{- (c) The University of Glasgow 2006 (c) The AQUA Project, Glasgow University, 1994-1998 Desugaring foreign calls -} {-# LANGUAGE CPP #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} module GHC.HsToCore.Foreign.Call ( dsCCall , mkFCall , unboxArg , boxResult , resultWrapper ) where #include "HsVersions.h" import GHC.Prelude import GHC.Core import GHC.HsToCore.Monad import GHC.Core.Utils import GHC.Core.Make import GHC.Types.SourceText import GHC.Types.Id.Make import GHC.Types.ForeignCall import GHC.Core.DataCon import GHC.HsToCore.Utils import GHC.Tc.Utils.TcType import GHC.Core.Type import GHC.Core.Multiplicity import GHC.Core.Coercion import GHC.Builtin.Types.Prim import GHC.Core.TyCon import GHC.Builtin.Types import GHC.Types.Basic import GHC.Types.Literal import GHC.Builtin.Names import GHC.Driver.Session import GHC.Utils.Outputable import GHC.Utils.Misc import GHC.Utils.Panic import Data.Maybe {- Desugaring of @ccall@s consists of adding some state manipulation, unboxing any boxed primitive arguments and boxing the result if desired. The state stuff just consists of adding in @PrimIO (\ s -> case s of { State# s# -> ... })@ in an appropriate place. The unboxing is straightforward, as all information needed to unbox is available from the type. For each boxed-primitive argument, we transform: \begin{verbatim} _ccall_ foo [ r, t1, ... tm ] e1 ... em | | V case e1 of { T1# x1# -> ... case em of { Tm# xm# -> xm# ccall# foo [ r, t1#, ... tm# ] x1# ... xm# } ... } \end{verbatim} The reboxing of a @_ccall_@ result is a bit tricker: the types don't contain information about the state-pairing functions so we have to keep a list of \tr{(type, s-p-function)} pairs. We transform as follows: \begin{verbatim} ccall# foo [ r, t1#, ... tm# ] e1# ... em# | | V \ s# -> case (ccall# foo [ r, t1#, ... tm# ] s# e1# ... em#) of (StateAnd# result# state#) -> (R# result#, realWorld#) \end{verbatim} -} dsCCall :: CLabelString -- C routine to invoke -> [CoreExpr] -- Arguments (desugared) -- Precondition: none have levity-polymorphic types -> Safety -- Safety of the call -> Type -- Type of the result: IO t -> DsM CoreExpr -- Result, of type ??? dsCCall lbl args may_gc result_ty = do (unboxed_args, arg_wrappers) <- mapAndUnzipM unboxArg args (ccall_result_ty, res_wrapper) <- boxResult result_ty uniq <- newUnique dflags <- getDynFlags let target = StaticTarget NoSourceText lbl Nothing True the_fcall = CCall (CCallSpec target CCallConv may_gc) the_prim_app = mkFCall dflags uniq the_fcall unboxed_args ccall_result_ty return (foldr ($) (res_wrapper the_prim_app) arg_wrappers) mkFCall :: DynFlags -> Unique -> ForeignCall -> [CoreExpr] -- Args -> Type -- Result type -> CoreExpr -- Construct the ccall. The only tricky bit is that the ccall Id should have -- no free vars, so if any of the arg tys do we must give it a polymorphic type. -- [I forget *why* it should have no free vars!] -- For example: -- mkCCall ... [s::StablePtr (a->b), x::Addr, c::Char] -- -- Here we build a ccall thus -- (ccallid::(forall a b. StablePtr (a -> b) -> Addr -> Char -> IO Addr)) -- a b s x c mkFCall dflags uniq the_fcall val_args res_ty = ASSERT( all isTyVar tyvars ) -- this must be true because the type is top-level mkApps (mkVarApps (Var the_fcall_id) tyvars) val_args where arg_tys = map exprType val_args body_ty = (mkVisFunTysMany arg_tys res_ty) tyvars = tyCoVarsOfTypeWellScoped body_ty ty = mkInfForAllTys tyvars body_ty the_fcall_id = mkFCallId dflags uniq the_fcall ty unboxArg :: CoreExpr -- The supplied argument, not levity-polymorphic -> DsM (CoreExpr, -- To pass as the actual argument CoreExpr -> CoreExpr -- Wrapper to unbox the arg ) -- Example: if the arg is e::Int, unboxArg will return -- (x#::Int#, \W. case x of I# x# -> W) -- where W is a CoreExpr that probably mentions x# -- always returns a non-levity-polymorphic expression unboxArg arg -- Primitive types: nothing to unbox | isPrimitiveType arg_ty = return (arg, \body -> body) -- Recursive newtypes | Just(co, _rep_ty) <- topNormaliseNewType_maybe arg_ty = unboxArg (mkCastDs arg co) -- Booleans | Just tc <- tyConAppTyCon_maybe arg_ty, tc `hasKey` boolTyConKey = do dflags <- getDynFlags let platform = targetPlatform dflags prim_arg <- newSysLocalDs Many intPrimTy return (Var prim_arg, \ body -> Case (mkIfThenElse arg (mkIntLit platform 1) (mkIntLit platform 0)) prim_arg (exprType body) [Alt DEFAULT [] body]) -- Data types with a single constructor, which has a single, primitive-typed arg -- This deals with Int, Float etc; also Ptr, ForeignPtr | is_product_type && data_con_arity == 1 = ASSERT2(isUnliftedType data_con_arg_ty1, pprType arg_ty) -- Typechecker ensures this do case_bndr <- newSysLocalDs Many arg_ty prim_arg <- newSysLocalDs Many data_con_arg_ty1 return (Var prim_arg, \ body -> Case arg case_bndr (exprType body) [Alt (DataAlt data_con) [prim_arg] body] ) -- Byte-arrays, both mutable and otherwise; hack warning -- We're looking for values of type ByteArray, MutableByteArray -- data ByteArray ix = ByteArray ix ix ByteArray# -- data MutableByteArray s ix = MutableByteArray ix ix (MutableByteArray# s) | is_product_type && data_con_arity == 3 && isJust maybe_arg3_tycon && (arg3_tycon == byteArrayPrimTyCon || arg3_tycon == mutableByteArrayPrimTyCon) = do case_bndr <- newSysLocalDs Many arg_ty vars@[_l_var, _r_var, arr_cts_var] <- newSysLocalsDs (map unrestricted data_con_arg_tys) return (Var arr_cts_var, \ body -> Case arg case_bndr (exprType body) [Alt (DataAlt data_con) vars body] ) | otherwise = do l <- getSrcSpanDs pprPanic "unboxArg: " (ppr l <+> ppr arg_ty) where arg_ty = exprType arg maybe_product_type = splitDataProductType_maybe arg_ty is_product_type = isJust maybe_product_type Just (_, _, data_con, scaled_data_con_arg_tys) = maybe_product_type data_con_arg_tys = map scaledThing scaled_data_con_arg_tys data_con_arity = dataConSourceArity data_con (data_con_arg_ty1 : _) = data_con_arg_tys (_ : _ : data_con_arg_ty3 : _) = data_con_arg_tys maybe_arg3_tycon = tyConAppTyCon_maybe data_con_arg_ty3 Just arg3_tycon = maybe_arg3_tycon boxResult :: Type -> DsM (Type, CoreExpr -> CoreExpr) -- Takes the result of the user-level ccall: -- either (IO t), -- or maybe just t for a side-effect-free call -- Returns a wrapper for the primitive ccall itself, along with the -- type of the result of the primitive ccall. This result type -- will be of the form -- State# RealWorld -> (# State# RealWorld, t' #) -- where t' is the unwrapped form of t. If t is simply (), then -- the result type will be -- State# RealWorld -> (# State# RealWorld #) boxResult result_ty | Just (io_tycon, io_res_ty) <- tcSplitIOType_maybe result_ty -- isIOType_maybe handles the case where the type is a -- simple wrapping of IO. E.g. -- newtype Wrap a = W (IO a) -- No coercion necessary because its a non-recursive newtype -- (If we wanted to handle a *recursive* newtype too, we'd need -- another case, and a coercion.) -- The result is IO t, so wrap the result in an IO constructor = do { res <- resultWrapper io_res_ty ; let extra_result_tys = case res of (Just ty,_) | isUnboxedTupleType ty -> let Just ls = tyConAppArgs_maybe ty in tail ls _ -> [] return_result state anss = mkCoreUbxTup (realWorldStatePrimTy : io_res_ty : extra_result_tys) (state : anss) ; (ccall_res_ty, the_alt) <- mk_alt return_result res ; state_id <- newSysLocalDs Many realWorldStatePrimTy ; let io_data_con = head (tyConDataCons io_tycon) toIOCon = dataConWrapId io_data_con wrap the_call = mkApps (Var toIOCon) [ Type io_res_ty, Lam state_id $ mkWildCase (App the_call (Var state_id)) (unrestricted ccall_res_ty) (coreAltType the_alt) [the_alt] ] ; return (realWorldStatePrimTy `mkVisFunTyMany` ccall_res_ty, wrap) } boxResult result_ty = do -- It isn't IO, so do unsafePerformIO -- It's not conveniently available, so we inline it res <- resultWrapper result_ty (ccall_res_ty, the_alt) <- mk_alt return_result res let wrap = \ the_call -> mkWildCase (App the_call (Var realWorldPrimId)) (unrestricted ccall_res_ty) (coreAltType the_alt) [the_alt] return (realWorldStatePrimTy `mkVisFunTyMany` ccall_res_ty, wrap) where return_result _ [ans] = ans return_result _ _ = panic "return_result: expected single result" mk_alt :: (Expr Var -> [Expr Var] -> Expr Var) -> (Maybe Type, Expr Var -> Expr Var) -> DsM (Type, CoreAlt) mk_alt return_result (Nothing, wrap_result) = do -- The ccall returns () state_id <- newSysLocalDs Many realWorldStatePrimTy let the_rhs = return_result (Var state_id) [wrap_result (panic "boxResult")] ccall_res_ty = mkTupleTy Unboxed [realWorldStatePrimTy] the_alt = Alt (DataAlt (tupleDataCon Unboxed 1)) [state_id] the_rhs return (ccall_res_ty, the_alt) mk_alt return_result (Just prim_res_ty, wrap_result) = -- The ccall returns a non-() value ASSERT2( isPrimitiveType prim_res_ty, ppr prim_res_ty ) -- True because resultWrapper ensures it is so do { result_id <- newSysLocalDs Many prim_res_ty ; state_id <- newSysLocalDs Many realWorldStatePrimTy ; let the_rhs = return_result (Var state_id) [wrap_result (Var result_id)] ccall_res_ty = mkTupleTy Unboxed [realWorldStatePrimTy, prim_res_ty] the_alt = Alt (DataAlt (tupleDataCon Unboxed 2)) [state_id, result_id] the_rhs ; return (ccall_res_ty, the_alt) } resultWrapper :: Type -> DsM (Maybe Type, -- Type of the expected result, if any CoreExpr -> CoreExpr) -- Wrapper for the result -- resultWrapper deals with the result *value* -- E.g. foreign import foo :: Int -> IO T -- Then resultWrapper deals with marshalling the 'T' part -- So if resultWrapper ty = (Just ty_rep, marshal) -- then marshal (e :: ty_rep) :: ty -- That is, 'marshal' wrape the result returned by the foreign call, -- of type ty_rep, into the value Haskell expected, of type 'ty' -- -- Invariant: ty_rep is always a primitive type -- i.e. (isPrimitiveType ty_rep) is True resultWrapper result_ty -- Base case 1: primitive types | isPrimitiveType result_ty = return (Just result_ty, \e -> e) -- Base case 2: the unit type () | Just (tc,_) <- maybe_tc_app , tc `hasKey` unitTyConKey = return (Nothing, \_ -> unitExpr) -- Base case 3: the boolean type | Just (tc,_) <- maybe_tc_app , tc `hasKey` boolTyConKey = do { dflags <- getDynFlags ; let platform = targetPlatform dflags ; let marshal_bool e = mkWildCase e (unrestricted intPrimTy) boolTy [ Alt DEFAULT [] (Var trueDataConId ) , Alt (LitAlt (mkLitInt platform 0)) [] (Var falseDataConId)] ; return (Just intPrimTy, marshal_bool) } -- Newtypes | Just (co, rep_ty) <- topNormaliseNewType_maybe result_ty = do { (maybe_ty, wrapper) <- resultWrapper rep_ty ; return (maybe_ty, \e -> mkCastDs (wrapper e) (mkSymCo co)) } -- The type might contain foralls (eg. for dummy type arguments, -- referring to 'Ptr a' is legal). | Just (tyvar, rest) <- splitForAllTyCoVar_maybe result_ty = do { (maybe_ty, wrapper) <- resultWrapper rest ; return (maybe_ty, \e -> Lam tyvar (wrapper e)) } -- Data types with a single constructor, which has a single arg -- This includes types like Ptr and ForeignPtr | Just (tycon, tycon_arg_tys) <- maybe_tc_app , Just data_con <- tyConSingleAlgDataCon_maybe tycon -- One constructor , null (dataConExTyCoVars data_con) -- no existentials , [Scaled _ unwrapped_res_ty] <- dataConInstOrigArgTys data_con tycon_arg_tys -- One argument = do { (maybe_ty, wrapper) <- resultWrapper unwrapped_res_ty ; let marshal_con e = Var (dataConWrapId data_con) `mkTyApps` tycon_arg_tys `App` wrapper e ; return (maybe_ty, marshal_con) } | otherwise = pprPanic "resultWrapper" (ppr result_ty) where maybe_tc_app = splitTyConApp_maybe result_ty