, zapJoinId, -- ** Inline pragma stuff idInlinePragma, setInlinePragma, modifyInlinePragma, idInlineActivation, setInlineActivation, idRuleMatchInfo, -- ** One-shot lambdas isOneShotBndr, isProbablyOneShotLambda, setOneShotLambda, clearOneShotLambda, updOneShotInfo, setIdOneShotInfo, isStateHackType, stateHackOneShot, typeOneShot, -- ** Reading 'IdInfo' fields idArity, idCallArity, idFunRepArity, idUnfolding, realIdUnfolding, idSpecialisation, idCoreRules, idHasRules, idCafInfo, idLFInfo_maybe, idOneShotInfo, idStateHackOneShotInfo, idOccInfo, isNeverLevPolyId, -- ** Writing 'IdInfo' fields setIdUnfolding, setCaseBndrEvald, setIdArity, setIdCallArity, setIdSpecialisation, setIdCafInfo, setIdOccInfo, zapIdOccInfo, setIdLFInfo, setIdDemandInfo, setIdStrictness, setIdCprInfo, idDemandInfo, idStrictness, idCprInfo, ) where #include "HsVersions.h" import GHC.Prelude import GHC.Core ( CoreRule, isStableUnfolding, evaldUnfolding, isCompulsoryUnfolding, Unfolding( NoUnfolding ) ) import GHC.Types.Id.Info import GHC.Types.Basic -- Imported and re-exported import GHC.Types.Var( Id, CoVar, JoinId, InId, InVar, OutId, OutVar, idInfo, idDetails, setIdDetails, globaliseId, isId, isLocalId, isGlobalId, isExportedId, setIdMult, updateIdTypeAndMult, updateIdTypeButNotMult, updateIdTypeAndMultM) import qualified GHC.Types.Var as Var import GHC.Core.Type import GHC.Types.RepType import GHC.Builtin.Types.Prim import GHC.Core.DataCon import GHC.Types.Demand import GHC.Types.Cpr import GHC.Types.Name import GHC.Unit.Module import GHC.Core.Class import {-# SOURCE #-} GHC.Builtin.PrimOps (PrimOp) import GHC.Types.ForeignCall import GHC.Data.Maybe import GHC.Types.SrcLoc import GHC.Types.Unique import GHC.Builtin.Uniques (mkBuiltinUnique) import GHC.Types.Unique.Supply import GHC.Data.FastString import GHC.Core.Multiplicity import GHC.Utils.Misc import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.GlobalVars import GHC.Driver.Ppr -- infixl so you can say (id `set` a `set` b) infixl 1 `setIdUnfolding`, `setIdArity`, `setIdCallArity`, `setIdOccInfo`, `setIdOneShotInfo`, `setIdSpecialisation`, `setInlinePragma`, `setInlineActivation`, `idCafInfo`, `setIdDemandInfo`, `setIdStrictness`, `setIdCprInfo`, `asJoinId`, `asJoinId_maybe` {- ************************************************************************ * * \subsection{Basic Id manipulation} * * ************************************************************************ -} idName :: Id -> Name idName = Var.varName idUnique :: Id -> Unique idUnique = Var.varUnique idType :: Id -> Kind idType = Var.varType idMult :: Id -> Mult idMult = Var.varMult idScaledType :: Id -> Scaled Type idScaledType id = Scaled (idMult id) (idType id) scaleIdBy :: Mult -> Id -> Id scaleIdBy m id = setIdMult id (m `mkMultMul` idMult id) -- | Like 'scaleIdBy', but skips non-Ids. Useful for scaling -- a mixed list of ids and tyvars. scaleVarBy :: Mult -> Var -> Var scaleVarBy m id | isId id = scaleIdBy m id | otherwise = id setIdName :: Id -> Name -> Id setIdName = Var.setVarName setIdUnique :: Id -> Unique -> Id setIdUnique = Var.setVarUnique -- | Not only does this set the 'Id' 'Type', it also evaluates the type to try and -- reduce space usage setIdType :: Id -> Type -> Id setIdType id ty = seqType ty `seq` Var.setVarType id ty setIdExported :: Id -> Id setIdExported = Var.setIdExported setIdNotExported :: Id -> Id setIdNotExported = Var.setIdNotExported localiseId :: Id -> Id -- Make an Id with the same unique and type as the -- incoming Id, but with an *Internal* Name and *LocalId* flavour localiseId id | ASSERT( isId id ) isLocalId id && isInternalName name = id | otherwise = Var.mkLocalVar (idDetails id) (localiseName name) (Var.varMult id) (idType id) (idInfo id) where name = idName id lazySetIdInfo :: Id -> IdInfo -> Id lazySetIdInfo = Var.lazySetIdInfo setIdInfo :: Id -> IdInfo -> Id setIdInfo id info = info `seq` (lazySetIdInfo id info) -- Try to avoid space leaks by seq'ing modifyIdInfo :: HasDebugCallStack => (IdInfo -> IdInfo) -> Id -> Id modifyIdInfo fn id = setIdInfo id (fn (idInfo id)) -- maybeModifyIdInfo tries to avoid unnecessary thrashing maybeModifyIdInfo :: Maybe IdInfo -> Id -> Id maybeModifyIdInfo (Just new_info) id = lazySetIdInfo id new_info maybeModifyIdInfo Nothing id = id {- ************************************************************************ * * \subsection{Simple Id construction} * * ************************************************************************ Absolutely all Ids are made by mkId. It is just like Var.mkId, but in addition it pins free-tyvar-info onto the Id's type, where it can easily be found. Note [Free type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~ At one time we cached the free type variables of the type of an Id at the root of the type in a TyNote. The idea was to avoid repeating the free-type-variable calculation. But it turned out to slow down the compiler overall. I don't quite know why; perhaps finding free type variables of an Id isn't all that common whereas applying a substitution (which changes the free type variables) is more common. Anyway, we removed it in March 2008. -} -- | For an explanation of global vs. local 'Id's, see "GHC.Types.Var.Var#globalvslocal" mkGlobalId :: IdDetails -> Name -> Type -> IdInfo -> Id mkGlobalId = Var.mkGlobalVar -- | Make a global 'Id' without any extra information at all mkVanillaGlobal :: Name -> Type -> Id mkVanillaGlobal name ty = mkVanillaGlobalWithInfo name ty vanillaIdInfo -- | Make a global 'Id' with no global information but some generic 'IdInfo' mkVanillaGlobalWithInfo :: Name -> Type -> IdInfo -> Id mkVanillaGlobalWithInfo = mkGlobalId VanillaId -- | For an explanation of global vs. local 'Id's, see "GHC.Types.Var#globalvslocal" mkLocalId :: HasDebugCallStack => Name -> Mult -> Type -> Id mkLocalId name w ty = ASSERT( not (isCoVarType ty) ) mkLocalIdWithInfo name w ty vanillaIdInfo -- | Make a local CoVar mkLocalCoVar :: Name -> Type -> CoVar mkLocalCoVar name ty = ASSERT( isCoVarType ty ) Var.mkLocalVar CoVarId name Many ty vanillaIdInfo -- | Like 'mkLocalId', but checks the type to see if it should make a covar mkLocalIdOrCoVar :: Name -> Mult -> Type -> Id mkLocalIdOrCoVar name w ty -- We should ASSERT(eqType w Many) in the isCoVarType case. -- However, currently this assertion does not hold. -- In tests with -fdefer-type-errors, such as T14584a, -- we create a linear 'case' where the scrutinee is a coercion -- (see castBottomExpr). This problem is covered by #17291. | isCoVarType ty = mkLocalCoVar name ty | otherwise = mkLocalId name w ty -- proper ids only; no covars! mkLocalIdWithInfo :: HasDebugCallStack => Name -> Mult -> Type -> IdInfo -> Id mkLocalIdWithInfo name w ty info = ASSERT( not (isCoVarType ty) ) Var.mkLocalVar VanillaId name w ty info -- Note [Free type variables] -- | Create a local 'Id' that is marked as exported. -- This prevents things attached to it from being removed as dead code. -- See Note [Exported LocalIds] mkExportedLocalId :: IdDetails -> Name -> Type -> Id mkExportedLocalId details name ty = Var.mkExportedLocalVar details name ty vanillaIdInfo -- Note [Free type variables] mkExportedVanillaId :: Name -> Type -> Id mkExportedVanillaId name ty = Var.mkExportedLocalVar VanillaId name ty vanillaIdInfo -- Note [Free type variables] -- | Create a system local 'Id'. These are local 'Id's (see "Var#globalvslocal") -- that are created by the compiler out of thin air mkSysLocal :: FastString -> Unique -> Mult -> Type -> Id mkSysLocal fs uniq w ty = ASSERT( not (isCoVarType ty) ) mkLocalId (mkSystemVarName uniq fs) w ty -- | Like 'mkSysLocal', but checks to see if we have a covar type mkSysLocalOrCoVar :: FastString -> Unique -> Mult -> Type -> Id mkSysLocalOrCoVar fs uniq w ty = mkLocalIdOrCoVar (mkSystemVarName uniq fs) w ty mkSysLocalM :: MonadUnique m => FastString -> Mult -> Type -> m Id mkSysLocalM fs w ty = getUniqueM >>= (\uniq -> return (mkSysLocal fs uniq w ty)) mkSysLocalOrCoVarM :: MonadUnique m => FastString -> Mult -> Type -> m Id mkSysLocalOrCoVarM fs w ty = getUniqueM >>= (\uniq -> return (mkSysLocalOrCoVar fs uniq w ty)) -- | Create a user local 'Id'. These are local 'Id's (see "GHC.Types.Var#globalvslocal") with a name and location that the user might recognize mkUserLocal :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id mkUserLocal occ uniq w ty loc = ASSERT( not (isCoVarType ty) ) mkLocalId (mkInternalName uniq occ loc) w ty -- | Like 'mkUserLocal', but checks if we have a coercion type mkUserLocalOrCoVar :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id mkUserLocalOrCoVar occ uniq w ty loc = mkLocalIdOrCoVar (mkInternalName uniq occ loc) w ty {- Make some local @Ids@ for a template @CoreExpr@. These have bogus @Uniques@, but that's OK because the templates are supposed to be instantiated before use. -} -- | Workers get local names. "CoreTidy" will externalise these if necessary mkWorkerId :: Unique -> Id -> Type -> Id mkWorkerId uniq unwrkr ty = mkLocalId (mkDerivedInternalName mkWorkerOcc uniq (getName unwrkr)) Many ty -- | Create a /template local/: a family of system local 'Id's in bijection with @Int@s, typically used in unfoldings mkTemplateLocal :: Int -> Type -> Id mkTemplateLocal i ty = mkScaledTemplateLocal i (unrestricted ty) mkScaledTemplateLocal :: Int -> Scaled Type -> Id mkScaledTemplateLocal i (Scaled w ty) = mkSysLocalOrCoVar (fsLit "v") (mkBuiltinUnique i) w ty -- "OrCoVar" since this is used in a superclass selector, -- and "~" and "~~" have coercion "superclasses". -- | Create a template local for a series of types mkTemplateLocals :: [Type] -> [Id] mkTemplateLocals = mkTemplateLocalsNum 1 -- | Create a template local for a series of type, but start from a specified template local mkTemplateLocalsNum :: Int -> [Type] -> [Id] mkTemplateLocalsNum n tys = zipWith mkTemplateLocal [n..] tys {- Note [Exported LocalIds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use mkExportedLocalId for things like - Dictionary functions (DFunId) - Wrapper and matcher Ids for pattern synonyms - Default methods for classes - Pattern-synonym matcher and builder Ids - etc They marked as "exported" in the sense that they should be kept alive even if apparently unused in other bindings, and not dropped as dead code by the occurrence analyser. (But "exported" here does not mean "brought into lexical scope by an import declaration". Indeed these things are always internal Ids that the user never sees.) It's very important that they are *LocalIds*, not GlobalIds, for lots of reasons: * We want to treat them as free variables for the purpose of dependency analysis (e.g. GHC.Core.FVs.exprFreeVars). * Look them up in the current substitution when we come across occurrences of them (in Subst.lookupIdSubst). Lacking this we can get an out-of-date unfolding, which can in turn make the simplifier go into an infinite loop (#9857) * Ensure that for dfuns that the specialiser does not float dict uses above their defns, which would prevent good simplifications happening. * The strictness analyser treats a occurrence of a GlobalId as imported and assumes it contains strictness in its IdInfo, which isn't true if the thing is bound in the same module as the occurrence. In CoreTidy we must make all these LocalIds into GlobalIds, so that in importing modules (in --make mode) we treat them as properly global. That is what is happening in, say tidy_insts in GHC.Iface.Tidy. ************************************************************************ * * \subsection{Special Ids} * * ************************************************************************ -} -- | If the 'Id' is that for a record selector, extract the 'sel_tycon'. Panic otherwise. recordSelectorTyCon :: Id -> RecSelParent recordSelectorTyCon id = case recordSelectorTyCon_maybe id of Just parent -> parent _ -> panic "recordSelectorTyCon" recordSelectorTyCon_maybe :: Id -> Maybe RecSelParent recordSelectorTyCon_maybe id = case Var.idDetails id of RecSelId { sel_tycon = parent } -> Just parent _ -> Nothing isRecordSelector :: Id -> Bool isNaughtyRecordSelector :: Id -> Bool isPatSynRecordSelector :: Id -> Bool isDataConRecordSelector :: Id -> Bool isPrimOpId :: Id -> Bool isFCallId :: Id -> Bool isDataConWorkId :: Id -> Bool isDataConWrapId :: Id -> Bool isDFunId :: Id -> Bool isClassOpId_maybe :: Id -> Maybe Class isPrimOpId_maybe :: Id -> Maybe PrimOp isFCallId_maybe :: Id -> Maybe ForeignCall isDataConWorkId_maybe :: Id -> Maybe DataCon isDataConWrapId_maybe :: Id -> Maybe DataCon isRecordSelector id = case Var.idDetails id of RecSelId {} -> True _ -> False isDataConRecordSelector id = case Var.idDetails id of RecSelId {sel_tycon = RecSelData _} -> True _ -> False isPatSynRecordSelector id = case Var.idDetails id of RecSelId {sel_tycon = RecSelPatSyn _} -> True _ -> False isNaughtyRecordSelector id = case Var.idDetails id of RecSelId { sel_naughty = n } -> n _ -> False isClassOpId_maybe id = case Var.idDetails id of ClassOpId cls -> Just cls _other -> Nothing isPrimOpId id = case Var.idDetails id of PrimOpId _ -> True _ -> False isDFunId id = case Var.idDetails id of DFunId {} -> True _ -> False isPrimOpId_maybe id = case Var.idDetails id of PrimOpId op -> Just op _ -> Nothing isFCallId id = case Var.idDetails id of FCallId _ -> True _ -> False isFCallId_maybe id = case Var.idDetails id of FCallId call -> Just call _ -> Nothing isDataConWorkId id = case Var.idDetails id of DataConWorkId _ -> True _ -> False isDataConWorkId_maybe id = case Var.idDetails id of DataConWorkId con -> Just con _ -> Nothing isDataConWrapId id = case Var.idDetails id of DataConWrapId _ -> True _ -> False isDataConWrapId_maybe id = case Var.idDetails id of DataConWrapId con -> Just con _ -> Nothing isDataConId_maybe :: Id -> Maybe DataCon isDataConId_maybe id = case Var.idDetails id of DataConWorkId con -> Just con DataConWrapId con -> Just con _ -> Nothing isJoinId :: Var -> Bool -- It is convenient in GHC.Core.Opt.SetLevels.lvlMFE to apply isJoinId -- to the free vars of an expression, so it's convenient -- if it returns False for type variables isJoinId id | isId id = case Var.idDetails id of JoinId {} -> True _ -> False | otherwise = False isJoinId_maybe :: Var -> Maybe JoinArity isJoinId_maybe id | isId id = ASSERT2( isId id, ppr id ) case Var.idDetails id of JoinId arity -> Just arity _ -> Nothing | otherwise = Nothing idDataCon :: Id -> DataCon -- ^ Get from either the worker or the wrapper 'Id' to the 'DataCon'. Currently used only in the desugarer. -- -- INVARIANT: @idDataCon (dataConWrapId d) = d@: remember, 'dataConWrapId' can return either the wrapper or the worker idDataCon id = isDataConId_maybe id `orElse` pprPanic "idDataCon" (ppr id) hasNoBinding :: Id -> Bool -- ^ Returns @True@ of an 'Id' which may not have a -- binding, even though it is defined in this module. -- Data constructor workers used to be things of this kind, but they aren't any -- more. Instead, we inject a binding for them at the CorePrep stage. The -- exception to this is unboxed tuples and sums datacons, which definitely have -- no binding hasNoBinding id = case Var.idDetails id of PrimOpId _ -> True -- See Note [Eta expanding primops] in GHC.Builtin.PrimOps FCallId _ -> True DataConWorkId dc -> isUnboxedTupleDataCon dc || isUnboxedSumDataCon dc _ -> isCompulsoryUnfolding (idUnfolding id) -- See Note [Levity-polymorphic Ids] isImplicitId :: Id -> Bool -- ^ 'isImplicitId' tells whether an 'Id's info is implied by other -- declarations, so we don't need to put its signature in an interface -- file, even if it's mentioned in some other interface unfolding. isImplicitId id = case Var.idDetails id of FCallId {} -> True ClassOpId {} -> True PrimOpId {} -> True DataConWorkId {} -> True DataConWrapId {} -> True -- These are implied by their type or class decl; -- remember that all type and class decls appear in the interface file. -- The dfun id is not an implicit Id; it must *not* be omitted, because -- it carries version info for the instance decl _ -> False idIsFrom :: Module -> Id -> Bool idIsFrom mod id = nameIsLocalOrFrom mod (idName id) {- Note [Levity-polymorphic Ids] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some levity-polymorphic Ids must be applied and inlined, not left un-saturated. Example: unsafeCoerceId :: forall r1 r2 (a::TYPE r1) (b::TYPE r2). a -> b This has a compulsory unfolding because we can't lambda-bind those arguments. But the compulsory unfolding may leave levity-polymorphic lambdas if it is not applied to enough arguments; e.g. (#14561) bad :: forall (a :: TYPE r). a -> a bad = unsafeCoerce# The desugar has special magic to detect such cases: GHC.HsToCore.Expr.badUseOfLevPolyPrimop. And we want that magic to apply to levity-polymorphic compulsory-inline things. The easiest way to do this is for hasNoBinding to return True of all things that have compulsory unfolding. Some Ids with a compulsory unfolding also have a binding, but it does not harm to say they don't here, and its a very simple way to fix #14561. -} isDeadBinder :: Id -> Bool isDeadBinder bndr | isId bndr = isDeadOcc (idOccInfo bndr) | otherwise = False -- TyVars count as not dead {- ************************************************************************ * * Join variables * * ************************************************************************ -} idJoinArity :: JoinId -> JoinArity idJoinArity id = isJoinId_maybe id `orElse` pprPanic "idJoinArity" (ppr id) asJoinId :: Id -> JoinArity -> JoinId asJoinId id arity = WARN(not (isLocalId id), text "global id being marked as join var:" <+> ppr id) WARN(not (is_vanilla_or_join id), ppr id <+> pprIdDetails (idDetails id)) id `setIdDetails` JoinId arity where is_vanilla_or_join id = case Var.idDetails id of VanillaId -> True JoinId {} -> True _ -> False zapJoinId :: Id -> Id -- May be a regular id already zapJoinId jid | isJoinId jid = zapIdTailCallInfo (jid `setIdDetails` VanillaId) -- Core Lint may complain if still marked -- as AlwaysTailCalled | otherwise = jid asJoinId_maybe :: Id -> Maybe JoinArity -> Id asJoinId_maybe id (Just arity) = asJoinId id arity asJoinId_maybe id Nothing = zapJoinId id {- ************************************************************************ * * \subsection{IdInfo stuff} * * ************************************************************************ -} --------------------------------- -- ARITY idArity :: Id -> Arity idArity id = arityInfo (idInfo id) setIdArity :: Id -> Arity -> Id setIdArity id arity = modifyIdInfo (`setArityInfo` arity) id idCallArity :: Id -> Arity idCallArity id = callArityInfo (idInfo id) setIdCallArity :: Id -> Arity -> Id setIdCallArity id arity = modifyIdInfo (`setCallArityInfo` arity) id idFunRepArity :: Id -> RepArity idFunRepArity x = countFunRepArgs (idArity x) (idType x) -- | Returns true if an application to n args diverges or throws an exception -- See Note [Dead ends] in "GHC.Types.Demand". isDeadEndId :: Var -> Bool isDeadEndId v | isId v = isDeadEndSig (idStrictness v) | otherwise = False -- | Accesses the 'Id''s 'strictnessInfo'. idStrictness :: Id -> StrictSig idStrictness id = strictnessInfo (idInfo id) setIdStrictness :: Id -> StrictSig -> Id setIdStrictness id sig = modifyIdInfo (`setStrictnessInfo` sig) id idCprInfo :: Id -> CprSig idCprInfo id = cprInfo (idInfo id) setIdCprInfo :: Id -> CprSig -> Id setIdCprInfo id sig = modifyIdInfo (\info -> setCprInfo info sig) id zapIdStrictness :: Id -> Id zapIdStrictness id = modifyIdInfo (`setStrictnessInfo` nopSig) id -- | This predicate says whether the 'Id' has a strict demand placed on it or -- has a type such that it can always be evaluated strictly (i.e an -- unlifted type, as of GHC 7.6). We need to -- check separately whether the 'Id' has a so-called \"strict type\" because if -- the demand for the given @id@ hasn't been computed yet but @id@ has a strict -- type, we still want @isStrictId id@ to be @True@. isStrictId :: Id -> Bool isStrictId id | ASSERT2( isId id, text "isStrictId: not an id: " <+> ppr id ) isJoinId id = False | otherwise = isStrictType (idType id) || isStrUsedDmd (idDemandInfo id) -- Take the best of both strictnesses - old and new --------------------------------- -- UNFOLDING idUnfolding :: Id -> Unfolding -- Do not expose the unfolding of a loop breaker! idUnfolding id | isStrongLoopBreaker (occInfo info) = NoUnfolding | otherwise = unfoldingInfo info where info = idInfo id realIdUnfolding :: Id -> Unfolding -- Expose the unfolding if there is one, including for loop breakers realIdUnfolding id = unfoldingInfo (idInfo id) setIdUnfolding :: Id -> Unfolding -> Id setIdUnfolding id unfolding = modifyIdInfo (`setUnfoldingInfo` unfolding) id idDemandInfo :: Id -> Demand idDemandInfo id = demandInfo (idInfo id) setIdDemandInfo :: Id -> Demand -> Id setIdDemandInfo id dmd = modifyIdInfo (`setDemandInfo` dmd) id setCaseBndrEvald :: StrictnessMark -> Id -> Id -- Used for variables bound by a case expressions, both the case-binder -- itself, and any pattern-bound variables that are argument of a -- strict constructor. It just marks the variable as already-evaluated, -- so that (for example) a subsequent 'seq' can be dropped setCaseBndrEvald str id | isMarkedStrict str = id `setIdUnfolding` evaldUnfolding | otherwise = id --------------------------------- -- SPECIALISATION -- See Note [Specialisations and RULES in IdInfo] in GHC.Types.Id.Info idSpecialisation :: Id -> RuleInfo idSpecialisation id = ruleInfo (idInfo id) idCoreRules :: Id -> [CoreRule] idCoreRules id = ruleInfoRules (idSpecialisation id) idHasRules :: Id -> Bool idHasRules id = not (isEmptyRuleInfo (idSpecialisation id)) setIdSpecialisation :: Id -> RuleInfo -> Id setIdSpecialisation id spec_info = modifyIdInfo (`setRuleInfo` spec_info) id --------------------------------- -- CAF INFO idCafInfo :: Id -> CafInfo idCafInfo id = cafInfo (idInfo id) setIdCafInfo :: Id -> CafInfo -> Id setIdCafInfo id caf_info = modifyIdInfo (`setCafInfo` caf_info) id --------------------------------- -- Lambda form info idLFInfo_maybe :: Id -> Maybe LambdaFormInfo idLFInfo_maybe = lfInfo . idInfo setIdLFInfo :: Id -> LambdaFormInfo -> Id setIdLFInfo id lf = modifyIdInfo (`setLFInfo` lf) id --------------------------------- -- Occurrence INFO idOccInfo :: Id -> OccInfo idOccInfo id = occInfo (idInfo id) setIdOccInfo :: Id -> OccInfo -> Id setIdOccInfo id occ_info = modifyIdInfo (`setOccInfo` occ_info) id zapIdOccInfo :: Id -> Id zapIdOccInfo b = b `setIdOccInfo` noOccInfo {- --------------------------------- -- INLINING The inline pragma tells us to be very keen to inline this Id, but it's still OK not to if optimisation is switched off. -} idInlinePragma :: Id -> InlinePragma idInlinePragma id = inlinePragInfo (idInfo id) setInlinePragma :: Id -> InlinePragma -> Id setInlinePragma id prag = modifyIdInfo (`setInlinePragInfo` prag) id modifyInlinePragma :: Id -> (InlinePragma -> InlinePragma) -> Id modifyInlinePragma id fn = modifyIdInfo (\info -> info `setInlinePragInfo` (fn (inlinePragInfo info))) id idInlineActivation :: Id -> Activation idInlineActivation id = inlinePragmaActivation (idInlinePragma id) setInlineActivation :: Id -> Activation -> Id setInlineActivation id act = modifyInlinePragma id (\prag -> setInlinePragmaActivation prag act) idRuleMatchInfo :: Id -> RuleMatchInfo idRuleMatchInfo id = inlinePragmaRuleMatchInfo (idInlinePragma id) isConLikeId :: Id -> Bool isConLikeId id = isConLike (idRuleMatchInfo id) {- --------------------------------- -- ONE-SHOT LAMBDAS -} idOneShotInfo :: Id -> OneShotInfo idOneShotInfo id = oneShotInfo (idInfo id) -- | Like 'idOneShotInfo', but taking the Horrible State Hack in to account -- See Note [The state-transformer hack] in "GHC.Core.Opt.Arity" idStateHackOneShotInfo :: Id -> OneShotInfo idStateHackOneShotInfo id | isStateHackType (idType id) = stateHackOneShot | otherwise = idOneShotInfo id -- | Returns whether the lambda associated with the 'Id' is certainly applied at most once -- This one is the "business end", called externally. -- It works on type variables as well as Ids, returning True -- Its main purpose is to encapsulate the Horrible State Hack -- See Note [The state-transformer hack] in "GHC.Core.Opt.Arity" isOneShotBndr :: Var -> Bool isOneShotBndr var | isTyVar var = True | OneShotLam <- idStateHackOneShotInfo var = True | otherwise = False -- | Should we apply the state hack to values of this 'Type'? stateHackOneShot :: OneShotInfo stateHackOneShot = OneShotLam typeOneShot :: Type -> OneShotInfo typeOneShot ty | isStateHackType ty = stateHackOneShot | otherwise = NoOneShotInfo isStateHackType :: Type -> Bool isStateHackType ty | unsafeHasNoStateHack = False | otherwise = case tyConAppTyCon_maybe ty of Just tycon -> tycon == statePrimTyCon _ -> False -- This is a gross hack. It claims that -- every function over realWorldStatePrimTy is a one-shot -- function. This is pretty true in practice, and makes a big -- difference. For example, consider -- a `thenST` \ r -> ...E... -- The early full laziness pass, if it doesn't know that r is one-shot -- will pull out E (let's say it doesn't mention r) to give -- let lvl = E in a `thenST` \ r -> ...lvl... -- When `thenST` gets inlined, we end up with -- let lvl = E in \s -> case a s of (r, s') -> ...lvl... -- and we don't re-inline E. -- -- It would be better to spot that r was one-shot to start with, but -- I don't want to rely on that. -- -- Another good example is in fill_in in PrelPack.hs. We should be able to -- spot that fill_in has arity 2 (and when Keith is done, we will) but we can't yet. isProbablyOneShotLambda :: Id -> Bool isProbablyOneShotLambda id = case idStateHackOneShotInfo id of OneShotLam -> True NoOneShotInfo -> False setOneShotLambda :: Id -> Id setOneShotLambda id = modifyIdInfo (`setOneShotInfo` OneShotLam) id clearOneShotLambda :: Id -> Id clearOneShotLambda id = modifyIdInfo (`setOneShotInfo` NoOneShotInfo) id setIdOneShotInfo :: Id -> OneShotInfo -> Id setIdOneShotInfo id one_shot = modifyIdInfo (`setOneShotInfo` one_shot) id updOneShotInfo :: Id -> OneShotInfo -> Id -- Combine the info in the Id with new info updOneShotInfo id one_shot | do_upd = setIdOneShotInfo id one_shot | otherwise = id where do_upd = case (idOneShotInfo id, one_shot) of (NoOneShotInfo, _) -> True (OneShotLam, _) -> False -- The OneShotLambda functions simply fiddle with the IdInfo flag -- But watch out: this may change the type of something else -- f = \x -> e -- If we change the one-shot-ness of x, f's type changes zapInfo :: (IdInfo -> Maybe IdInfo) -> Id -> Id zapInfo zapper id = maybeModifyIdInfo (zapper (idInfo id)) id zapLamIdInfo :: Id -> Id zapLamIdInfo = zapInfo zapLamInfo zapFragileIdInfo :: Id -> Id zapFragileIdInfo = zapInfo zapFragileInfo zapIdDemandInfo :: Id -> Id zapIdDemandInfo = zapInfo zapDemandInfo zapIdUsageInfo :: Id -> Id zapIdUsageInfo = zapInfo zapUsageInfo zapIdUsageEnvInfo :: Id -> Id zapIdUsageEnvInfo = zapInfo zapUsageEnvInfo zapIdUsedOnceInfo :: Id -> Id zapIdUsedOnceInfo = zapInfo zapUsedOnceInfo zapIdTailCallInfo :: Id -> Id zapIdTailCallInfo = zapInfo zapTailCallInfo zapStableUnfolding :: Id -> Id zapStableUnfolding id | isStableUnfolding (realIdUnfolding id) = setIdUnfolding id NoUnfolding | otherwise = id {- Note [transferPolyIdInfo] ~~~~~~~~~~~~~~~~~~~~~~~~~ This transfer is used in three places: FloatOut (long-distance let-floating) GHC.Core.Opt.Simplify.Utils.abstractFloats (short-distance let-floating) StgLiftLams (selectively lambda-lift local functions to top-level) Consider the short-distance let-floating: f = /\a. let g = rhs in ... Then if we float thus g' = /\a. rhs f = /\a. ...[g' a/g].... we *do not* want to lose g's * strictness information * arity * inline pragma (though that is bit more debatable) * occurrence info Mostly this is just an optimisation, but it's *vital* to transfer the occurrence info. Consider NonRec { f = /\a. let Rec { g* = ..g.. } in ... } where the '*' means 'LoopBreaker'. Then if we float we must get Rec { g'* = /\a. ...(g' a)... } NonRec { f = /\a. ...[g' a/g]....} where g' is also marked as LoopBreaker. If not, terrible things can happen if we re-simplify the binding (and the Simplifier does sometimes simplify a term twice); see #4345. It's not so simple to retain * worker info * rules so we simply discard those. Sooner or later this may bite us. If we abstract wrt one or more *value* binders, we must modify the arity and strictness info before transferring it. E.g. f = \x. e --> g' = \y. \x. e + substitute (g' y) for g Notice that g' has an arity one more than the original g -} transferPolyIdInfo :: Id -- Original Id -> [Var] -- Abstract wrt these variables -> Id -- New Id -> Id transferPolyIdInfo old_id abstract_wrt new_id = modifyIdInfo transfer new_id where arity_increase = count isId abstract_wrt -- Arity increases by the -- number of value binders old_info = idInfo old_id old_arity = arityInfo old_info old_inline_prag = inlinePragInfo old_info old_occ_info = occInfo old_info new_arity = old_arity + arity_increase new_occ_info = zapOccTailCallInfo old_occ_info old_strictness = strictnessInfo old_info new_strictness = prependArgsStrictSig arity_increase old_strictness old_cpr = cprInfo old_info transfer new_info = new_info `setArityInfo` new_arity `setInlinePragInfo` old_inline_prag `setOccInfo` new_occ_info `setStrictnessInfo` new_strictness `setCprInfo` old_cpr isNeverLevPolyId :: Id -> Bool isNeverLevPolyId = isNeverLevPolyIdInfo . idInfo