{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} -- | Typechecking patterns module GHC.Tc.Gen.Pat ( tcLetPat , newLetBndr , LetBndrSpec(..) , tcCheckPat, tcCheckPat_O, tcInferPat , tcPats , addDataConStupidTheta , badFieldCon , polyPatSig ) where #include "HsVersions.h" import GHC.Prelude import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcSyntaxOp, tcSyntaxOpGen, tcInferRho ) import GHC.Hs import GHC.Rename.Utils import GHC.Tc.Utils.Zonk import GHC.Tc.Gen.Sig( TcPragEnv, lookupPragEnv, addInlinePrags ) import GHC.Tc.Utils.Monad import GHC.Tc.Utils.Instantiate import GHC.Types.Id import GHC.Types.Var import GHC.Types.Name import GHC.Types.Name.Reader import GHC.Core.Multiplicity import GHC.Tc.Utils.Env import GHC.Tc.Utils.TcMType import GHC.Tc.Validity( arityErr ) import GHC.Core.TyCo.Ppr ( pprTyVars ) import GHC.Tc.Utils.TcType import GHC.Tc.Utils.Unify import GHC.Tc.Gen.HsType import GHC.Builtin.Types import GHC.Tc.Types.Evidence import GHC.Tc.Types.Origin import GHC.Core.TyCon import GHC.Core.Type import GHC.Core.DataCon import GHC.Core.PatSyn import GHC.Core.ConLike import GHC.Builtin.Names import GHC.Types.Basic hiding (SuccessFlag(..)) import GHC.Driver.Session import GHC.Types.SrcLoc import GHC.Types.Var.Set import GHC.Utils.Misc import GHC.Utils.Outputable as Outputable import GHC.Utils.Panic import qualified GHC.LanguageExtensions as LangExt import Control.Arrow ( second ) import Control.Monad import GHC.Data.List.SetOps ( getNth ) {- ************************************************************************ * * External interface * * ************************************************************************ -} tcLetPat :: (Name -> Maybe TcId) -> LetBndrSpec -> LPat GhcRn -> Scaled ExpSigmaType -> TcM a -> TcM (LPat GhcTc, a) tcLetPat sig_fn no_gen pat pat_ty thing_inside = do { bind_lvl <- getTcLevel ; let ctxt = LetPat { pc_lvl = bind_lvl , pc_sig_fn = sig_fn , pc_new = no_gen } penv = PE { pe_lazy = True , pe_ctxt = ctxt , pe_orig = PatOrigin } ; tc_lpat pat_ty penv pat thing_inside } ----------------- tcPats :: HsMatchContext GhcRn -> [LPat GhcRn] -- Patterns, -> [Scaled ExpSigmaType] -- and their types -> TcM a -- and the checker for the body -> TcM ([LPat GhcTc], a) -- This is the externally-callable wrapper function -- Typecheck the patterns, extend the environment to bind the variables, -- do the thing inside, use any existentially-bound dictionaries to -- discharge parts of the returning LIE, and deal with pattern type -- signatures -- 1. Initialise the PatState -- 2. Check the patterns -- 3. Check the body -- 4. Check that no existentials escape tcPats ctxt pats pat_tys thing_inside = tc_lpats pat_tys penv pats thing_inside where penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = PatOrigin } tcInferPat :: HsMatchContext GhcRn -> LPat GhcRn -> TcM a -> TcM ((LPat GhcTc, a), TcSigmaType) tcInferPat ctxt pat thing_inside = tcInfer $ \ exp_ty -> tc_lpat (unrestricted exp_ty) penv pat thing_inside where penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = PatOrigin } tcCheckPat :: HsMatchContext GhcRn -> LPat GhcRn -> Scaled TcSigmaType -> TcM a -- Checker for body -> TcM (LPat GhcTc, a) tcCheckPat ctxt = tcCheckPat_O ctxt PatOrigin -- | A variant of 'tcPat' that takes a custom origin tcCheckPat_O :: HsMatchContext GhcRn -> CtOrigin -- ^ origin to use if the type needs inst'ing -> LPat GhcRn -> Scaled TcSigmaType -> TcM a -- Checker for body -> TcM (LPat GhcTc, a) tcCheckPat_O ctxt orig pat (Scaled pat_mult pat_ty) thing_inside = tc_lpat (Scaled pat_mult (mkCheckExpType pat_ty)) penv pat thing_inside where penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = orig } {- ************************************************************************ * * PatEnv, PatCtxt, LetBndrSpec * * ************************************************************************ -} data PatEnv = PE { pe_lazy :: Bool -- True <=> lazy context, so no existentials allowed , pe_ctxt :: PatCtxt -- Context in which the whole pattern appears , pe_orig :: CtOrigin -- origin to use if the pat_ty needs inst'ing } data PatCtxt = LamPat -- Used for lambdas, case etc (HsMatchContext GhcRn) | LetPat -- Used only for let(rec) pattern bindings -- See Note [Typing patterns in pattern bindings] { pc_lvl :: TcLevel -- Level of the binding group , pc_sig_fn :: Name -> Maybe TcId -- Tells the expected type -- for binders with a signature , pc_new :: LetBndrSpec -- How to make a new binder } -- for binders without signatures data LetBndrSpec = LetLclBndr -- We are going to generalise, and wrap in an AbsBinds -- so clone a fresh binder for the local monomorphic Id | LetGblBndr TcPragEnv -- Generalisation plan is NoGen, so there isn't going -- to be an AbsBinds; So we must bind the global version -- of the binder right away. -- And here is the inline-pragma information instance Outputable LetBndrSpec where ppr LetLclBndr = text "LetLclBndr" ppr (LetGblBndr {}) = text "LetGblBndr" makeLazy :: PatEnv -> PatEnv makeLazy penv = penv { pe_lazy = True } inPatBind :: PatEnv -> Bool inPatBind (PE { pe_ctxt = LetPat {} }) = True inPatBind (PE { pe_ctxt = LamPat {} }) = False {- ********************************************************************* * * Binders * * ********************************************************************* -} tcPatBndr :: PatEnv -> Name -> Scaled ExpSigmaType -> TcM (HsWrapper, TcId) -- (coi, xp) = tcPatBndr penv x pat_ty -- Then coi : pat_ty ~ typeof(xp) -- tcPatBndr penv@(PE { pe_ctxt = LetPat { pc_lvl = bind_lvl , pc_sig_fn = sig_fn , pc_new = no_gen } }) bndr_name exp_pat_ty -- For the LetPat cases, see -- Note [Typechecking pattern bindings] in GHC.Tc.Gen.Bind | Just bndr_id <- sig_fn bndr_name -- There is a signature = do { wrap <- tc_sub_type penv (scaledThing exp_pat_ty) (idType bndr_id) -- See Note [Subsumption check at pattern variables] ; traceTc "tcPatBndr(sig)" (ppr bndr_id $$ ppr (idType bndr_id) $$ ppr exp_pat_ty) ; return (wrap, bndr_id) } | otherwise -- No signature = do { (co, bndr_ty) <- case scaledThing exp_pat_ty of Check pat_ty -> promoteTcType bind_lvl pat_ty Infer infer_res -> ASSERT( bind_lvl == ir_lvl infer_res ) -- If we were under a constructor that bumped the -- level, we'd be in checking mode (see tcConArg) -- hence this assertion do { bndr_ty <- inferResultToType infer_res ; return (mkTcNomReflCo bndr_ty, bndr_ty) } ; let bndr_mult = scaledMult exp_pat_ty ; bndr_id <- newLetBndr no_gen bndr_name bndr_mult bndr_ty ; traceTc "tcPatBndr(nosig)" (vcat [ ppr bind_lvl , ppr exp_pat_ty, ppr bndr_ty, ppr co , ppr bndr_id ]) ; return (mkWpCastN co, bndr_id) } tcPatBndr _ bndr_name pat_ty = do { let pat_mult = scaledMult pat_ty ; pat_ty <- expTypeToType (scaledThing pat_ty) ; traceTc "tcPatBndr(not let)" (ppr bndr_name $$ ppr pat_ty) ; return (idHsWrapper, mkLocalIdOrCoVar bndr_name pat_mult pat_ty) } -- We should not have "OrCoVar" here, this is a bug (#17545) -- Whether or not there is a sig is irrelevant, -- as this is local newLetBndr :: LetBndrSpec -> Name -> Mult -> TcType -> TcM TcId -- Make up a suitable Id for the pattern-binder. -- See Note [Typechecking pattern bindings], item (4) in GHC.Tc.Gen.Bind -- -- In the polymorphic case when we are going to generalise -- (plan InferGen, no_gen = LetLclBndr), generate a "monomorphic version" -- of the Id; the original name will be bound to the polymorphic version -- by the AbsBinds -- In the monomorphic case when we are not going to generalise -- (plan NoGen, no_gen = LetGblBndr) there is no AbsBinds, -- and we use the original name directly newLetBndr LetLclBndr name w ty = do { mono_name <- cloneLocalName name ; return (mkLocalId mono_name w ty) } newLetBndr (LetGblBndr prags) name w ty = addInlinePrags (mkLocalId name w ty) (lookupPragEnv prags name) tc_sub_type :: PatEnv -> ExpSigmaType -> TcSigmaType -> TcM HsWrapper -- tcSubTypeET with the UserTypeCtxt specialised to GenSigCtxt -- Used during typechecking patterns tc_sub_type penv t1 t2 = tcSubTypePat (pe_orig penv) GenSigCtxt t1 t2 {- Note [Subsumption check at pattern variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we come across a variable with a type signature, we need to do a subsumption, not equality, check against the context type. e.g. data T = MkT (forall a. a->a) f :: forall b. [b]->[b] MkT f = blah Since 'blah' returns a value of type T, its payload is a polymorphic function of type (forall a. a->a). And that's enough to bind the less-polymorphic function 'f', but we need some impedance matching to witness the instantiation. ************************************************************************ * * The main worker functions * * ************************************************************************ Note [Nesting] ~~~~~~~~~~~~~~ tcPat takes a "thing inside" over which the pattern scopes. This is partly so that tcPat can extend the environment for the thing_inside, but also so that constraints arising in the thing_inside can be discharged by the pattern. This does not work so well for the ErrCtxt carried by the monad: we don't want the error-context for the pattern to scope over the RHS. Hence the getErrCtxt/setErrCtxt stuff in tcMultiple -} -------------------- type Checker inp out = forall r. PatEnv -> inp -> TcM r -- Thing inside -> TcM ( out , r -- Result of thing inside ) tcMultiple :: Checker inp out -> Checker [inp] [out] tcMultiple tc_pat penv args thing_inside = do { err_ctxt <- getErrCtxt ; let loop _ [] = do { res <- thing_inside ; return ([], res) } loop penv (arg:args) = do { (p', (ps', res)) <- tc_pat penv arg $ setErrCtxt err_ctxt $ loop penv args -- setErrCtxt: restore context before doing the next pattern -- See note [Nesting] above ; return (p':ps', res) } ; loop penv args } -------------------- tc_lpat :: Scaled ExpSigmaType -> Checker (LPat GhcRn) (LPat GhcTc) tc_lpat pat_ty penv (L span pat) thing_inside = setSrcSpanA span $ do { (pat', res) <- maybeWrapPatCtxt pat (tc_pat pat_ty penv pat) thing_inside ; return (L span pat', res) } tc_lpats :: [Scaled ExpSigmaType] -> Checker [LPat GhcRn] [LPat GhcTc] tc_lpats tys penv pats = ASSERT2( equalLength pats tys, ppr pats $$ ppr tys ) tcMultiple (\ penv' (p,t) -> tc_lpat t penv' p) penv (zipEqual "tc_lpats" pats tys) -------------------- -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. checkManyPattern :: Scaled a -> TcM HsWrapper checkManyPattern pat_ty = tcSubMult NonLinearPatternOrigin Many (scaledMult pat_ty) tc_pat :: Scaled ExpSigmaType -- ^ Fully refined result type -> Checker (Pat GhcRn) (Pat GhcTc) -- ^ Translated pattern tc_pat pat_ty penv ps_pat thing_inside = case ps_pat of VarPat x (L l name) -> do { (wrap, id) <- tcPatBndr penv name pat_ty ; (res, mult_wrap) <- tcCheckUsage name (scaledMult pat_ty) $ tcExtendIdEnv1 name id thing_inside -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. ; pat_ty <- readExpType (scaledThing pat_ty) ; return (mkHsWrapPat (wrap <.> mult_wrap) (VarPat x (L l id)) pat_ty, res) } ParPat x pat -> do { (pat', res) <- tc_lpat pat_ty penv pat thing_inside ; return (ParPat x pat', res) } BangPat x pat -> do { (pat', res) <- tc_lpat pat_ty penv pat thing_inside ; return (BangPat x pat', res) } LazyPat x pat -> do { mult_wrap <- checkManyPattern pat_ty -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. ; (pat', (res, pat_ct)) <- tc_lpat pat_ty (makeLazy penv) pat $ captureConstraints thing_inside -- Ignore refined penv', revert to penv ; emitConstraints pat_ct -- captureConstraints/extendConstraints: -- see Note [Hopping the LIE in lazy patterns] -- Check that the expected pattern type is itself lifted ; pat_ty <- readExpType (scaledThing pat_ty) ; _ <- unifyType Nothing (tcTypeKind pat_ty) liftedTypeKind ; return (mkHsWrapPat mult_wrap (LazyPat x pat') pat_ty, res) } WildPat _ -> do { mult_wrap <- checkManyPattern pat_ty -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. ; res <- thing_inside ; pat_ty <- expTypeToType (scaledThing pat_ty) ; return (mkHsWrapPat mult_wrap (WildPat pat_ty) pat_ty, res) } AsPat x (L nm_loc name) pat -> do { mult_wrap <- checkManyPattern pat_ty -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. ; (wrap, bndr_id) <- setSrcSpanA nm_loc (tcPatBndr penv name pat_ty) ; (pat', res) <- tcExtendIdEnv1 name bndr_id $ tc_lpat (pat_ty `scaledSet`(mkCheckExpType $ idType bndr_id)) penv pat thing_inside -- NB: if we do inference on: -- \ (y@(x::forall a. a->a)) = e -- we'll fail. The as-pattern infers a monotype for 'y', which then -- fails to unify with the polymorphic type for 'x'. This could -- perhaps be fixed, but only with a bit more work. -- -- If you fix it, don't forget the bindInstsOfPatIds! ; pat_ty <- readExpType (scaledThing pat_ty) ; return (mkHsWrapPat (wrap <.> mult_wrap) (AsPat x (L nm_loc bndr_id) pat') pat_ty, res) } ViewPat _ expr pat -> do { mult_wrap <- checkManyPattern pat_ty -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. -- -- It should be possible to have view patterns at linear (or otherwise -- non-Many) multiplicity. But it is not clear at the moment what -- restriction need to be put in place, if any, for linear view -- patterns to desugar to type-correct Core. ; (expr',expr_ty) <- tcInferRho expr -- Note [View patterns and polymorphism] -- Expression must be a function ; let herald = text "A view pattern expression expects" ; (expr_wrap1, Scaled _mult inf_arg_ty, inf_res_sigma) <- matchActualFunTySigma herald (Just (ppr expr)) (1,[]) expr_ty -- See Note [View patterns and polymorphism] -- expr_wrap1 :: expr_ty "->" (inf_arg_ty -> inf_res_sigma) -- Check that overall pattern is more polymorphic than arg type ; expr_wrap2 <- tc_sub_type penv (scaledThing pat_ty) inf_arg_ty -- expr_wrap2 :: pat_ty "->" inf_arg_ty -- Pattern must have inf_res_sigma ; (pat', res) <- tc_lpat (pat_ty `scaledSet` mkCheckExpType inf_res_sigma) penv pat thing_inside ; let Scaled w h_pat_ty = pat_ty ; pat_ty <- readExpType h_pat_ty ; let expr_wrap2' = mkWpFun expr_wrap2 idHsWrapper (Scaled w pat_ty) inf_res_sigma doc -- expr_wrap2' :: (inf_arg_ty -> inf_res_sigma) "->" -- (pat_ty -> inf_res_sigma) expr_wrap = expr_wrap2' <.> expr_wrap1 <.> mult_wrap doc = text "When checking the view pattern function:" <+> (ppr expr) ; return (ViewPat pat_ty (mkLHsWrap expr_wrap expr') pat', res)} {- Note [View patterns and polymorphism] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this exotic example: pair :: forall a. Bool -> a -> forall b. b -> (a,b) f :: Int -> blah f (pair True -> x) = ...here (x :: forall b. b -> (Int,b)) The expression (pair True) should have type pair True :: Int -> forall b. b -> (Int,b) so that it is ready to consume the incoming Int. It should be an arrow type (t1 -> t2); hence using (tcInferRho expr). Then, when taking that arrow apart we want to get a *sigma* type (forall b. b->(Int,b)), because that's what we want to bind 'x' to. Fortunately that's what matchExpectedFunTySigma returns anyway. -} -- Type signatures in patterns -- See Note [Pattern coercions] below SigPat _ pat sig_ty -> do { (inner_ty, tv_binds, wcs, wrap) <- tcPatSig (inPatBind penv) sig_ty (scaledThing pat_ty) -- Using tcExtendNameTyVarEnv is appropriate here -- because we're not really bringing fresh tyvars into scope. -- We're *naming* existing tyvars. Note that it is OK for a tyvar -- from an outer scope to mention one of these tyvars in its kind. ; (pat', res) <- tcExtendNameTyVarEnv wcs $ tcExtendNameTyVarEnv tv_binds $ tc_lpat (pat_ty `scaledSet` mkCheckExpType inner_ty) penv pat thing_inside ; pat_ty <- readExpType (scaledThing pat_ty) ; return (mkHsWrapPat wrap (SigPat inner_ty pat' sig_ty) pat_ty, res) } ------------------------ -- Lists, tuples, arrays ListPat Nothing pats -> do { (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy penv (scaledThing pat_ty) ; (pats', res) <- tcMultiple (tc_lpat (pat_ty `scaledSet` mkCheckExpType elt_ty)) penv pats thing_inside ; pat_ty <- readExpType (scaledThing pat_ty) ; return (mkHsWrapPat coi (ListPat (ListPatTc elt_ty Nothing) pats') pat_ty, res) } ListPat (Just e) pats -> do { tau_pat_ty <- expTypeToType (scaledThing pat_ty) ; ((pats', res, elt_ty), e') <- tcSyntaxOpGen ListOrigin e [SynType (mkCheckExpType tau_pat_ty)] SynList $ \ [elt_ty] _ -> do { (pats', res) <- tcMultiple (tc_lpat (pat_ty `scaledSet` mkCheckExpType elt_ty)) penv pats thing_inside ; return (pats', res, elt_ty) } ; return (ListPat (ListPatTc elt_ty (Just (tau_pat_ty,e'))) pats', res) } TuplePat _ pats boxity -> do { let arity = length pats tc = tupleTyCon boxity arity -- NB: tupleTyCon does not flatten 1-tuples -- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make ; checkTupSize arity ; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc) penv (scaledThing pat_ty) -- Unboxed tuples have RuntimeRep vars, which we discard: -- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon ; let con_arg_tys = case boxity of Unboxed -> drop arity arg_tys Boxed -> arg_tys ; (pats', res) <- tc_lpats (map (scaledSet pat_ty . mkCheckExpType) con_arg_tys) penv pats thing_inside ; dflags <- getDynFlags -- Under flag control turn a pattern (x,y,z) into ~(x,y,z) -- so that we can experiment with lazy tuple-matching. -- This is a pretty odd place to make the switch, but -- it was easy to do. ; let unmangled_result = TuplePat con_arg_tys pats' boxity -- pat_ty /= pat_ty iff coi /= IdCo possibly_mangled_result | gopt Opt_IrrefutableTuples dflags && isBoxed boxity = LazyPat noExtField (noLocA unmangled_result) | otherwise = unmangled_result ; pat_ty <- readExpType (scaledThing pat_ty) ; ASSERT( con_arg_tys `equalLength` pats ) -- Syntactically enforced return (mkHsWrapPat coi possibly_mangled_result pat_ty, res) } SumPat _ pat alt arity -> do { let tc = sumTyCon arity ; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc) penv (scaledThing pat_ty) ; -- Drop levity vars, we don't care about them here let con_arg_tys = drop arity arg_tys ; (pat', res) <- tc_lpat (pat_ty `scaledSet` mkCheckExpType (con_arg_tys `getNth` (alt - 1))) penv pat thing_inside ; pat_ty <- readExpType (scaledThing pat_ty) ; return (mkHsWrapPat coi (SumPat con_arg_tys pat' alt arity) pat_ty , res) } ------------------------ -- Data constructors ConPat _ con arg_pats -> tcConPat penv con pat_ty arg_pats thing_inside ------------------------ -- Literal patterns LitPat x simple_lit -> do { let lit_ty = hsLitType simple_lit ; wrap <- tc_sub_type penv (scaledThing pat_ty) lit_ty ; res <- thing_inside ; pat_ty <- readExpType (scaledThing pat_ty) ; return ( mkHsWrapPat wrap (LitPat x (convertLit simple_lit)) pat_ty , res) } ------------------------ -- Overloaded patterns: n, and n+k -- In the case of a negative literal (the more complicated case), -- we get -- -- case v of (-5) -> blah -- -- becoming -- -- if v == (negate (fromInteger 5)) then blah else ... -- -- There are two bits of rebindable syntax: -- (==) :: pat_ty -> neg_lit_ty -> Bool -- negate :: lit_ty -> neg_lit_ty -- where lit_ty is the type of the overloaded literal 5. -- -- When there is no negation, neg_lit_ty and lit_ty are the same NPat _ (L l over_lit) mb_neg eq -> do { mult_wrap <- checkManyPattern pat_ty -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. -- -- It may be possible to refine linear pattern so that they work in -- linear environments. But it is not clear how useful this is. ; let orig = LiteralOrigin over_lit ; ((lit', mb_neg'), eq') <- tcSyntaxOp orig eq [SynType (scaledThing pat_ty), SynAny] (mkCheckExpType boolTy) $ \ [neg_lit_ty] _ -> let new_over_lit lit_ty = newOverloadedLit over_lit (mkCheckExpType lit_ty) in case mb_neg of Nothing -> (, Nothing) <$> new_over_lit neg_lit_ty Just neg -> -- Negative literal -- The 'negate' is re-mappable syntax second Just <$> (tcSyntaxOp orig neg [SynRho] (mkCheckExpType neg_lit_ty) $ \ [lit_ty] _ -> new_over_lit lit_ty) -- applied to a closed literal: linearity doesn't matter as -- literals are typed in an empty environment, hence have -- all multiplicities. ; res <- thing_inside ; pat_ty <- readExpType (scaledThing pat_ty) ; return (mkHsWrapPat mult_wrap (NPat pat_ty (L l lit') mb_neg' eq') pat_ty, res) } {- Note [NPlusK patterns] ~~~~~~~~~~~~~~~~~~~~~~ From case v of x + 5 -> blah we get if v >= 5 then (\x -> blah) (v - 5) else ... There are two bits of rebindable syntax: (>=) :: pat_ty -> lit1_ty -> Bool (-) :: pat_ty -> lit2_ty -> var_ty lit1_ty and lit2_ty could conceivably be different. var_ty is the type inferred for x, the variable in the pattern. Note that we need to type-check the literal twice, because it is used twice, and may be used at different types. The second HsOverLit stored in the AST is used for the subtraction operation. -} -- See Note [NPlusK patterns] NPlusKPat _ (L nm_loc name) (L loc lit) _ ge minus -> do { mult_wrap <- checkManyPattern pat_ty -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. ; let pat_exp_ty = scaledThing pat_ty orig = LiteralOrigin lit ; (lit1', ge') <- tcSyntaxOp orig ge [SynType pat_exp_ty, SynRho] (mkCheckExpType boolTy) $ \ [lit1_ty] _ -> newOverloadedLit lit (mkCheckExpType lit1_ty) ; ((lit2', minus_wrap, bndr_id), minus') <- tcSyntaxOpGen orig minus [SynType pat_exp_ty, SynRho] SynAny $ \ [lit2_ty, var_ty] _ -> do { lit2' <- newOverloadedLit lit (mkCheckExpType lit2_ty) ; (wrap, bndr_id) <- setSrcSpanA nm_loc $ tcPatBndr penv name (unrestricted $ mkCheckExpType var_ty) -- co :: var_ty ~ idType bndr_id -- minus_wrap is applicable to minus' ; return (lit2', wrap, bndr_id) } ; pat_ty <- readExpType pat_exp_ty -- The Report says that n+k patterns must be in Integral -- but it's silly to insist on this in the RebindableSyntax case ; unlessM (xoptM LangExt.RebindableSyntax) $ do { icls <- tcLookupClass integralClassName ; instStupidTheta orig [mkClassPred icls [pat_ty]] } ; res <- tcExtendIdEnv1 name bndr_id thing_inside ; let minus'' = case minus' of NoSyntaxExprTc -> pprPanic "tc_pat NoSyntaxExprTc" (ppr minus') -- this should be statically avoidable -- Case (3) from Note [NoSyntaxExpr] in "GHC.Hs.Expr" SyntaxExprTc { syn_expr = minus'_expr , syn_arg_wraps = minus'_arg_wraps , syn_res_wrap = minus'_res_wrap } -> SyntaxExprTc { syn_expr = minus'_expr , syn_arg_wraps = minus'_arg_wraps , syn_res_wrap = minus_wrap <.> minus'_res_wrap } -- Oy. This should really be a record update, but -- we get warnings if we try. #17783 pat' = NPlusKPat pat_ty (L nm_loc bndr_id) (L loc lit1') lit2' ge' minus'' ; return (mkHsWrapPat mult_wrap pat' pat_ty, res) } -- HsSpliced is an annotation produced by 'GHC.Rename.Splice.rnSplicePat'. -- Here we get rid of it and add the finalizers to the global environment. -- -- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice. SplicePat _ splice -> case splice of (HsSpliced _ mod_finalizers (HsSplicedPat pat)) -> do { addModFinalizersWithLclEnv mod_finalizers ; tc_pat pat_ty penv pat thing_inside } _ -> panic "invalid splice in splice pat" {- Note [Hopping the LIE in lazy patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In a lazy pattern, we must *not* discharge constraints from the RHS from dictionaries bound in the pattern. E.g. f ~(C x) = 3 We can't discharge the Num constraint from dictionaries bound by the pattern C! So we have to make the constraints from thing_inside "hop around" the pattern. Hence the captureConstraints and emitConstraints. The same thing ensures that equality constraints in a lazy match are not made available in the RHS of the match. For example data T a where { T1 :: Int -> T Int; ... } f :: T a -> Int -> a f ~(T1 i) y = y It's obviously not sound to refine a to Int in the right hand side, because the argument might not match T1 at all! Finally, a lazy pattern should not bind any existential type variables because they won't be in scope when we do the desugaring ************************************************************************ * * Pattern signatures (pat :: type) * * ************************************************************************ -} tcPatSig :: Bool -- True <=> pattern binding -> HsPatSigType GhcRn -> ExpSigmaType -> TcM (TcType, -- The type to use for "inside" the signature [(Name,TcTyVar)], -- The new bit of type environment, binding -- the scoped type variables [(Name,TcTyVar)], -- The wildcards HsWrapper) -- Coercion due to unification with actual ty -- Of shape: res_ty ~ sig_ty tcPatSig in_pat_bind sig res_ty = do { (sig_wcs, sig_tvs, sig_ty) <- tcHsPatSigType PatSigCtxt HM_Sig sig OpenKind -- sig_tvs are the type variables free in 'sig', -- and not already in scope. These are the ones -- that should be brought into scope ; if null sig_tvs then do { -- Just do the subsumption check and return wrap <- addErrCtxtM (mk_msg sig_ty) $ tcSubTypePat PatSigOrigin PatSigCtxt res_ty sig_ty ; return (sig_ty, [], sig_wcs, wrap) } else do -- Type signature binds at least one scoped type variable -- A pattern binding cannot bind scoped type variables -- It is more convenient to make the test here -- than in the renamer { when in_pat_bind (addErr (patBindSigErr sig_tvs)) -- Now do a subsumption check of the pattern signature against res_ty ; wrap <- addErrCtxtM (mk_msg sig_ty) $ tcSubTypePat PatSigOrigin PatSigCtxt res_ty sig_ty -- Phew! ; return (sig_ty, sig_tvs, sig_wcs, wrap) } } where mk_msg sig_ty tidy_env = do { (tidy_env, sig_ty) <- zonkTidyTcType tidy_env sig_ty ; res_ty <- readExpType res_ty -- should be filled in by now ; (tidy_env, res_ty) <- zonkTidyTcType tidy_env res_ty ; let msg = vcat [ hang (text "When checking that the pattern signature:") 4 (ppr sig_ty) , nest 2 (hang (text "fits the type of its context:") 2 (ppr res_ty)) ] ; return (tidy_env, msg) } patBindSigErr :: [(Name,TcTyVar)] -> SDoc patBindSigErr sig_tvs = hang (text "You cannot bind scoped type variable" <> plural sig_tvs <+> pprQuotedList (map fst sig_tvs)) 2 (text "in a pattern binding signature") {- ********************************************************************* * * Most of the work for constructors is here (the rest is in the ConPatIn case of tc_pat) * * ************************************************************************ [Pattern matching indexed data types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider the following declarations: data family Map k :: * -> * data instance Map (a, b) v = MapPair (Map a (Pair b v)) and a case expression case x :: Map (Int, c) w of MapPair m -> ... As explained by [Wrappers for data instance tycons] in GHC.Types.Id.Make, the worker/wrapper types for MapPair are $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v $wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is :R123Map, which means the straight use of boxySplitTyConApp would give a type error. Hence, the smart wrapper function boxySplitTyConAppWithFamily calls boxySplitTyConApp with the family tycon Map instead, which gives us the family type list {(Int, c), w}. To get the correct split for :R123Map, we need to unify the family type list {(Int, c), w} with the instance types {(a, b), v} (provided by tyConFamInst_maybe together with the family tycon). This unification yields the substitution [a -> Int, b -> c, v -> w], which gives us the split arguments for the representation tycon :R123Map as {Int, c, w} In other words, boxySplitTyConAppWithFamily implicitly takes the coercion Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v} moving between representation and family type into account. To produce type correct Core, this coercion needs to be used to case the type of the scrutinee from the family to the representation type. This is achieved by unwrapFamInstScrutinee using a CoPat around the result pattern. Now it might appear seem as if we could have used the previous GADT type refinement infrastructure of refineAlt and friends instead of the explicit unification and CoPat generation. However, that would be wrong. Why? The whole point of GADT refinement is that the refinement is local to the case alternative. In contrast, the substitution generated by the unification of the family type list and instance types needs to be propagated to the outside. Imagine that in the above example, the type of the scrutinee would have been (Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the substitution [x -> (a, b), v -> w]. In contrast to GADT matching, the instantiation of x with (a, b) must be global; ie, it must be valid in *all* alternatives of the case expression, whereas in the GADT case it might vary between alternatives. RIP GADT refinement: refinements have been replaced by the use of explicit equality constraints that are used in conjunction with implication constraints to express the local scope of GADT refinements. Note [Freshen existentials] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is essential that these existentials are freshened. Otherwise, if we have something like case (a :: Ex, b :: Ex) of (MkEx ..., MkEx ...) -> ... we'll give both unpacked existential variables the same name, leading to shadowing. -} -- Running example: -- MkT :: forall a b c. (a~[b]) => b -> c -> T a -- with scrutinee of type (T ty) tcConPat :: PatEnv -> LocatedN Name -> Scaled ExpSigmaType -- Type of the pattern -> HsConPatDetails GhcRn -> TcM a -> TcM (Pat GhcTc, a) tcConPat penv con_lname@(L _ con_name) pat_ty arg_pats thing_inside = do { con_like <- tcLookupConLike con_name ; case con_like of RealDataCon data_con -> tcDataConPat penv con_lname data_con pat_ty arg_pats thing_inside PatSynCon pat_syn -> tcPatSynPat penv con_lname pat_syn pat_ty arg_pats thing_inside } tcDataConPat :: PatEnv -> LocatedN Name -> DataCon -> Scaled ExpSigmaType -- Type of the pattern -> HsConPatDetails GhcRn -> TcM a -> TcM (Pat GhcTc, a) tcDataConPat penv (L con_span con_name) data_con pat_ty_scaled arg_pats thing_inside = do { let tycon = dataConTyCon data_con -- For data families this is the representation tycon (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _) = dataConFullSig data_con header = L con_span (RealDataCon data_con) -- Instantiate the constructor type variables [a->ty] -- This may involve doing a family-instance coercion, -- and building a wrapper ; (wrap, ctxt_res_tys) <- matchExpectedConTy penv tycon pat_ty_scaled ; pat_ty <- readExpType (scaledThing pat_ty_scaled) -- Add the stupid theta ; setSrcSpanA con_span $ addDataConStupidTheta data_con ctxt_res_tys -- Check that this isn't a GADT pattern match -- in situations in which that isn't allowed. ; let all_arg_tys = eqSpecPreds eq_spec ++ theta ++ (map scaledThing arg_tys) ; checkGADT (RealDataCon data_con) ex_tvs all_arg_tys penv ; tenv1 <- instTyVarsWith PatOrigin univ_tvs ctxt_res_tys -- NB: Do not use zipTvSubst! See #14154 -- We want to create a well-kinded substitution, so -- that the instantiated type is well-kinded ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX tenv1 ex_tvs -- Get location from monad, not from ex_tvs -- This freshens: See Note [Freshen existentials] -- Why "super"? See Note [Binding when lookup up instances] -- in GHC.Core.InstEnv. ; let arg_tys' = substScaledTys tenv arg_tys pat_mult = scaledMult pat_ty_scaled arg_tys_scaled = map (scaleScaled pat_mult) arg_tys' ; traceTc "tcConPat" (vcat [ ppr con_name , pprTyVars univ_tvs , pprTyVars ex_tvs , ppr eq_spec , ppr theta , pprTyVars ex_tvs' , ppr ctxt_res_tys , ppr arg_tys' , ppr arg_pats ]) ; if null ex_tvs && null eq_spec && null theta then do { -- The common case; no class bindings etc -- (see Note [Arrows and patterns]) (arg_pats', res) <- tcConArgs (RealDataCon data_con) arg_tys_scaled tenv penv arg_pats thing_inside ; let res_pat = ConPat { pat_con = header , pat_args = arg_pats' , pat_con_ext = ConPatTc { cpt_tvs = [], cpt_dicts = [] , cpt_binds = emptyTcEvBinds , cpt_arg_tys = ctxt_res_tys , cpt_wrap = idHsWrapper } } ; return (mkHsWrapPat wrap res_pat pat_ty, res) } else do -- The general case, with existential, -- and local equality constraints { let theta' = substTheta tenv (eqSpecPreds eq_spec ++ theta) -- order is *important* as we generate the list of -- dictionary binders from theta' no_equalities = null eq_spec && not (any isEqPred theta) skol_info = PatSkol (RealDataCon data_con) mc mc = case pe_ctxt penv of LamPat mc -> mc LetPat {} -> PatBindRhs ; gadts_on <- xoptM LangExt.GADTs ; families_on <- xoptM LangExt.TypeFamilies ; checkTc (no_equalities || gadts_on || families_on) (text "A pattern match on a GADT requires the" <+> text "GADTs or TypeFamilies language extension") -- #2905 decided that a *pattern-match* of a GADT -- should require the GADT language flag. -- Re TypeFamilies see also #7156 ; given <- newEvVars theta' ; (ev_binds, (arg_pats', res)) <- checkConstraints skol_info ex_tvs' given $ tcConArgs (RealDataCon data_con) arg_tys_scaled tenv penv arg_pats thing_inside ; let res_pat = ConPat { pat_con = header , pat_args = arg_pats' , pat_con_ext = ConPatTc { cpt_tvs = ex_tvs' , cpt_dicts = given , cpt_binds = ev_binds , cpt_arg_tys = ctxt_res_tys , cpt_wrap = idHsWrapper } } ; return (mkHsWrapPat wrap res_pat pat_ty, res) } } tcPatSynPat :: PatEnv -> LocatedN Name -> PatSyn -> Scaled ExpSigmaType -- Type of the pattern -> HsConPatDetails GhcRn -> TcM a -> TcM (Pat GhcTc, a) tcPatSynPat penv (L con_span con_name) pat_syn pat_ty arg_pats thing_inside = do { let (univ_tvs, req_theta, ex_tvs, prov_theta, arg_tys, ty) = patSynSig pat_syn ; (subst, univ_tvs') <- newMetaTyVars univ_tvs -- Check that we aren't matching on a GADT-like pattern synonym -- in situations in which that isn't allowed. ; let all_arg_tys = ty : prov_theta ++ (map scaledThing arg_tys) ; checkGADT (PatSynCon pat_syn) ex_tvs all_arg_tys penv ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX subst ex_tvs -- This freshens: Note [Freshen existentials] ; let ty' = substTy tenv ty arg_tys' = substScaledTys tenv arg_tys pat_mult = scaledMult pat_ty arg_tys_scaled = map (scaleScaled pat_mult) arg_tys' prov_theta' = substTheta tenv prov_theta req_theta' = substTheta tenv req_theta ; mult_wrap <- checkManyPattern pat_ty -- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify. ; wrap <- tc_sub_type penv (scaledThing pat_ty) ty' ; traceTc "tcPatSynPat" (ppr pat_syn $$ ppr pat_ty $$ ppr ty' $$ ppr ex_tvs' $$ ppr prov_theta' $$ ppr req_theta' $$ ppr arg_tys') ; prov_dicts' <- newEvVars prov_theta' ; let skol_info = case pe_ctxt penv of LamPat mc -> PatSkol (PatSynCon pat_syn) mc LetPat {} -> UnkSkol -- Doesn't matter ; req_wrap <- instCall (OccurrenceOf con_name) (mkTyVarTys univ_tvs') req_theta' -- Origin (OccurrenceOf con_name): -- see Note [Call-stack tracing of pattern synonyms] ; traceTc "instCall" (ppr req_wrap) ; traceTc "checkConstraints {" Outputable.empty ; (ev_binds, (arg_pats', res)) <- checkConstraints skol_info ex_tvs' prov_dicts' $ tcConArgs (PatSynCon pat_syn) arg_tys_scaled tenv penv arg_pats thing_inside ; traceTc "checkConstraints }" (ppr ev_binds) ; let res_pat = ConPat { pat_con = L con_span $ PatSynCon pat_syn , pat_args = arg_pats' , pat_con_ext = ConPatTc { cpt_tvs = ex_tvs' , cpt_dicts = prov_dicts' , cpt_binds = ev_binds , cpt_arg_tys = mkTyVarTys univ_tvs' , cpt_wrap = req_wrap } } ; pat_ty <- readExpType (scaledThing pat_ty) ; return (mkHsWrapPat (wrap <.> mult_wrap) res_pat pat_ty, res) } {- Note [Call-stack tracing of pattern synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider f :: HasCallStack => blah pattern Annotated :: HasCallStack => (CallStack, a) -> a pattern Annotated x <- (f -> x) When we pattern-match against `Annotated` we will call `f`, and must pass a call-stack. We may want `Annotated` itself to propagate the call stack, so we give it a HasCallStack constraint too. But then we expect to see `Annotated` in the call stack. This is achieve easily, but a bit trickily. When we instantiate Annotated's "required" constraints, in tcPatSynPat, give them a CtOrigin of (OccurrenceOf "Annotated"). That way the special magic in GHC.Tc.Solver.Canonical.canClassNC which deals with CallStack constraints will kick in: that logic only fires on constraints whose Origin is (OccurrenceOf f). See also Note [Overview of implicit CallStacks] in GHC.Tc.Types.Evidence and Note [Solving CallStack constraints] in GHC.Tc.Solver.Monad -} ---------------------------- -- | Convenient wrapper for calling a matchExpectedXXX function matchExpectedPatTy :: (TcRhoType -> TcM (TcCoercionN, a)) -> PatEnv -> ExpSigmaType -> TcM (HsWrapper, a) -- See Note [Matching polytyped patterns] -- Returns a wrapper : pat_ty ~R inner_ty matchExpectedPatTy inner_match (PE { pe_orig = orig }) pat_ty = do { pat_ty <- expTypeToType pat_ty ; (wrap, pat_rho) <- topInstantiate orig pat_ty ; (co, res) <- inner_match pat_rho ; traceTc "matchExpectedPatTy" (ppr pat_ty $$ ppr wrap) ; return (mkWpCastN (mkTcSymCo co) <.> wrap, res) } ---------------------------- matchExpectedConTy :: PatEnv -> TyCon -- The TyCon that this data -- constructor actually returns -- In the case of a data family this is -- the /representation/ TyCon -> Scaled ExpSigmaType -- The type of the pattern; in the -- case of a data family this would -- mention the /family/ TyCon -> TcM (HsWrapper, [TcSigmaType]) -- See Note [Matching constructor patterns] -- Returns a wrapper : pat_ty "->" T ty1 ... tyn matchExpectedConTy (PE { pe_orig = orig }) data_tc exp_pat_ty | Just (fam_tc, fam_args, co_tc) <- tyConFamInstSig_maybe data_tc -- Comments refer to Note [Matching constructor patterns] -- co_tc :: forall a. T [a] ~ T7 a = do { pat_ty <- expTypeToType (scaledThing exp_pat_ty) ; (wrap, pat_rho) <- topInstantiate orig pat_ty ; (subst, tvs') <- newMetaTyVars (tyConTyVars data_tc) -- tys = [ty1,ty2] ; traceTc "matchExpectedConTy" (vcat [ppr data_tc, ppr (tyConTyVars data_tc), ppr fam_tc, ppr fam_args, ppr exp_pat_ty, ppr pat_ty, ppr pat_rho, ppr wrap]) ; co1 <- unifyType Nothing (mkTyConApp fam_tc (substTys subst fam_args)) pat_rho -- co1 : T (ty1,ty2) ~N pat_rho -- could use tcSubType here... but it's the wrong way round -- for actual vs. expected in error messages. ; let tys' = mkTyVarTys tvs' co2 = mkTcUnbranchedAxInstCo co_tc tys' [] -- co2 : T (ty1,ty2) ~R T7 ty1 ty2 full_co = mkTcSubCo (mkTcSymCo co1) `mkTcTransCo` co2 -- full_co :: pat_rho ~R T7 ty1 ty2 ; return ( mkWpCastR full_co <.> wrap, tys') } | otherwise = do { pat_ty <- expTypeToType (scaledThing exp_pat_ty) ; (wrap, pat_rho) <- topInstantiate orig pat_ty ; (coi, tys) <- matchExpectedTyConApp data_tc pat_rho ; return (mkWpCastN (mkTcSymCo coi) <.> wrap, tys) } {- Note [Matching constructor patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose (coi, tys) = matchExpectedConType data_tc pat_ty * In the simple case, pat_ty = tc tys * If pat_ty is a polytype, we want to instantiate it This is like part of a subsumption check. Eg f :: (forall a. [a]) -> blah f [] = blah * In a type family case, suppose we have data family T a data instance T (p,q) = A p | B q Then we'll have internally generated data T7 p q = A p | B q axiom coT7 p q :: T (p,q) ~ T7 p q So if pat_ty = T (ty1,ty2), we return (coi, [ty1,ty2]) such that coi = coi2 . coi1 : T7 t ~ pat_ty coi1 : T (ty1,ty2) ~ pat_ty coi2 : T7 ty1 ty2 ~ T (ty1,ty2) For families we do all this matching here, not in the unifier, because we never want a whisper of the data_tycon to appear in error messages; it's a purely internal thing -} {- Note [Typechecking type applications in patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ How should we typecheck type applications in patterns, such as f :: Either (Maybe a) [b] -> blah f (Left @x @[y] (v::Maybe x)) = blah It's quite straightforward, and very similar to the treatment of pattern signatures. * Step 1: bind the newly-in-scope type variables x and y to fresh unification variables, say x0 and y0. * Step 2: typecheck those type arguments, @x and @[y], to get the types x0 and [y0]. * Step 3: Unify those types with the type arguments we expect, in this case (Maybe a) and [b]. These unifications will (perhaps after the constraint solver has done its work) unify x0 := Maybe a y0 := b Thus we learn that x stands for (Maybe a) and y for b. Wrinkles: * Surprisingly, we can discard the coercions arising from these unifications. The *only* thing the unification does is to side-effect those unification variables, so that we know what type x and y stand for; and cause an error if the equality is not soluble. It's a bit like a Derived constraint arising from a functional dependency. * Exactly the same works for existential arguments data T where MkT :: a -> a -> T f :: T -> blah f (MkT @x v w) = ... Here we create a fresh unification variable x0 for x, and unify it with the fresh existential variable bound by the pattern. * Note that both here and in pattern signatures the unification may not even end up unifying the variable. For example type S a b = a f :: Maybe a -> Bool f (Just @(S a b) x) = True :: b In Step 3 we will unify (S a0 b0 ~ a), which succeeds, but has no effect on the unification variable b0, to which 'b' is bound. Later, in the RHS, we find that b0 must be Bool, and unify it there. All is fine. -} tcConArgs :: ConLike -> [Scaled TcSigmaType] -> TCvSubst -- Instantiating substitution for constructor type -> Checker (HsConPatDetails GhcRn) (HsConPatDetails GhcTc) tcConArgs con_like arg_tys tenv penv con_args thing_inside = case con_args of PrefixCon type_args arg_pats -> do { checkTc (con_arity == no_of_args) -- Check correct arity (arityErr (text "constructor") con_like con_arity no_of_args) ; let con_binders = conLikeUserTyVarBinders con_like ; checkTc (type_args `leLength` con_binders) (conTyArgArityErr con_like (length con_binders) (length type_args)) ; let pats_w_tys = zipEqual "tcConArgs" arg_pats arg_tys ; (type_args', (arg_pats', res)) <- tcMultiple tcConTyArg penv type_args $ tcMultiple tcConArg penv pats_w_tys thing_inside -- This unification is straight from Figure 7 of -- "Type Variables in Patterns", Haskell'18 ; _ <- zipWithM (unifyType Nothing) type_args' (substTyVars tenv $ binderVars con_binders) -- OK to drop coercions here. These unifications are all about -- guiding inference based on a user-written type annotation -- See Note [Typechecking type applications in patterns] ; return (PrefixCon type_args arg_pats', res) } where con_arity = conLikeArity con_like no_of_args = length arg_pats InfixCon p1 p2 -> do { checkTc (con_arity == 2) -- Check correct arity (arityErr (text "constructor") con_like con_arity 2) ; let [arg_ty1,arg_ty2] = arg_tys -- This can't fail after the arity check ; ([p1',p2'], res) <- tcMultiple tcConArg penv [(p1,arg_ty1),(p2,arg_ty2)] thing_inside ; return (InfixCon p1' p2', res) } where con_arity = conLikeArity con_like RecCon (HsRecFields rpats dd) -> do { (rpats', res) <- tcMultiple tc_field penv rpats thing_inside ; return (RecCon (HsRecFields rpats' dd), res) } where tc_field :: Checker (LHsRecField GhcRn (LPat GhcRn)) (LHsRecField GhcTc (LPat GhcTc)) tc_field penv (L l (HsRecField ann (L loc (FieldOcc sel (L lr rdr))) pat pun)) thing_inside = do { sel' <- tcLookupId sel ; pat_ty <- setSrcSpan loc $ find_field_ty sel (occNameFS $ rdrNameOcc rdr) ; (pat', res) <- tcConArg penv (pat, pat_ty) thing_inside ; return (L l (HsRecField ann (L loc (FieldOcc sel' (L lr rdr))) pat' pun), res) } find_field_ty :: Name -> FieldLabelString -> TcM (Scaled TcType) find_field_ty sel lbl = case [ty | (fl, ty) <- field_tys, flSelector fl == sel ] of -- No matching field; chances are this field label comes from some -- other record type (or maybe none). If this happens, just fail, -- otherwise we get crashes later (#8570), and similar: -- f (R { foo = (a,b) }) = a+b -- If foo isn't one of R's fields, we don't want to crash when -- typechecking the "a+b". [] -> failWith (badFieldCon con_like lbl) -- The normal case, when the field comes from the right constructor (pat_ty : extras) -> do traceTc "find_field" (ppr pat_ty <+> ppr extras) ASSERT( null extras ) (return pat_ty) field_tys :: [(FieldLabel, Scaled TcType)] field_tys = zip (conLikeFieldLabels con_like) arg_tys -- Don't use zipEqual! If the constructor isn't really a record, then -- dataConFieldLabels will be empty (and each field in the pattern -- will generate an error below). tcConTyArg :: Checker (HsPatSigType GhcRn) TcType tcConTyArg penv rn_ty thing_inside = do { (sig_wcs, sig_ibs, arg_ty) <- tcHsPatSigType TypeAppCtxt HM_TyAppPat rn_ty AnyKind -- AnyKind is a bit suspect: it really should be the kind gotten -- from instantiating the constructor type. But this would be -- hard to get right, because earlier type patterns might influence -- the kinds of later patterns. In any case, it all gets checked -- by the calls to unifyType in tcConArgs, which will also unify -- kinds. ; when (not (null sig_ibs) && inPatBind penv) $ addErr (text "Binding type variables is not allowed in pattern bindings") ; result <- tcExtendNameTyVarEnv sig_wcs $ tcExtendNameTyVarEnv sig_ibs $ thing_inside ; return (arg_ty, result) } tcConArg :: Checker (LPat GhcRn, Scaled TcSigmaType) (LPat GhcTc) tcConArg penv (arg_pat, Scaled arg_mult arg_ty) = tc_lpat (Scaled arg_mult (mkCheckExpType arg_ty)) penv arg_pat addDataConStupidTheta :: DataCon -> [TcType] -> TcM () -- Instantiate the "stupid theta" of the data con, and throw -- the constraints into the constraint set addDataConStupidTheta data_con inst_tys | null stupid_theta = return () | otherwise = instStupidTheta origin inst_theta where origin = OccurrenceOf (dataConName data_con) -- The origin should always report "occurrence of C" -- even when C occurs in a pattern stupid_theta = dataConStupidTheta data_con univ_tvs = dataConUnivTyVars data_con tenv = zipTvSubst univ_tvs (takeList univ_tvs inst_tys) -- NB: inst_tys can be longer than the univ tyvars -- because the constructor might have existentials inst_theta = substTheta tenv stupid_theta conTyArgArityErr :: ConLike -> Int -- expected # of arguments -> Int -- actual # of arguments -> SDoc conTyArgArityErr con_like expected_number actual_number = text "Too many type arguments in constructor pattern for" <+> quotes (ppr con_like) $$ text "Expected no more than" <+> ppr expected_number <> semi <+> text "got" <+> ppr actual_number {- Note [Arrows and patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~ (Oct 07) Arrow notation has the odd property that it involves "holes in the scope". For example: expr :: Arrow a => a () Int expr = proc (y,z) -> do x <- term -< y expr' -< x Here the 'proc (y,z)' binding scopes over the arrow tails but not the arrow body (e.g 'term'). As things stand (bogusly) all the constraints from the proc body are gathered together, so constraints from 'term' will be seen by the tcPat for (y,z). But we must *not* bind constraints from 'term' here, because the desugarer will not make these bindings scope over 'term'. The Right Thing is not to confuse these constraints together. But for now the Easy Thing is to ensure that we do not have existential or GADT constraints in a 'proc', which we do by disallowing any non-vanilla pattern match (i.e. one that introduces existential variables or provided constraints), in tcDataConPat and tcPatSynPat. We also short-cut the constraint simplification for such vanilla patterns, so that we bind no constraints. Hence the 'fast path' in tcDataConPat; which applies more generally (not just within 'proc'), as it's a good plan in general to bypass the constraint simplification step entirely when it's not needed. ************************************************************************ * * Note [Pattern coercions] * * ************************************************************************ In principle, these program would be reasonable: f :: (forall a. a->a) -> Int f (x :: Int->Int) = x 3 g :: (forall a. [a]) -> Bool g [] = True In both cases, the function type signature restricts what arguments can be passed in a call (to polymorphic ones). The pattern type signature then instantiates this type. For example, in the first case, (forall a. a->a) <= Int -> Int, and we generate the translated term f = \x' :: (forall a. a->a). let x = x' Int in x 3 From a type-system point of view, this is perfectly fine, but it's *very* seldom useful. And it requires a significant amount of code to implement, because we need to decorate the translated pattern with coercion functions (generated from the subsumption check by tcSub). So for now I'm just insisting on type *equality* in patterns. No subsumption. Old notes about desugaring, at a time when pattern coercions were handled: A SigPat is a type coercion and must be handled one at a time. We can't combine them unless the type of the pattern inside is identical, and we don't bother to check for that. For example: data T = T1 Int | T2 Bool f :: (forall a. a -> a) -> T -> t f (g::Int->Int) (T1 i) = T1 (g i) f (g::Bool->Bool) (T2 b) = T2 (g b) We desugar this as follows: f = \ g::(forall a. a->a) t::T -> let gi = g Int in case t of { T1 i -> T1 (gi i) other -> let gb = g Bool in case t of { T2 b -> T2 (gb b) other -> fail }} Note that we do not treat the first column of patterns as a column of variables, because the coerced variables (gi, gb) would be of different types. So we get rather grotty code. But I don't think this is a common case, and if it was we could doubtless improve it. Meanwhile, the strategy is: * treat each SigPat coercion (always non-identity coercions) as a separate block * deal with the stuff inside, and then wrap a binding round the result to bind the new variable (gi, gb, etc) ************************************************************************ * * \subsection{Errors and contexts} * * ************************************************************************ Note [Existential check] ~~~~~~~~~~~~~~~~~~~~~~~~ Lazy patterns can't bind existentials. They arise in two ways: * Let bindings let { C a b = e } in b * Twiddle patterns f ~(C a b) = e The pe_lazy field of PatEnv says whether we are inside a lazy pattern (perhaps deeply) See also Note [Typechecking pattern bindings] in GHC.Tc.Gen.Bind -} maybeWrapPatCtxt :: Pat GhcRn -> (TcM a -> TcM b) -> TcM a -> TcM b -- Not all patterns are worth pushing a context maybeWrapPatCtxt pat tcm thing_inside | not (worth_wrapping pat) = tcm thing_inside | otherwise = addErrCtxt msg $ tcm $ popErrCtxt thing_inside -- Remember to pop before doing thing_inside where worth_wrapping (VarPat {}) = False worth_wrapping (ParPat {}) = False worth_wrapping (AsPat {}) = False worth_wrapping _ = True msg = hang (text "In the pattern:") 2 (ppr pat) ----------------------------------------------- -- | Check that a pattern isn't a GADT, or doesn't have existential variables, -- in a situation in which that is not permitted (inside a lazy pattern, or -- in arrow notation). checkGADT :: ConLike -> [TyVar] -- ^ existentials -> [Type] -- ^ argument types -> PatEnv -> TcM () checkGADT conlike ex_tvs arg_tys = \case PE { pe_ctxt = LetPat {} } -> return () PE { pe_ctxt = LamPat (ArrowMatchCtxt {}) } | not $ isVanillaConLike conlike -- See Note [Arrows and patterns] -> failWithTc existentialProcPat PE { pe_lazy = True } | has_existentials -- See Note [Existential check] -> failWithTc existentialLazyPat _ -> return () where has_existentials :: Bool has_existentials = any (`elemVarSet` tyCoVarsOfTypes arg_tys) ex_tvs existentialLazyPat :: SDoc existentialLazyPat = hang (text "An existential or GADT data constructor cannot be used") 2 (text "inside a lazy (~) pattern") existentialProcPat :: SDoc existentialProcPat = text "Proc patterns cannot use existential or GADT data constructors" badFieldCon :: ConLike -> FieldLabelString -> SDoc badFieldCon con field = hsep [text "Constructor" <+> quotes (ppr con), text "does not have field", quotes (ppr field)] polyPatSig :: TcType -> SDoc polyPatSig sig_ty = hang (text "Illegal polymorphic type signature in pattern:") 2 (ppr sig_ty)