{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1999 -} {-# LANGUAGE CPP #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE MultiWayIf #-} module GHC.Tc.Instance.Typeable(mkTypeableBinds, tyConIsTypeable) where #include "HsVersions.h" import GHC.Prelude import GHC.Platform import GHC.Types.Basic ( Boxity(..), neverInlinePragma ) import GHC.Types.SourceText ( SourceText(..) ) import GHC.Iface.Env( newGlobalBinder ) import GHC.Core.TyCo.Rep( Type(..), TyLit(..) ) import GHC.Tc.Utils.Env import GHC.Tc.Types.Evidence ( mkWpTyApps ) import GHC.Tc.Utils.Monad import GHC.Tc.Utils.TcType import GHC.Types.TyThing ( lookupId ) import GHC.Builtin.Names import GHC.Builtin.Types.Prim ( primTyCons ) import GHC.Builtin.Types ( tupleTyCon, sumTyCon, runtimeRepTyCon , levityTyCon, vecCountTyCon, vecElemTyCon , nilDataCon, consDataCon ) import GHC.Types.Name import GHC.Types.Id import GHC.Core.Type import GHC.Core.TyCon import GHC.Core.DataCon import GHC.Unit.Module import GHC.Hs import GHC.Driver.Session import GHC.Data.Bag import GHC.Types.Var ( VarBndr(..) ) import GHC.Core.Map.Type import GHC.Settings.Constants import GHC.Utils.Fingerprint(Fingerprint(..), fingerprintString, fingerprintFingerprints) import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Data.FastString ( FastString, mkFastString, fsLit ) import Control.Monad.Trans.State import Control.Monad.Trans.Class (lift) import Data.Maybe ( isJust ) import Data.Word( Word64 ) {- Note [Grand plan for Typeable] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The overall plan is this: 1. Generate a binding for each module p:M (done in GHC.Tc.Instance.Typeable by mkModIdBindings) M.$trModule :: GHC.Unit.Module M.$trModule = Module "p" "M" ("tr" is short for "type representation"; see GHC.Types) We might want to add the filename too. This can be used for the lightweight stack-tracing stuff too Record the Name M.$trModule in the tcg_tr_module field of TcGblEnv 2. Generate a binding for every data type declaration T in module M, M.$tcT :: GHC.Types.TyCon M.$tcT = TyCon ...fingerprint info... $trModule "T" 0# kind_rep Here 0# is the number of arguments expected by the tycon to fully determine its kind. kind_rep is a value of type GHC.Types.KindRep, which gives a recipe for computing the kind of an instantiation of the tycon (see Note [Representing TyCon kinds: KindRep] later in this file for details). We define (in GHC.Core.TyCon) type TyConRepName = Name to use for these M.$tcT "tycon rep names". Note that these must be treated as "never exported" names by Backpack (see Note [Handling never-exported TyThings under Backpack]). Consequently they get slightly special treatment in GHC.Iface.Rename.rnIfaceDecl. 3. Record the TyConRepName in T's TyCon, including for promoted data and type constructors, and kinds like * and #. The TyConRepName is not an "implicit Id". It's more like a record selector: the TyCon knows its name but you have to go to the interface file to find its type, value, etc 4. Solve Typeable constraints. This is done by a custom Typeable solver, currently in GHC.Tc.Solver.Interact, that use M.$tcT so solve (Typeable T). There are many wrinkles: * The timing of when we produce this bindings is rather important: they must be defined after the rest of the module has been typechecked since we need to be able to lookup Module and TyCon in the type environment and we may be currently compiling GHC.Types (where they are defined). * GHC.Prim doesn't have any associated object code, so we need to put the representations for types defined in this module elsewhere. We chose this place to be GHC.Types. GHC.Tc.Instance.Typeable.mkPrimTypeableBinds is responsible for injecting the bindings for the GHC.Prim representions when compiling GHC.Types. * TyCon.tyConRepModOcc is responsible for determining where to find the representation binding for a given type. This is where we handle the special case for GHC.Prim. * To save space and reduce dependencies, we need use quite low-level representations for TyCon and Module. See GHC.Types Note [Runtime representation of modules and tycons] * The KindReps can unfortunately get quite large. Moreover, the simplifier will float out various pieces of them, resulting in numerous top-level bindings. Consequently we mark the KindRep bindings as noinline, ensuring that the float-outs don't make it into the interface file. This is important since there is generally little benefit to inlining KindReps and they would otherwise strongly affect compiler performance. * In general there are lots of things of kind *, * -> *, and * -> * -> *. To reduce the number of bindings we need to produce, we generate their KindReps once in GHC.Types. These are referred to as "built-in" KindReps below. * Even though KindReps aren't inlined, this scheme still has more of an effect on compilation time than I'd like. This is especially true in the case of families of type constructors (e.g. tuples and unboxed sums). The problem is particularly bad in the case of sums, since each arity-N tycon brings with it N promoted datacons, each with a KindRep whose size also scales with N. Consequently we currently simply don't allow sums to be Typeable. In general we might consider moving some or all of this generation logic back to the solver since the performance hit we take in doing this at type-definition time is non-trivial and Typeable isn't very widely used. This is discussed in #13261. -} -- | Generate the Typeable bindings for a module. This is the only -- entry-point of this module and is invoked by the typechecker driver in -- 'tcRnSrcDecls'. -- -- See Note [Grand plan for Typeable] in "GHC.Tc.Instance.Typeable". mkTypeableBinds :: TcM TcGblEnv mkTypeableBinds = do { dflags <- getDynFlags ; if gopt Opt_NoTypeableBinds dflags then getGblEnv else do { -- Create a binding for $trModule. -- Do this before processing any data type declarations, -- which need tcg_tr_module to be initialised ; tcg_env <- mkModIdBindings -- Now we can generate the TyCon representations... -- First we handle the primitive TyCons if we are compiling GHC.Types ; (tcg_env, prim_todos) <- setGblEnv tcg_env mkPrimTypeableTodos -- Then we produce bindings for the user-defined types in this module. ; setGblEnv tcg_env $ do { mod <- getModule ; let tycons = filter needs_typeable_binds (tcg_tcs tcg_env) mod_id = case tcg_tr_module tcg_env of -- Should be set by now Just mod_id -> mod_id Nothing -> pprPanic "tcMkTypeableBinds" (ppr tycons) ; traceTc "mkTypeableBinds" (ppr tycons) ; this_mod_todos <- todoForTyCons mod mod_id tycons ; mkTypeRepTodoBinds (this_mod_todos : prim_todos) } } } where needs_typeable_binds tc | tc `elem` [runtimeRepTyCon, levityTyCon, vecCountTyCon, vecElemTyCon] = False | otherwise = isAlgTyCon tc || isDataFamilyTyCon tc || isClassTyCon tc {- ********************************************************************* * * Building top-level binding for $trModule * * ********************************************************************* -} mkModIdBindings :: TcM TcGblEnv mkModIdBindings = do { mod <- getModule ; loc <- getSrcSpanM ; mod_nm <- newGlobalBinder mod (mkVarOcc "$trModule") loc ; trModuleTyCon <- tcLookupTyCon trModuleTyConName ; let mod_id = mkExportedVanillaId mod_nm (mkTyConApp trModuleTyCon []) ; mod_bind <- mkVarBind mod_id <$> mkModIdRHS mod ; tcg_env <- tcExtendGlobalValEnv [mod_id] getGblEnv ; return (tcg_env { tcg_tr_module = Just mod_id } `addTypecheckedBinds` [unitBag mod_bind]) } mkModIdRHS :: Module -> TcM (LHsExpr GhcTc) mkModIdRHS mod = do { trModuleDataCon <- tcLookupDataCon trModuleDataConName ; trNameLit <- mkTrNameLit ; return $ nlHsDataCon trModuleDataCon `nlHsApp` trNameLit (unitFS (moduleUnit mod)) `nlHsApp` trNameLit (moduleNameFS (moduleName mod)) } {- ********************************************************************* * * Building type-representation bindings * * ********************************************************************* -} -- | Information we need about a 'TyCon' to generate its representation. We -- carry the 'Id' in order to share it between the generation of the @TyCon@ and -- @KindRep@ bindings. data TypeableTyCon = TypeableTyCon { tycon :: !TyCon , tycon_rep_id :: !Id } -- | A group of 'TyCon's in need of type-rep bindings. data TypeRepTodo = TypeRepTodo { mod_rep_expr :: LHsExpr GhcTc -- ^ Module's typerep binding , pkg_fingerprint :: !Fingerprint -- ^ Package name fingerprint , mod_fingerprint :: !Fingerprint -- ^ Module name fingerprint , todo_tycons :: [TypeableTyCon] -- ^ The 'TyCon's in need of bindings kinds } | ExportedKindRepsTodo [(Kind, Id)] -- ^ Build exported 'KindRep' bindings for the given set of kinds. todoForTyCons :: Module -> Id -> [TyCon] -> TcM TypeRepTodo todoForTyCons mod mod_id tycons = do trTyConTy <- mkTyConTy <$> tcLookupTyCon trTyConTyConName let mk_rep_id :: TyConRepName -> Id mk_rep_id rep_name = mkExportedVanillaId rep_name trTyConTy let typeable_tycons :: [TypeableTyCon] typeable_tycons = [ TypeableTyCon { tycon = tc'' , tycon_rep_id = mk_rep_id rep_name } | tc <- tycons , tc' <- tc : tyConATs tc -- We need type representations for any associated types , let promoted = map promoteDataCon (tyConDataCons tc') , tc'' <- tc' : promoted -- Don't make bindings for data-family instance tycons. -- Do, however, make them for their promoted datacon (see #13915). , not $ isFamInstTyCon tc'' , Just rep_name <- pure $ tyConRepName_maybe tc'' , tyConIsTypeable tc'' ] return TypeRepTodo { mod_rep_expr = nlHsVar mod_id , pkg_fingerprint = pkg_fpr , mod_fingerprint = mod_fpr , todo_tycons = typeable_tycons } where mod_fpr = fingerprintString $ moduleNameString $ moduleName mod pkg_fpr = fingerprintString $ unitString $ moduleUnit mod todoForExportedKindReps :: [(Kind, Name)] -> TcM TypeRepTodo todoForExportedKindReps kinds = do trKindRepTy <- mkTyConTy <$> tcLookupTyCon kindRepTyConName let mkId (k, name) = (k, mkExportedVanillaId name trKindRepTy) return $ ExportedKindRepsTodo $ map mkId kinds -- | Generate TyCon bindings for a set of type constructors mkTypeRepTodoBinds :: [TypeRepTodo] -> TcM TcGblEnv mkTypeRepTodoBinds [] = getGblEnv mkTypeRepTodoBinds todos = do { stuff <- collect_stuff -- First extend the type environment with all of the bindings -- which we are going to produce since we may need to refer to them -- while generating kind representations (namely, when we want to -- represent a TyConApp in a kind, we must be able to look up the -- TyCon associated with the applied type constructor). ; let produced_bndrs :: [Id] produced_bndrs = [ tycon_rep_id | todo@(TypeRepTodo{}) <- todos , TypeableTyCon {..} <- todo_tycons todo ] ++ [ rep_id | ExportedKindRepsTodo kinds <- todos , (_, rep_id) <- kinds ] ; gbl_env <- tcExtendGlobalValEnv produced_bndrs getGblEnv ; let mk_binds :: TypeRepTodo -> KindRepM [LHsBinds GhcTc] mk_binds todo@(TypeRepTodo {}) = mapM (mkTyConRepBinds stuff todo) (todo_tycons todo) mk_binds (ExportedKindRepsTodo kinds) = mkExportedKindReps stuff kinds >> return [] ; (gbl_env, binds) <- setGblEnv gbl_env $ runKindRepM (mapM mk_binds todos) ; return $ gbl_env `addTypecheckedBinds` concat binds } -- | Generate bindings for the type representation of a wired-in 'TyCon's -- defined by the virtual "GHC.Prim" module. This is where we inject the -- representation bindings for these primitive types into "GHC.Types" -- -- See Note [Grand plan for Typeable] in this module. mkPrimTypeableTodos :: TcM (TcGblEnv, [TypeRepTodo]) mkPrimTypeableTodos = do { mod <- getModule ; if mod == gHC_TYPES then do { -- Build Module binding for GHC.Prim trModuleTyCon <- tcLookupTyCon trModuleTyConName ; let ghc_prim_module_id = mkExportedVanillaId trGhcPrimModuleName (mkTyConTy trModuleTyCon) ; ghc_prim_module_bind <- mkVarBind ghc_prim_module_id <$> mkModIdRHS gHC_PRIM -- Extend our environment with above ; gbl_env <- tcExtendGlobalValEnv [ghc_prim_module_id] getGblEnv ; let gbl_env' = gbl_env `addTypecheckedBinds` [unitBag ghc_prim_module_bind] -- Build TypeRepTodos for built-in KindReps ; todo1 <- todoForExportedKindReps builtInKindReps -- Build TypeRepTodos for types in GHC.Prim ; todo2 <- todoForTyCons gHC_PRIM ghc_prim_module_id ghcPrimTypeableTyCons ; return ( gbl_env' , [todo1, todo2]) } else do gbl_env <- getGblEnv return (gbl_env, []) } -- | This is the list of primitive 'TyCon's for which we must generate bindings -- in "GHC.Types". This should include all types defined in "GHC.Prim". -- -- The majority of the types we need here are contained in 'primTyCons'. -- However, not all of them: in particular unboxed tuples are absent since we -- don't want to include them in the original name cache. See -- Note [Built-in syntax and the OrigNameCache] in "GHC.Iface.Env" for more. ghcPrimTypeableTyCons :: [TyCon] ghcPrimTypeableTyCons = concat [ [ runtimeRepTyCon, levityTyCon, vecCountTyCon, vecElemTyCon ] , map (tupleTyCon Unboxed) [0..mAX_TUPLE_SIZE] , map sumTyCon [2..mAX_SUM_SIZE] , primTyCons ] data TypeableStuff = Stuff { platform :: Platform -- ^ Target platform , trTyConDataCon :: DataCon -- ^ of @TyCon@ , trNameLit :: FastString -> LHsExpr GhcTc -- ^ To construct @TrName@s -- The various TyCon and DataCons of KindRep , kindRepTyCon :: TyCon , kindRepTyConAppDataCon :: DataCon , kindRepVarDataCon :: DataCon , kindRepAppDataCon :: DataCon , kindRepFunDataCon :: DataCon , kindRepTYPEDataCon :: DataCon , kindRepTypeLitSDataCon :: DataCon , typeLitSymbolDataCon :: DataCon , typeLitCharDataCon :: DataCon , typeLitNatDataCon :: DataCon } -- | Collect various tidbits which we'll need to generate TyCon representations. collect_stuff :: TcM TypeableStuff collect_stuff = do platform <- targetPlatform <$> getDynFlags trTyConDataCon <- tcLookupDataCon trTyConDataConName kindRepTyCon <- tcLookupTyCon kindRepTyConName kindRepTyConAppDataCon <- tcLookupDataCon kindRepTyConAppDataConName kindRepVarDataCon <- tcLookupDataCon kindRepVarDataConName kindRepAppDataCon <- tcLookupDataCon kindRepAppDataConName kindRepFunDataCon <- tcLookupDataCon kindRepFunDataConName kindRepTYPEDataCon <- tcLookupDataCon kindRepTYPEDataConName kindRepTypeLitSDataCon <- tcLookupDataCon kindRepTypeLitSDataConName typeLitSymbolDataCon <- tcLookupDataCon typeLitSymbolDataConName typeLitNatDataCon <- tcLookupDataCon typeLitNatDataConName typeLitCharDataCon <- tcLookupDataCon typeLitCharDataConName trNameLit <- mkTrNameLit return Stuff {..} -- | Lookup the necessary pieces to construct the @trNameLit@. We do this so we -- can save the work of repeating lookups when constructing many TyCon -- representations. mkTrNameLit :: TcM (FastString -> LHsExpr GhcTc) mkTrNameLit = do trNameSDataCon <- tcLookupDataCon trNameSDataConName let trNameLit :: FastString -> LHsExpr GhcTc trNameLit fs = nlHsPar $ nlHsDataCon trNameSDataCon `nlHsApp` nlHsLit (mkHsStringPrimLit fs) return trNameLit -- | Make Typeable bindings for the given 'TyCon'. mkTyConRepBinds :: TypeableStuff -> TypeRepTodo -> TypeableTyCon -> KindRepM (LHsBinds GhcTc) mkTyConRepBinds stuff todo (TypeableTyCon {..}) = do -- Make a KindRep let (bndrs, kind) = splitForAllTyCoVarBinders (tyConKind tycon) liftTc $ traceTc "mkTyConKindRepBinds" (ppr tycon $$ ppr (tyConKind tycon) $$ ppr kind) let ctx = mkDeBruijnContext (map binderVar bndrs) kind_rep <- getKindRep stuff ctx kind -- Make the TyCon binding let tycon_rep_rhs = mkTyConRepTyConRHS stuff todo tycon kind_rep tycon_rep_bind = mkVarBind tycon_rep_id tycon_rep_rhs return $ unitBag tycon_rep_bind -- | Is a particular 'TyCon' representable by @Typeable@?. These exclude type -- families and polytypes. tyConIsTypeable :: TyCon -> Bool tyConIsTypeable tc = isJust (tyConRepName_maybe tc) && kindIsTypeable (dropForAlls $ tyConKind tc) -- | Is a particular 'Kind' representable by @Typeable@? Here we look for -- polytypes and types containing casts (which may be, for instance, a type -- family). kindIsTypeable :: Kind -> Bool -- We handle types of the form (TYPE LiftedRep) specifically to avoid -- looping on (tyConIsTypeable RuntimeRep). We used to consider (TYPE rr) -- to be typeable without inspecting rr, but this exhibits bad behavior -- when rr is a type family. kindIsTypeable ty | Just ty' <- coreView ty = kindIsTypeable ty' kindIsTypeable ty | isLiftedTypeKind ty = True kindIsTypeable (TyVarTy _) = True kindIsTypeable (AppTy a b) = kindIsTypeable a && kindIsTypeable b kindIsTypeable (FunTy _ w a b) = kindIsTypeable w && kindIsTypeable a && kindIsTypeable b kindIsTypeable (TyConApp tc args) = tyConIsTypeable tc && all kindIsTypeable args kindIsTypeable (ForAllTy{}) = False kindIsTypeable (LitTy _) = True kindIsTypeable (CastTy{}) = False -- See Note [Typeable instances for casted types] kindIsTypeable (CoercionTy{}) = False -- | Maps kinds to 'KindRep' bindings. This binding may either be defined in -- some other module (in which case the @Maybe (LHsExpr Id@ will be 'Nothing') -- or a binding which we generated in the current module (in which case it will -- be 'Just' the RHS of the binding). type KindRepEnv = TypeMap (Id, Maybe (LHsExpr GhcTc)) -- | A monad within which we will generate 'KindRep's. Here we keep an -- environment containing 'KindRep's which we've already generated so we can -- re-use them opportunistically. newtype KindRepM a = KindRepM { unKindRepM :: StateT KindRepEnv TcRn a } deriving (Functor, Applicative, Monad) liftTc :: TcRn a -> KindRepM a liftTc = KindRepM . lift -- | We generate @KindRep@s for a few common kinds in @GHC.Types@ so that they -- can be reused across modules. builtInKindReps :: [(Kind, Name)] builtInKindReps = [ (star, starKindRepName) , (mkVisFunTyMany star star, starArrStarKindRepName) , (mkVisFunTysMany [star, star] star, starArrStarArrStarKindRepName) ] where star = liftedTypeKind initialKindRepEnv :: TcRn KindRepEnv initialKindRepEnv = foldlM add_kind_rep emptyTypeMap builtInKindReps where add_kind_rep acc (k,n) = do id <- tcLookupId n return $! extendTypeMap acc k (id, Nothing) -- | Performed while compiling "GHC.Types" to generate the built-in 'KindRep's. mkExportedKindReps :: TypeableStuff -> [(Kind, Id)] -- ^ the kinds to generate bindings for -> KindRepM () mkExportedKindReps stuff = mapM_ kindrep_binding where empty_scope = mkDeBruijnContext [] kindrep_binding :: (Kind, Id) -> KindRepM () kindrep_binding (kind, rep_bndr) = do -- We build the binding manually here instead of using mkKindRepRhs -- since the latter would find the built-in 'KindRep's in the -- 'KindRepEnv' (by virtue of being in 'initialKindRepEnv'). rhs <- mkKindRepRhs stuff empty_scope kind addKindRepBind empty_scope kind rep_bndr rhs addKindRepBind :: CmEnv -> Kind -> Id -> LHsExpr GhcTc -> KindRepM () addKindRepBind in_scope k bndr rhs = KindRepM $ modify' $ \env -> extendTypeMapWithScope env in_scope k (bndr, Just rhs) -- | Run a 'KindRepM' and add the produced 'KindRep's to the typechecking -- environment. runKindRepM :: KindRepM a -> TcRn (TcGblEnv, a) runKindRepM (KindRepM action) = do kindRepEnv <- initialKindRepEnv (res, reps_env) <- runStateT action kindRepEnv let rep_binds = foldTypeMap to_bind_pair [] reps_env to_bind_pair (bndr, Just rhs) rest = (bndr, rhs) : rest to_bind_pair (_, Nothing) rest = rest tcg_env <- tcExtendGlobalValEnv (map fst rep_binds) getGblEnv let binds = map (uncurry mkVarBind) rep_binds tcg_env' = tcg_env `addTypecheckedBinds` [listToBag binds] return (tcg_env', res) -- | Produce or find a 'KindRep' for the given kind. getKindRep :: TypeableStuff -> CmEnv -- ^ in-scope kind variables -> Kind -- ^ the kind we want a 'KindRep' for -> KindRepM (LHsExpr GhcTc) getKindRep stuff@(Stuff {..}) in_scope = go where go :: Kind -> KindRepM (LHsExpr GhcTc) go = KindRepM . StateT . go' go' :: Kind -> KindRepEnv -> TcRn (LHsExpr GhcTc, KindRepEnv) go' k env -- Look through type synonyms | Just k' <- tcView k = go' k' env -- We've already generated the needed KindRep | Just (id, _) <- lookupTypeMapWithScope env in_scope k = return (nlHsVar id, env) -- We need to construct a new KindRep binding | otherwise = do -- Place a NOINLINE pragma on KindReps since they tend to be quite -- large and bloat interface files. rep_bndr <- (`setInlinePragma` neverInlinePragma) <$> newSysLocalId (fsLit "$krep") Many (mkTyConTy kindRepTyCon) -- do we need to tie a knot here? flip runStateT env $ unKindRepM $ do rhs <- mkKindRepRhs stuff in_scope k addKindRepBind in_scope k rep_bndr rhs return $ nlHsVar rep_bndr -- | Construct the right-hand-side of the 'KindRep' for the given 'Kind' and -- in-scope kind variable set. mkKindRepRhs :: TypeableStuff -> CmEnv -- ^ in-scope kind variables -> Kind -- ^ the kind we want a 'KindRep' for -> KindRepM (LHsExpr GhcTc) -- ^ RHS expression mkKindRepRhs stuff@(Stuff {..}) in_scope = new_kind_rep_shortcut where new_kind_rep_shortcut k -- We handle (TYPE LiftedRep) etc separately to make it -- clear to consumers (e.g. serializers) that there is -- a loop here (as TYPE :: RuntimeRep -> TYPE 'LiftedRep) | not (tcIsConstraintKind k) -- Typeable respects the Constraint/Type distinction -- so do not follow the special case here , Just arg <- kindRep_maybe k = case splitTyConApp_maybe arg of Just (tc, []) | Just dc <- isPromotedDataCon_maybe tc -> return $ nlHsDataCon kindRepTYPEDataCon `nlHsApp` nlHsDataCon dc Just (rep, [levArg]) | Just dcRep <- isPromotedDataCon_maybe rep , Just (lev, []) <- splitTyConApp_maybe levArg , Just dcLev <- isPromotedDataCon_maybe lev -> return $ nlHsDataCon kindRepTYPEDataCon `nlHsApp` (nlHsDataCon dcRep `nlHsApp` nlHsDataCon dcLev) _ -> new_kind_rep k | otherwise = new_kind_rep k new_kind_rep (TyVarTy v) | Just idx <- lookupCME in_scope v = return $ nlHsDataCon kindRepVarDataCon `nlHsApp` nlHsIntLit (fromIntegral idx) | otherwise = pprPanic "mkTyConKindRepBinds.go(tyvar)" (ppr v) new_kind_rep (AppTy t1 t2) = do rep1 <- getKindRep stuff in_scope t1 rep2 <- getKindRep stuff in_scope t2 return $ nlHsDataCon kindRepAppDataCon `nlHsApp` rep1 `nlHsApp` rep2 new_kind_rep k@(TyConApp tc tys) | Just rep_name <- tyConRepName_maybe tc = do rep_id <- liftTc $ lookupId rep_name tys' <- mapM (getKindRep stuff in_scope) tys return $ nlHsDataCon kindRepTyConAppDataCon `nlHsApp` nlHsVar rep_id `nlHsApp` mkList (mkTyConTy kindRepTyCon) tys' | otherwise = pprPanic "mkTyConKindRepBinds(TyConApp)" (ppr tc $$ ppr k) new_kind_rep (ForAllTy (Bndr var _) ty) = pprPanic "mkTyConKindRepBinds(ForAllTy)" (ppr var $$ ppr ty) new_kind_rep (FunTy _ _ t1 t2) = do rep1 <- getKindRep stuff in_scope t1 rep2 <- getKindRep stuff in_scope t2 return $ nlHsDataCon kindRepFunDataCon `nlHsApp` rep1 `nlHsApp` rep2 new_kind_rep (LitTy (NumTyLit n)) = return $ nlHsDataCon kindRepTypeLitSDataCon `nlHsApp` nlHsDataCon typeLitNatDataCon `nlHsApp` nlHsLit (mkHsStringPrimLit $ mkFastString $ show n) new_kind_rep (LitTy (StrTyLit s)) = return $ nlHsDataCon kindRepTypeLitSDataCon `nlHsApp` nlHsDataCon typeLitSymbolDataCon `nlHsApp` nlHsLit (mkHsStringPrimLit $ mkFastString $ show s) new_kind_rep (LitTy (CharTyLit c)) = return $ nlHsDataCon kindRepTypeLitSDataCon `nlHsApp` nlHsDataCon typeLitCharDataCon `nlHsApp` nlHsLit (mkHsCharPrimLit c) -- See Note [Typeable instances for casted types] new_kind_rep (CastTy ty co) = pprPanic "mkTyConKindRepBinds.go(cast)" (ppr ty $$ ppr co) new_kind_rep (CoercionTy co) = pprPanic "mkTyConKindRepBinds.go(coercion)" (ppr co) -- | Produce the right-hand-side of a @TyCon@ representation. mkTyConRepTyConRHS :: TypeableStuff -> TypeRepTodo -> TyCon -- ^ the 'TyCon' we are producing a binding for -> LHsExpr GhcTc -- ^ its 'KindRep' -> LHsExpr GhcTc mkTyConRepTyConRHS (Stuff {..}) todo tycon kind_rep = nlHsDataCon trTyConDataCon `nlHsApp` nlHsLit (word64 platform high) `nlHsApp` nlHsLit (word64 platform low) `nlHsApp` mod_rep_expr todo `nlHsApp` trNameLit (mkFastString tycon_str) `nlHsApp` nlHsLit (int n_kind_vars) `nlHsApp` kind_rep where n_kind_vars = length $ filter isNamedTyConBinder (tyConBinders tycon) tycon_str = add_tick (occNameString (getOccName tycon)) add_tick s | isPromotedDataCon tycon = '\'' : s | otherwise = s -- This must match the computation done in -- Data.Typeable.Internal.mkTyConFingerprint. Fingerprint high low = fingerprintFingerprints [ pkg_fingerprint todo , mod_fingerprint todo , fingerprintString tycon_str ] int :: Int -> HsLit GhcTc int n = HsIntPrim (SourceText $ show n) (toInteger n) word64 :: Platform -> Word64 -> HsLit GhcTc word64 platform n = case platformWordSize platform of PW4 -> HsWord64Prim NoSourceText (toInteger n) PW8 -> HsWordPrim NoSourceText (toInteger n) {- Note [Representing TyCon kinds: KindRep] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ One of the operations supported by Typeable is typeRepKind, typeRepKind :: TypeRep (a :: k) -> TypeRep k Implementing this is a bit tricky for poly-kinded types like data Proxy (a :: k) :: Type -- Proxy :: forall k. k -> Type The TypeRep encoding of `Proxy Type Int` looks like this: $tcProxy :: GHC.Types.TyCon $trInt :: TypeRep Int TrType :: TypeRep Type $trProxyType :: TypeRep (Proxy Type :: Type -> Type) $trProxyType = TrTyCon $tcProxy [TrType] -- kind variable instantiation (tyConKind $tcProxy [TrType]) -- The TypeRep of -- Type -> Type $trProxy :: TypeRep (Proxy Type Int) $trProxy = TrApp $trProxyType $trInt TrType $tkProxy :: GHC.Types.KindRep $tkProxy = KindRepFun (KindRepVar 0) (KindRepTyConApp (KindRepTYPE LiftedRep) []) Note how $trProxyType cannot use 'TrApp', because TypeRep cannot represent polymorphic types. So instead * $trProxyType uses 'TrTyCon' to apply Proxy to (the representations) of all its kind arguments. We can't represent a tycon that is applied to only some of its kind arguments. * In $tcProxy, the GHC.Types.TyCon structure for Proxy, we store a GHC.Types.KindRep, which represents the polymorphic kind of Proxy Proxy :: forall k. k->Type * A KindRep is just a recipe that we can instantiate with the argument kinds, using Data.Typeable.Internal.tyConKind and store in the relevant 'TypeRep' constructor. Data.Typeable.Internal.typeRepKind looks up the stored kinds. * In a KindRep, the kind variables are represented by 0-indexed de Bruijn numbers: type KindBndr = Int -- de Bruijn index data KindRep = KindRepTyConApp TyCon [KindRep] | KindRepVar !KindBndr | KindRepApp KindRep KindRep | KindRepFun KindRep KindRep ... Note [Typeable instances for casted types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ At present, GHC does not manufacture TypeReps for types containing casts (#16835). In theory, GHC could do so today, but it might be dangerous tomorrow. In today's GHC, we normalize all types before computing their TypeRep. For example: type family F a type instance F Int = Type data D = forall (a :: F Int). MkD a tr :: TypeRep (MkD Bool) tr = typeRep When computing the TypeRep for `MkD Bool` (or rather, `MkD (Bool |> Sym (FInt[0]))`), we simply discard the cast to obtain the TypeRep for `MkD Bool`. Why does this work? If we have a type definition with casts, then the only coercions that those casts can mention are either Refl, type family axioms, built-in axioms, and coercions built from those roots. Therefore, type family (and built-in) axioms will apply precisely when type normalization succeeds (i.e, the type family applications are reducible). Therefore, it is safe to ignore the cast entirely when constructing the TypeRep. This approach would be fragile in a future where GHC permits other forms of coercions to appear in casts (e.g., coercion quantification as described in #15710). If GHC permits local assumptions to appear in casts that cannot be reduced with conventional normalization, then discarding casts would become unsafe. It would be unfortunate for the Typeable solver to become a roadblock obstructing such a future, so we deliberately do not implement the ability for TypeReps to represent types with casts at the moment. If we do wish to allow this in the future, it will likely require modeling casts and coercions in TypeReps themselves. -} mkList :: Type -> [LHsExpr GhcTc] -> LHsExpr GhcTc mkList ty = foldr consApp (nilExpr ty) where cons = consExpr ty consApp :: LHsExpr GhcTc -> LHsExpr GhcTc -> LHsExpr GhcTc consApp x xs = cons `nlHsApp` x `nlHsApp` xs nilExpr :: Type -> LHsExpr GhcTc nilExpr ty = mkLHsWrap (mkWpTyApps [ty]) (nlHsDataCon nilDataCon) consExpr :: Type -> LHsExpr GhcTc consExpr ty = mkLHsWrap (mkWpTyApps [ty]) (nlHsDataCon consDataCon)