{-# LANGUAGE RecordWildCards, ScopedTypeVariables, BangPatterns, CPP #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE TupleSections #-} -- | Interacting with the iserv interpreter, whether it is running on an -- external process or in the current process. -- module GHC.Runtime.Interpreter ( module GHC.Runtime.Interpreter.Types -- * High-level interface to the interpreter , evalStmt, EvalStatus_(..), EvalStatus, EvalResult(..), EvalExpr(..) , resumeStmt , abandonStmt , evalIO , evalString , evalStringToIOString , mallocData , createBCOs , addSptEntry , mkCostCentres , costCentreStackInfo , newBreakArray , storeBreakpoint , breakpointStatus , getBreakpointVar , getClosure , getModBreaks , seqHValue , interpreterDynamic , interpreterProfiled -- * The object-code linker , initObjLinker , lookupSymbol , lookupClosure , loadDLL , loadArchive , loadObj , unloadObj , addLibrarySearchPath , removeLibrarySearchPath , resolveObjs , findSystemLibrary -- * Lower-level API using messages , interpCmd, Message(..), withIServ, withIServ_ , hscInterp, stopInterp , iservCall, readIServ, writeIServ , purgeLookupSymbolCache , freeHValueRefs , mkFinalizedHValue , wormhole, wormholeRef , mkEvalOpts , fromEvalResult ) where import GHC.Prelude import GHC.Driver.Ppr (showSDoc) import GHC.Driver.Env import GHC.Driver.Session import GHC.Runtime.Interpreter.Types import GHCi.Message import GHCi.RemoteTypes import GHCi.ResolvedBCO import GHCi.BreakArray (BreakArray) import GHC.Runtime.Eval.Types(BreakInfo(..)) import GHC.ByteCode.Types import GHC.Linker.Types import GHC.Data.Maybe import GHC.Data.FastString import GHC.Types.Unique import GHC.Types.SrcLoc import GHC.Types.Unique.FM import GHC.Types.Basic import GHC.Utils.Panic import GHC.Utils.Exception as Ex import GHC.Utils.Outputable(brackets, ppr) import GHC.Utils.Fingerprint import GHC.Utils.Misc import GHC.Unit.Module import GHC.Unit.Module.ModIface import GHC.Unit.Home.ModInfo #if defined(HAVE_INTERNAL_INTERPRETER) import GHCi.Run import GHC.Platform.Ways #endif import Control.Concurrent import Control.Monad import Control.Monad.IO.Class import Control.Monad.Catch as MC (mask, onException) import Data.Binary import Data.Binary.Put import Data.ByteString (ByteString) import qualified Data.ByteString.Lazy as LB import Data.Array ((!)) import Data.IORef import Foreign hiding (void) import qualified GHC.Exts.Heap as Heap import GHC.Stack.CCS (CostCentre,CostCentreStack) import System.Exit import GHC.IO.Handle.Types (Handle) #if defined(mingw32_HOST_OS) import Foreign.C import GHC.IO.Handle.FD (fdToHandle) #else import System.Posix as Posix #endif import System.Directory import System.Process import GHC.Conc (getNumProcessors, pseq, par) {- Note [Remote GHCi] When the flag -fexternal-interpreter is given to GHC, interpreted code is run in a separate process called iserv, and we communicate with the external process over a pipe using Binary-encoded messages. Motivation ~~~~~~~~~~ When the interpreted code is running in a separate process, it can use a different "way", e.g. profiled or dynamic. This means - compiling Template Haskell code with -prof does not require building the code without -prof first - when GHC itself is profiled, it can interpret unprofiled code, and the same applies to dynamic linking. - An unprofiled GHCi can load and run profiled code, which means it can use the stack-trace functionality provided by profiling without taking the performance hit on the compiler that profiling would entail. For other reasons see remote-GHCi on the wiki. Implementation Overview ~~~~~~~~~~~~~~~~~~~~~~~ The main pieces are: - libraries/ghci, containing: - types for talking about remote values (GHCi.RemoteTypes) - the message protocol (GHCi.Message), - implementation of the messages (GHCi.Run) - implementation of Template Haskell (GHCi.TH) - a few other things needed to run interpreted code - top-level iserv directory, containing the codefor the external server. This is a fairly simple wrapper, most of the functionality is provided by modules in libraries/ghci. - This module which provides the interface to the server used by the rest of GHC. GHC works with and without -fexternal-interpreter. With the flag, all interpreted code is run by the iserv binary. Without the flag, interpreted code is run in the same process as GHC. Things that do not work with -fexternal-interpreter ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dynCompileExpr cannot work, because we have no way to run code of an unknown type in the remote process. This API fails with an error message if it is used with -fexternal-interpreter. Other Notes on Remote GHCi ~~~~~~~~~~~~~~~~~~~~~~~~~~ * This wiki page has an implementation overview: https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/external-interpreter * Note [External GHCi pointers] in "GHC.Runtime.Interpreter" * Note [Remote Template Haskell] in libraries/ghci/GHCi/TH.hs -} -- | Run a command in the interpreter's context. With -- @-fexternal-interpreter@, the command is serialized and sent to an -- external iserv process, and the response is deserialized (hence the -- @Binary@ constraint). With @-fno-external-interpreter@ we execute -- the command directly here. interpCmd :: Binary a => Interp -> Message a -> IO a interpCmd interp msg = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> run msg -- Just run it directly #endif ExternalInterp c i -> withIServ_ c i $ \iserv -> uninterruptibleMask_ $ -- Note [uninterruptibleMask_] iservCall iserv msg -- | Retrieve the target code interpreter -- -- Fails if no target code interpreter is available hscInterp :: HscEnv -> Interp hscInterp hsc_env = case hsc_interp hsc_env of Nothing -> throw (InstallationError "Couldn't find a target code interpreter. Try with -fexternal-interpreter") Just i -> i -- Note [uninterruptibleMask_ and interpCmd] -- -- If we receive an async exception, such as ^C, while communicating -- with the iserv process then we will be out-of-sync and not be able -- to recover. Thus we use uninterruptibleMask_ during -- communication. A ^C will be delivered to the iserv process (because -- signals get sent to the whole process group) which will interrupt -- the running computation and return an EvalException result. -- | Grab a lock on the 'IServ' and do something with it. -- Overloaded because this is used from TcM as well as IO. withIServ :: (ExceptionMonad m) => IServConfig -> IServ -> (IServInstance -> m (IServInstance, a)) -> m a withIServ conf (IServ mIServState) action = MC.mask $ \restore -> do state <- liftIO $ takeMVar mIServState iserv <- case state of -- start the external iserv process if we haven't done so yet IServPending -> liftIO (spawnIServ conf) `MC.onException` (liftIO $ putMVar mIServState state) IServRunning inst -> return inst let iserv' = iserv{ iservPendingFrees = [] } (iserv'',a) <- (do -- free any ForeignHValues that have been garbage collected. liftIO $ when (not (null (iservPendingFrees iserv))) $ iservCall iserv (FreeHValueRefs (iservPendingFrees iserv)) -- run the inner action restore $ action iserv') `MC.onException` (liftIO $ putMVar mIServState (IServRunning iserv')) liftIO $ putMVar mIServState (IServRunning iserv'') return a withIServ_ :: (MonadIO m, ExceptionMonad m) => IServConfig -> IServ -> (IServInstance -> m a) -> m a withIServ_ conf iserv action = withIServ conf iserv $ \inst -> (inst,) <$> action inst -- ----------------------------------------------------------------------------- -- Wrappers around messages -- | Execute an action of type @IO [a]@, returning 'ForeignHValue's for -- each of the results. evalStmt :: Interp -> DynFlags -- used by mkEvalOpts -> Bool -- "step" for mkEvalOpts -> EvalExpr ForeignHValue -> IO (EvalStatus_ [ForeignHValue] [HValueRef]) evalStmt interp dflags step foreign_expr = do status <- withExpr foreign_expr $ \expr -> interpCmd interp (EvalStmt (mkEvalOpts dflags step) expr) handleEvalStatus interp status where withExpr :: EvalExpr ForeignHValue -> (EvalExpr HValueRef -> IO a) -> IO a withExpr (EvalThis fhv) cont = withForeignRef fhv $ \hvref -> cont (EvalThis hvref) withExpr (EvalApp fl fr) cont = withExpr fl $ \fl' -> withExpr fr $ \fr' -> cont (EvalApp fl' fr') resumeStmt :: Interp -> DynFlags -- used by mkEvalOpts -> Bool -- "step" for mkEvalOpts -> ForeignRef (ResumeContext [HValueRef]) -> IO (EvalStatus_ [ForeignHValue] [HValueRef]) resumeStmt interp dflags step resume_ctxt = do status <- withForeignRef resume_ctxt $ \rhv -> interpCmd interp (ResumeStmt (mkEvalOpts dflags step) rhv) handleEvalStatus interp status abandonStmt :: Interp -> ForeignRef (ResumeContext [HValueRef]) -> IO () abandonStmt interp resume_ctxt = withForeignRef resume_ctxt $ \rhv -> interpCmd interp (AbandonStmt rhv) handleEvalStatus :: Interp -> EvalStatus [HValueRef] -> IO (EvalStatus_ [ForeignHValue] [HValueRef]) handleEvalStatus interp status = case status of EvalBreak a b c d e f -> return (EvalBreak a b c d e f) EvalComplete alloc res -> EvalComplete alloc <$> addFinalizer res where addFinalizer (EvalException e) = return (EvalException e) addFinalizer (EvalSuccess rs) = EvalSuccess <$> mapM (mkFinalizedHValue interp) rs -- | Execute an action of type @IO ()@ evalIO :: Interp -> ForeignHValue -> IO () evalIO interp fhv = liftIO $ withForeignRef fhv $ \fhv -> interpCmd interp (EvalIO fhv) >>= fromEvalResult -- | Execute an action of type @IO String@ evalString :: Interp -> ForeignHValue -> IO String evalString interp fhv = liftIO $ withForeignRef fhv $ \fhv -> interpCmd interp (EvalString fhv) >>= fromEvalResult -- | Execute an action of type @String -> IO String@ evalStringToIOString :: Interp -> ForeignHValue -> String -> IO String evalStringToIOString interp fhv str = liftIO $ withForeignRef fhv $ \fhv -> interpCmd interp (EvalStringToString fhv str) >>= fromEvalResult -- | Allocate and store the given bytes in memory, returning a pointer -- to the memory in the remote process. mallocData :: Interp -> ByteString -> IO (RemotePtr ()) mallocData interp bs = interpCmd interp (MallocData bs) mkCostCentres :: Interp -> String -> [(String,String)] -> IO [RemotePtr CostCentre] mkCostCentres interp mod ccs = interpCmd interp (MkCostCentres mod ccs) -- | Create a set of BCOs that may be mutually recursive. createBCOs :: Interp -> DynFlags -> [ResolvedBCO] -> IO [HValueRef] createBCOs interp dflags rbcos = do n_jobs <- case parMakeCount dflags of Nothing -> liftIO getNumProcessors Just n -> return n -- Serializing ResolvedBCO is expensive, so if we're in parallel mode -- (-j) parallelise the serialization. if (n_jobs == 1) then interpCmd interp (CreateBCOs [runPut (put rbcos)]) else do old_caps <- getNumCapabilities if old_caps == n_jobs then void $ evaluate puts else bracket_ (setNumCapabilities n_jobs) (setNumCapabilities old_caps) (void $ evaluate puts) interpCmd interp (CreateBCOs puts) where puts = parMap doChunk (chunkList 100 rbcos) -- make sure we force the whole lazy ByteString doChunk c = pseq (LB.length bs) bs where bs = runPut (put c) -- We don't have the parallel package, so roll our own simple parMap parMap _ [] = [] parMap f (x:xs) = fx `par` (fxs `pseq` (fx : fxs)) where fx = f x; fxs = parMap f xs addSptEntry :: Interp -> Fingerprint -> ForeignHValue -> IO () addSptEntry interp fpr ref = withForeignRef ref $ \val -> interpCmd interp (AddSptEntry fpr val) costCentreStackInfo :: Interp -> RemotePtr CostCentreStack -> IO [String] costCentreStackInfo interp ccs = interpCmd interp (CostCentreStackInfo ccs) newBreakArray :: Interp -> Int -> IO (ForeignRef BreakArray) newBreakArray interp size = do breakArray <- interpCmd interp (NewBreakArray size) mkFinalizedHValue interp breakArray storeBreakpoint :: Interp -> ForeignRef BreakArray -> Int -> Int -> IO () storeBreakpoint interp ref ix cnt = do -- #19157 withForeignRef ref $ \breakarray -> interpCmd interp (SetupBreakpoint breakarray ix cnt) breakpointStatus :: Interp -> ForeignRef BreakArray -> Int -> IO Bool breakpointStatus interp ref ix = withForeignRef ref $ \breakarray -> interpCmd interp (BreakpointStatus breakarray ix) getBreakpointVar :: Interp -> ForeignHValue -> Int -> IO (Maybe ForeignHValue) getBreakpointVar interp ref ix = withForeignRef ref $ \apStack -> do mb <- interpCmd interp (GetBreakpointVar apStack ix) mapM (mkFinalizedHValue interp) mb getClosure :: Interp -> ForeignHValue -> IO (Heap.GenClosure ForeignHValue) getClosure interp ref = withForeignRef ref $ \hval -> do mb <- interpCmd interp (GetClosure hval) mapM (mkFinalizedHValue interp) mb -- | Send a Seq message to the iserv process to force a value #2950 seqHValue :: Interp -> HscEnv -> ForeignHValue -> IO (EvalResult ()) seqHValue interp hsc_env ref = withForeignRef ref $ \hval -> do status <- interpCmd interp (Seq hval) handleSeqHValueStatus interp hsc_env status -- | Process the result of a Seq or ResumeSeq message. #2950 handleSeqHValueStatus :: Interp -> HscEnv -> EvalStatus () -> IO (EvalResult ()) handleSeqHValueStatus interp hsc_env eval_status = case eval_status of (EvalBreak is_exception _ ix mod_uniq resume_ctxt _) -> do -- A breakpoint was hit; inform the user and tell them -- which breakpoint was hit. resume_ctxt_fhv <- liftIO $ mkFinalizedHValue interp resume_ctxt let hmi = expectJust "handleRunStatus" $ lookupHptDirectly (hsc_HPT hsc_env) (mkUniqueGrimily mod_uniq) modl = mi_module (hm_iface hmi) bp | is_exception = Nothing | otherwise = Just (BreakInfo modl ix) sdocBpLoc = brackets . ppr . getSeqBpSpan putStrLn ("*** Ignoring breakpoint " ++ (showSDoc (hsc_dflags hsc_env) $ sdocBpLoc bp)) -- resume the seq (:force) processing in the iserv process withForeignRef resume_ctxt_fhv $ \hval -> do status <- interpCmd interp (ResumeSeq hval) handleSeqHValueStatus interp hsc_env status (EvalComplete _ r) -> return r where getSeqBpSpan :: Maybe BreakInfo -> SrcSpan -- Just case: Stopped at a breakpoint, extract SrcSpan information -- from the breakpoint. getSeqBpSpan (Just BreakInfo{..}) = (modBreaks_locs (breaks breakInfo_module)) ! breakInfo_number -- Nothing case - should not occur! -- Reason: Setting of flags in libraries/ghci/GHCi/Run.hs:evalOptsSeq getSeqBpSpan Nothing = mkGeneralSrcSpan (fsLit "") breaks mod = getModBreaks $ expectJust "getSeqBpSpan" $ lookupHpt (hsc_HPT hsc_env) (moduleName mod) -- ----------------------------------------------------------------------------- -- Interface to the object-code linker initObjLinker :: Interp -> IO () initObjLinker interp = interpCmd interp InitLinker lookupSymbol :: Interp -> FastString -> IO (Maybe (Ptr ())) lookupSymbol interp str = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> fmap fromRemotePtr <$> run (LookupSymbol (unpackFS str)) #endif ExternalInterp c i -> withIServ c i $ \iserv -> do -- Profiling of GHCi showed a lot of time and allocation spent -- making cross-process LookupSymbol calls, so I added a GHC-side -- cache which sped things up quite a lot. We have to be careful -- to purge this cache when unloading code though. let cache = iservLookupSymbolCache iserv case lookupUFM cache str of Just p -> return (iserv, Just p) Nothing -> do m <- uninterruptibleMask_ $ iservCall iserv (LookupSymbol (unpackFS str)) case m of Nothing -> return (iserv, Nothing) Just r -> do let p = fromRemotePtr r cache' = addToUFM cache str p iserv' = iserv {iservLookupSymbolCache = cache'} return (iserv', Just p) lookupClosure :: Interp -> String -> IO (Maybe HValueRef) lookupClosure interp str = interpCmd interp (LookupClosure str) purgeLookupSymbolCache :: Interp -> IO () purgeLookupSymbolCache interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> pure () #endif ExternalInterp _ (IServ mstate) -> modifyMVar_ mstate $ \state -> pure $ case state of IServPending -> state IServRunning iserv -> IServRunning (iserv { iservLookupSymbolCache = emptyUFM }) -- | loadDLL loads a dynamic library using the OS's native linker -- (i.e. dlopen() on Unix, LoadLibrary() on Windows). It takes either -- an absolute pathname to the file, or a relative filename -- (e.g. "libfoo.so" or "foo.dll"). In the latter case, loadDLL -- searches the standard locations for the appropriate library. -- -- Returns: -- -- Nothing => success -- Just err_msg => failure loadDLL :: Interp -> String -> IO (Maybe String) loadDLL interp str = interpCmd interp (LoadDLL str) loadArchive :: Interp -> String -> IO () loadArchive interp path = do path' <- canonicalizePath path -- Note [loadObj and relative paths] interpCmd interp (LoadArchive path') loadObj :: Interp -> String -> IO () loadObj interp path = do path' <- canonicalizePath path -- Note [loadObj and relative paths] interpCmd interp (LoadObj path') unloadObj :: Interp -> String -> IO () unloadObj interp path = do path' <- canonicalizePath path -- Note [loadObj and relative paths] interpCmd interp (UnloadObj path') -- Note [loadObj and relative paths] -- the iserv process might have a different current directory from the -- GHC process, so we must make paths absolute before sending them -- over. addLibrarySearchPath :: Interp -> String -> IO (Ptr ()) addLibrarySearchPath interp str = fromRemotePtr <$> interpCmd interp (AddLibrarySearchPath str) removeLibrarySearchPath :: Interp -> Ptr () -> IO Bool removeLibrarySearchPath interp p = interpCmd interp (RemoveLibrarySearchPath (toRemotePtr p)) resolveObjs :: Interp -> IO SuccessFlag resolveObjs interp = successIf <$> interpCmd interp ResolveObjs findSystemLibrary :: Interp -> String -> IO (Maybe String) findSystemLibrary interp str = interpCmd interp (FindSystemLibrary str) -- ----------------------------------------------------------------------------- -- Raw calls and messages -- | Send a 'Message' and receive the response from the iserv process iservCall :: Binary a => IServInstance -> Message a -> IO a iservCall iserv msg = remoteCall (iservPipe iserv) msg `catch` \(e :: SomeException) -> handleIServFailure iserv e -- | Read a value from the iserv process readIServ :: IServInstance -> Get a -> IO a readIServ iserv get = readPipe (iservPipe iserv) get `catch` \(e :: SomeException) -> handleIServFailure iserv e -- | Send a value to the iserv process writeIServ :: IServInstance -> Put -> IO () writeIServ iserv put = writePipe (iservPipe iserv) put `catch` \(e :: SomeException) -> handleIServFailure iserv e handleIServFailure :: IServInstance -> SomeException -> IO a handleIServFailure iserv e = do let proc = iservProcess iserv ex <- getProcessExitCode proc case ex of Just (ExitFailure n) -> throwIO (InstallationError ("ghc-iserv terminated (" ++ show n ++ ")")) _ -> do terminateProcess proc _ <- waitForProcess proc throw e -- | Spawn an external interpreter spawnIServ :: IServConfig -> IO IServInstance spawnIServ conf = do iservConfTrace conf let createProc = fromMaybe (\cp -> do { (_,_,_,ph) <- createProcess cp ; return ph }) (iservConfHook conf) (ph, rh, wh) <- runWithPipes createProc (iservConfProgram conf) (iservConfOpts conf) lo_ref <- newIORef Nothing return $ IServInstance { iservPipe = Pipe { pipeRead = rh, pipeWrite = wh, pipeLeftovers = lo_ref } , iservProcess = ph , iservLookupSymbolCache = emptyUFM , iservPendingFrees = [] } -- | Stop the interpreter stopInterp :: Interp -> IO () stopInterp interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> pure () #endif ExternalInterp _ (IServ mstate) -> MC.mask $ \_restore -> modifyMVar_ mstate $ \state -> do case state of IServPending -> pure state -- already stopped IServRunning i -> do ex <- getProcessExitCode (iservProcess i) if isJust ex then pure () else iservCall i Shutdown pure IServPending runWithPipes :: (CreateProcess -> IO ProcessHandle) -> FilePath -> [String] -> IO (ProcessHandle, Handle, Handle) #if defined(mingw32_HOST_OS) foreign import ccall "io.h _close" c__close :: CInt -> IO CInt foreign import ccall unsafe "io.h _get_osfhandle" _get_osfhandle :: CInt -> IO CInt runWithPipes createProc prog opts = do (rfd1, wfd1) <- createPipeFd -- we read on rfd1 (rfd2, wfd2) <- createPipeFd -- we write on wfd2 wh_client <- _get_osfhandle wfd1 rh_client <- _get_osfhandle rfd2 let args = show wh_client : show rh_client : opts ph <- createProc (proc prog args) rh <- mkHandle rfd1 wh <- mkHandle wfd2 return (ph, rh, wh) where mkHandle :: CInt -> IO Handle mkHandle fd = (fdToHandle fd) `Ex.onException` (c__close fd) #else runWithPipes createProc prog opts = do (rfd1, wfd1) <- Posix.createPipe -- we read on rfd1 (rfd2, wfd2) <- Posix.createPipe -- we write on wfd2 setFdOption rfd1 CloseOnExec True setFdOption wfd2 CloseOnExec True let args = show wfd1 : show rfd2 : opts ph <- createProc (proc prog args) closeFd wfd1 closeFd rfd2 rh <- fdToHandle rfd1 wh <- fdToHandle wfd2 return (ph, rh, wh) #endif -- ----------------------------------------------------------------------------- {- Note [External GHCi pointers] We have the following ways to reference things in GHCi: HValue ------ HValue is a direct reference to a value in the local heap. Obviously we cannot use this to refer to things in the external process. RemoteRef --------- RemoteRef is a StablePtr to a heap-resident value. When -fexternal-interpreter is used, this value resides in the external process's heap. RemoteRefs are mostly used to send pointers in messages between GHC and iserv. A RemoteRef must be explicitly freed when no longer required, using freeHValueRefs, or by attaching a finalizer with mkForeignHValue. To get from a RemoteRef to an HValue you can use 'wormholeRef', which fails with an error message if -fexternal-interpreter is in use. ForeignRef ---------- A ForeignRef is a RemoteRef with a finalizer that will free the 'RemoteRef' when it is garbage collected. We mostly use ForeignHValue on the GHC side. The finalizer adds the RemoteRef to the iservPendingFrees list in the IServ record. The next call to interpCmd will free any RemoteRefs in the list. It was done this way rather than calling interpCmd directly, because I didn't want to have arbitrary threads calling interpCmd. In principle it would probably be ok, but it seems less hairy this way. -} -- | Creates a 'ForeignRef' that will automatically release the -- 'RemoteRef' when it is no longer referenced. mkFinalizedHValue :: Interp -> RemoteRef a -> IO (ForeignRef a) mkFinalizedHValue interp rref = do let hvref = toHValueRef rref free <- case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> return (freeRemoteRef hvref) #endif ExternalInterp _ (IServ i) -> return $ modifyMVar_ i $ \state -> case state of IServPending {} -> pure state -- already shut down IServRunning inst -> do let !inst' = inst {iservPendingFrees = hvref:iservPendingFrees inst} pure (IServRunning inst') mkForeignRef rref free freeHValueRefs :: Interp -> [HValueRef] -> IO () freeHValueRefs _ [] = return () freeHValueRefs interp refs = interpCmd interp (FreeHValueRefs refs) -- | Convert a 'ForeignRef' to the value it references directly. This -- only works when the interpreter is running in the same process as -- the compiler, so it fails when @-fexternal-interpreter@ is on. wormhole :: Interp -> ForeignRef a -> IO a wormhole interp r = wormholeRef interp (unsafeForeignRefToRemoteRef r) -- | Convert an 'RemoteRef' to the value it references directly. This -- only works when the interpreter is running in the same process as -- the compiler, so it fails when @-fexternal-interpreter@ is on. wormholeRef :: Interp -> RemoteRef a -> IO a wormholeRef interp _r = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> localRef _r #endif ExternalInterp {} -> throwIO (InstallationError "this operation requires -fno-external-interpreter") -- ----------------------------------------------------------------------------- -- Misc utils mkEvalOpts :: DynFlags -> Bool -> EvalOpts mkEvalOpts dflags step = EvalOpts { useSandboxThread = gopt Opt_GhciSandbox dflags , singleStep = step , breakOnException = gopt Opt_BreakOnException dflags , breakOnError = gopt Opt_BreakOnError dflags } fromEvalResult :: EvalResult a -> IO a fromEvalResult (EvalException e) = throwIO (fromSerializableException e) fromEvalResult (EvalSuccess a) = return a getModBreaks :: HomeModInfo -> ModBreaks getModBreaks hmi | Just linkable <- hm_linkable hmi, [cbc] <- mapMaybe onlyBCOs $ linkableUnlinked linkable = fromMaybe emptyModBreaks (bc_breaks cbc) | otherwise = emptyModBreaks -- probably object code where -- The linkable may have 'DotO's as well; only consider BCOs. See #20570. onlyBCOs :: Unlinked -> Maybe CompiledByteCode onlyBCOs (BCOs cbc _) = Just cbc onlyBCOs _ = Nothing -- | Interpreter uses Profiling way interpreterProfiled :: Interp -> Bool interpreterProfiled interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> hostIsProfiled #endif ExternalInterp c _ -> iservConfProfiled c -- | Interpreter uses Dynamic way interpreterDynamic :: Interp -> Bool interpreterDynamic interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> hostIsDynamic #endif ExternalInterp c _ -> iservConfDynamic c