-- (c) The University of Glasgow, 1997-2006 {-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE UnliftedFFITypes #-} {-# OPTIONS_GHC -O2 -funbox-strict-fields #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- | -- There are two principal string types used internally by GHC: -- -- ['FastString'] -- -- * A compact, hash-consed, representation of character strings. -- * Generated by 'fsLit'. -- * You can get a 'GHC.Types.Unique.Unique' from them. -- * Equality test is O(1) (it uses the Unique). -- * Comparison is O(1) or O(n): -- * O(n) but deterministic with lexical comparison (`lexicalCompareFS`) -- * O(1) but non-deterministic with Unique comparison (`uniqCompareFS`) -- * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ftext'. -- -- ['PtrString'] -- -- * Pointer and size of a Latin-1 encoded string. -- * Practically no operations. -- * Outputting them is fast. -- * Generated by 'sLit'. -- * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ptext' -- * Requires manual memory management. -- Improper use may lead to memory leaks or dangling pointers. -- * It assumes Latin-1 as the encoding, therefore it cannot represent -- arbitrary Unicode strings. -- -- Use 'PtrString' unless you want the facilities of 'FastString'. module GHC.Data.FastString ( -- * ByteString bytesFS, fastStringToByteString, mkFastStringByteString, fastZStringToByteString, unsafeMkByteString, -- * ShortByteString fastStringToShortByteString, mkFastStringShortByteString, -- * FastZString FastZString, hPutFZS, zString, lengthFZS, -- * FastStrings FastString(..), -- not abstract, for now. NonDetFastString (..), LexicalFastString (..), -- ** Construction fsLit, mkFastString, mkFastStringBytes, mkFastStringByteList, mkFastString#, -- ** Deconstruction unpackFS, -- :: FastString -> String unconsFS, -- :: FastString -> Maybe (Char, FastString) -- ** Encoding zEncodeFS, -- ** Operations uniqueOfFS, lengthFS, nullFS, appendFS, headFS, concatFS, consFS, nilFS, isUnderscoreFS, lexicalCompareFS, uniqCompareFS, -- ** Outputting hPutFS, -- ** Internal getFastStringTable, getFastStringZEncCounter, -- * PtrStrings PtrString (..), -- ** Construction sLit, mkPtrString#, mkPtrString, -- ** Deconstruction unpackPtrString, -- ** Operations lengthPS ) where #include "HsVersions.h" import GHC.Prelude as Prelude import GHC.Utils.Encoding import GHC.Utils.IO.Unsafe import GHC.Utils.Panic.Plain import GHC.Utils.Misc import GHC.Data.FastMutInt import Control.Concurrent.MVar import Control.DeepSeq import Control.Monad import Data.ByteString (ByteString) import Data.ByteString.Short (ShortByteString) import qualified Data.ByteString as BS import qualified Data.ByteString.Char8 as BSC import qualified Data.ByteString.Unsafe as BS import qualified Data.ByteString.Short as SBS #if !MIN_VERSION_bytestring(0,11,0) import qualified Data.ByteString.Short.Internal as SBS #endif import Foreign.C import System.IO import Data.Data import Data.IORef import Data.Char import Data.Semigroup as Semi import Foreign #if GHC_STAGE >= 2 import GHC.Conc.Sync (sharedCAF) #endif #if __GLASGOW_HASKELL__ < 811 import GHC.Base (unpackCString#,unpackNBytes#) #endif import GHC.Exts import GHC.IO -- | Gives the Modified UTF-8 encoded bytes corresponding to a 'FastString' bytesFS, fastStringToByteString :: FastString -> ByteString bytesFS = fastStringToByteString {-# DEPRECATED fastStringToByteString "Use `bytesFS` instead" #-} fastStringToByteString f = SBS.fromShort $ fs_sbs f fastStringToShortByteString :: FastString -> ShortByteString fastStringToShortByteString = fs_sbs fastZStringToByteString :: FastZString -> ByteString fastZStringToByteString (FastZString bs) = bs -- This will drop information if any character > '\xFF' unsafeMkByteString :: String -> ByteString unsafeMkByteString = BSC.pack hashFastString :: FastString -> Int hashFastString fs = hashStr $ fs_sbs fs -- ----------------------------------------------------------------------------- newtype FastZString = FastZString ByteString deriving NFData hPutFZS :: Handle -> FastZString -> IO () hPutFZS handle (FastZString bs) = BS.hPut handle bs zString :: FastZString -> String zString (FastZString bs) = inlinePerformIO $ BS.unsafeUseAsCStringLen bs peekCAStringLen lengthFZS :: FastZString -> Int lengthFZS (FastZString bs) = BS.length bs mkFastZStringString :: String -> FastZString mkFastZStringString str = FastZString (BSC.pack str) -- ----------------------------------------------------------------------------- {-| A 'FastString' is a UTF-8 encoded string together with a unique ID. All 'FastString's are stored in a global hashtable to support fast O(1) comparison. It is also associated with a lazy reference to the Z-encoding of this string which is used by the compiler internally. -} data FastString = FastString { uniq :: {-# UNPACK #-} !Int, -- unique id n_chars :: {-# UNPACK #-} !Int, -- number of chars fs_sbs :: {-# UNPACK #-} !ShortByteString, fs_zenc :: FastZString -- ^ Lazily computed Z-encoding of this string. See Note [Z-Encoding] in -- GHC.Utils.Encoding. -- -- Since 'FastString's are globally memoized this is computed at most -- once for any given string. } instance Eq FastString where f1 == f2 = uniq f1 == uniq f2 -- We don't provide any "Ord FastString" instance to force you to think about -- which ordering you want: -- * lexical: deterministic, O(n). Cf lexicalCompareFS and LexicalFastString. -- * by unique: non-deterministic, O(1). Cf uniqCompareFS and NonDetFastString. instance IsString FastString where fromString = fsLit instance Semi.Semigroup FastString where (<>) = appendFS instance Monoid FastString where mempty = nilFS mappend = (Semi.<>) mconcat = concatFS instance Show FastString where show fs = show (unpackFS fs) instance Data FastString where -- don't traverse? toConstr _ = abstractConstr "FastString" gunfold _ _ = error "gunfold" dataTypeOf _ = mkNoRepType "FastString" instance NFData FastString where rnf fs = seq fs () -- | Compare FastString lexically -- -- If you don't care about the lexical ordering, use `uniqCompareFS` instead. lexicalCompareFS :: FastString -> FastString -> Ordering lexicalCompareFS fs1 fs2 = if uniq fs1 == uniq fs2 then EQ else utf8CompareShortByteString (fs_sbs fs1) (fs_sbs fs2) -- perform a lexical comparison taking into account the Modified UTF-8 -- encoding we use (cf #18562) -- | Compare FastString by their Unique (not lexically). -- -- Much cheaper than `lexicalCompareFS` but non-deterministic! uniqCompareFS :: FastString -> FastString -> Ordering uniqCompareFS fs1 fs2 = compare (uniq fs1) (uniq fs2) -- | Non-deterministic FastString -- -- This is a simple FastString wrapper with an Ord instance using -- `uniqCompareFS` (i.e. which compares FastStrings on their Uniques). Hence it -- is not deterministic from one run to the other. newtype NonDetFastString = NonDetFastString FastString deriving (Eq,Data) instance Ord NonDetFastString where compare (NonDetFastString fs1) (NonDetFastString fs2) = uniqCompareFS fs1 fs2 instance Show NonDetFastString where show (NonDetFastString fs) = show fs -- | Lexical FastString -- -- This is a simple FastString wrapper with an Ord instance using -- `lexicalCompareFS` (i.e. which compares FastStrings on their String -- representation). Hence it is deterministic from one run to the other. newtype LexicalFastString = LexicalFastString FastString deriving (Eq,Data) instance Ord LexicalFastString where compare (LexicalFastString fs1) (LexicalFastString fs2) = lexicalCompareFS fs1 fs2 instance Show LexicalFastString where show (LexicalFastString fs) = show fs -- ----------------------------------------------------------------------------- -- Construction {- Internally, the compiler will maintain a fast string symbol table, providing sharing and fast comparison. Creation of new @FastString@s then covertly does a lookup, re-using the @FastString@ if there was a hit. The design of the FastString hash table allows for lockless concurrent reads and updates to multiple buckets with low synchronization overhead. See Note [Updating the FastString table] on how it's updated. -} data FastStringTable = FastStringTable {-# UNPACK #-} !FastMutInt -- the unique ID counter shared with all buckets {-# UNPACK #-} !FastMutInt -- number of computed z-encodings for all buckets (Array# (IORef FastStringTableSegment)) -- concurrent segments data FastStringTableSegment = FastStringTableSegment {-# UNPACK #-} !(MVar ()) -- the lock for write in each segment {-# UNPACK #-} !FastMutInt -- the number of elements (MutableArray# RealWorld [FastString]) -- buckets in this segment {- Following parameters are determined based on: * Benchmark based on testsuite/tests/utils/should_run/T14854.hs * Stats of @echo :browse | ghc --interactive -dfaststring-stats >/dev/null@: on 2018-10-24, we have 13920 entries. -} segmentBits, numSegments, segmentMask, initialNumBuckets :: Int segmentBits = 8 numSegments = 256 -- bit segmentBits segmentMask = 0xff -- bit segmentBits - 1 initialNumBuckets = 64 hashToSegment# :: Int# -> Int# hashToSegment# hash# = hash# `andI#` segmentMask# where !(I# segmentMask#) = segmentMask hashToIndex# :: MutableArray# RealWorld [FastString] -> Int# -> Int# hashToIndex# buckets# hash# = (hash# `uncheckedIShiftRL#` segmentBits#) `remInt#` size# where !(I# segmentBits#) = segmentBits size# = sizeofMutableArray# buckets# maybeResizeSegment :: IORef FastStringTableSegment -> IO FastStringTableSegment maybeResizeSegment segmentRef = do segment@(FastStringTableSegment lock counter old#) <- readIORef segmentRef let oldSize# = sizeofMutableArray# old# newSize# = oldSize# *# 2# (I# n#) <- readFastMutInt counter if isTrue# (n# <# newSize#) -- maximum load of 1 then return segment else do resizedSegment@(FastStringTableSegment _ _ new#) <- IO $ \s1# -> case newArray# newSize# [] s1# of (# s2#, arr# #) -> (# s2#, FastStringTableSegment lock counter arr# #) forM_ [0 .. (I# oldSize#) - 1] $ \(I# i#) -> do fsList <- IO $ readArray# old# i# forM_ fsList $ \fs -> do let -- Shall we store in hash value in FastString instead? !(I# hash#) = hashFastString fs idx# = hashToIndex# new# hash# IO $ \s1# -> case readArray# new# idx# s1# of (# s2#, bucket #) -> case writeArray# new# idx# (fs: bucket) s2# of s3# -> (# s3#, () #) writeIORef segmentRef resizedSegment return resizedSegment {-# NOINLINE stringTable #-} stringTable :: FastStringTable stringTable = unsafePerformIO $ do let !(I# numSegments#) = numSegments !(I# initialNumBuckets#) = initialNumBuckets loop a# i# s1# | isTrue# (i# ==# numSegments#) = s1# | otherwise = case newMVar () `unIO` s1# of (# s2#, lock #) -> case newFastMutInt 0 `unIO` s2# of (# s3#, counter #) -> case newArray# initialNumBuckets# [] s3# of (# s4#, buckets# #) -> case newIORef (FastStringTableSegment lock counter buckets#) `unIO` s4# of (# s5#, segment #) -> case writeArray# a# i# segment s5# of s6# -> loop a# (i# +# 1#) s6# uid <- newFastMutInt 603979776 -- ord '$' * 0x01000000 n_zencs <- newFastMutInt 0 tab <- IO $ \s1# -> case newArray# numSegments# (panic "string_table") s1# of (# s2#, arr# #) -> case loop arr# 0# s2# of s3# -> case unsafeFreezeArray# arr# s3# of (# s4#, segments# #) -> (# s4#, FastStringTable uid n_zencs segments# #) -- use the support wired into the RTS to share this CAF among all images of -- libHSghc #if GHC_STAGE < 2 return tab #else sharedCAF tab getOrSetLibHSghcFastStringTable -- from the RTS; thus we cannot use this mechanism when GHC_STAGE<2; the previous -- RTS might not have this symbol foreign import ccall unsafe "getOrSetLibHSghcFastStringTable" getOrSetLibHSghcFastStringTable :: Ptr a -> IO (Ptr a) #endif {- We include the FastString table in the `sharedCAF` mechanism because we'd like FastStrings created by a Core plugin to have the same uniques as corresponding strings created by the host compiler itself. For example, this allows plugins to lookup known names (eg `mkTcOcc "MySpecialType"`) in the GlobalRdrEnv or even re-invoke the parser. In particular, the following little sanity test was failing in a plugin prototyping safe newtype-coercions: GHC.NT.Type.NT was imported, but could not be looked up /by the plugin/. let rdrName = mkModuleName "GHC.NT.Type" `mkRdrQual` mkTcOcc "NT" putMsgS $ showSDoc dflags $ ppr $ lookupGRE_RdrName rdrName $ mg_rdr_env guts `mkTcOcc` involves the lookup (or creation) of a FastString. Since the plugin's FastString.string_table is empty, constructing the RdrName also allocates new uniques for the FastStrings "GHC.NT.Type" and "NT". These uniques are almost certainly unequal to the ones that the host compiler originally assigned to those FastStrings. Thus the lookup fails since the domain of the GlobalRdrEnv is affected by the RdrName's OccName's FastString's unique. Maintaining synchronization of the two instances of this global is rather difficult because of the uses of `unsafePerformIO` in this module. Not synchronizing them risks breaking the rather major invariant that two FastStrings with the same unique have the same string. Thus we use the lower-level `sharedCAF` mechanism that relies on Globals.c. -} mkFastString# :: Addr# -> FastString {-# INLINE mkFastString# #-} mkFastString# a# = mkFastStringBytes ptr (ptrStrLength ptr) where ptr = Ptr a# {- Note [Updating the FastString table] We use a concurrent hashtable which contains multiple segments, each hash value always maps to the same segment. Read is lock-free, write to the a segment should acquire a lock for that segment to avoid race condition, writes to different segments are independent. The procedure goes like this: 1. Find out which segment to operate on based on the hash value 2. Read the relevant bucket and perform a look up of the string. 3. If it exists, return it. 4. Otherwise grab a unique ID, create a new FastString and atomically attempt to update the relevant segment with this FastString: * Resize the segment by doubling the number of buckets when the number of FastStrings in this segment grows beyond the threshold. * Double check that the string is not in the bucket. Another thread may have inserted it while we were creating our string. * Return the existing FastString if it exists. The one we preemptively created will get GCed. * Otherwise, insert and return the string we created. -} mkFastStringWith :: (Int -> FastMutInt-> IO FastString) -> ShortByteString -> IO FastString mkFastStringWith mk_fs sbs = do FastStringTableSegment lock _ buckets# <- readIORef segmentRef let idx# = hashToIndex# buckets# hash# bucket <- IO $ readArray# buckets# idx# res <- bucket_match bucket sbs case res of Just found -> return found Nothing -> do -- The withMVar below is not dupable. It can lead to deadlock if it is -- only run partially and putMVar is not called after takeMVar. noDuplicate n <- get_uid new_fs <- mk_fs n n_zencs withMVar lock $ \_ -> insert new_fs where !(FastStringTable uid n_zencs segments#) = stringTable get_uid = atomicFetchAddFastMut uid 1 !(I# hash#) = hashStr sbs (# segmentRef #) = indexArray# segments# (hashToSegment# hash#) insert fs = do FastStringTableSegment _ counter buckets# <- maybeResizeSegment segmentRef let idx# = hashToIndex# buckets# hash# bucket <- IO $ readArray# buckets# idx# res <- bucket_match bucket sbs case res of -- The FastString was added by another thread after previous read and -- before we acquired the write lock. Just found -> return found Nothing -> do IO $ \s1# -> case writeArray# buckets# idx# (fs : bucket) s1# of s2# -> (# s2#, () #) _ <- atomicFetchAddFastMut counter 1 return fs bucket_match :: [FastString] -> ShortByteString -> IO (Maybe FastString) bucket_match [] _ = return Nothing bucket_match (fs@(FastString {fs_sbs=fs_sbs}) : ls) sbs | fs_sbs == sbs = return (Just fs) | otherwise = bucket_match ls sbs mkFastStringBytes :: Ptr Word8 -> Int -> FastString mkFastStringBytes !ptr !len = -- NB: Might as well use unsafeDupablePerformIO, since mkFastStringWith is -- idempotent. unsafeDupablePerformIO $ do sbs <- newSBSFromPtr ptr len mkFastStringWith (mkNewFastStringShortByteString sbs) sbs newSBSFromPtr :: Ptr a -> Int -> IO ShortByteString newSBSFromPtr (Ptr src#) (I# len#) = IO $ \s -> case newByteArray# len# s of { (# s, dst# #) -> case copyAddrToByteArray# src# dst# 0# len# s of { s -> case unsafeFreezeByteArray# dst# s of { (# s, ba# #) -> (# s, SBS.SBS ba# #) }}} -- | Create a 'FastString' by copying an existing 'ByteString' mkFastStringByteString :: ByteString -> FastString mkFastStringByteString bs = let sbs = SBS.toShort bs in inlinePerformIO $ mkFastStringWith (mkNewFastStringShortByteString sbs) sbs -- | Create a 'FastString' from an existing 'ShortByteString' without -- copying. mkFastStringShortByteString :: ShortByteString -> FastString mkFastStringShortByteString sbs = inlinePerformIO $ mkFastStringWith (mkNewFastStringShortByteString sbs) sbs -- | Creates a UTF-8 encoded 'FastString' from a 'String' mkFastString :: String -> FastString mkFastString str = inlinePerformIO $ do sbs <- utf8EncodeShortByteString str mkFastStringWith (mkNewFastStringShortByteString sbs) sbs -- | Creates a 'FastString' from a UTF-8 encoded @[Word8]@ mkFastStringByteList :: [Word8] -> FastString mkFastStringByteList str = mkFastStringShortByteString (SBS.pack str) -- | Creates a (lazy) Z-encoded 'FastString' from a 'ShortByteString' and -- account the number of forced z-strings into the passed 'FastMutInt'. mkZFastString :: FastMutInt -> ShortByteString -> FastZString mkZFastString n_zencs sbs = unsafePerformIO $ do _ <- atomicFetchAddFastMut n_zencs 1 return $ mkFastZStringString (zEncodeString (utf8DecodeShortByteString sbs)) mkNewFastStringShortByteString :: ShortByteString -> Int -> FastMutInt -> IO FastString mkNewFastStringShortByteString sbs uid n_zencs = do let zstr = mkZFastString n_zencs sbs chars <- countUTF8Chars sbs return (FastString uid chars sbs zstr) hashStr :: ShortByteString -> Int -- produce a hash value between 0 & m (inclusive) hashStr sbs@(SBS.SBS ba#) = loop 0# 0# where !(I# len#) = SBS.length sbs loop h n = if isTrue# (n ==# len#) then I# h else let -- DO NOT move this let binding! indexCharOffAddr# reads from the -- pointer so we need to evaluate this based on the length check -- above. Not doing this right caused #17909. #if __GLASGOW_HASKELL__ >= 901 !c = int8ToInt# (indexInt8Array# ba# n) #else !c = indexInt8Array# ba# n #endif !h2 = (h *# 16777619#) `xorI#` c in loop h2 (n +# 1#) -- ----------------------------------------------------------------------------- -- Operations -- | Returns the length of the 'FastString' in characters lengthFS :: FastString -> Int lengthFS fs = n_chars fs -- | Returns @True@ if the 'FastString' is empty nullFS :: FastString -> Bool nullFS fs = SBS.null $ fs_sbs fs -- | Unpacks and decodes the FastString unpackFS :: FastString -> String unpackFS fs = utf8DecodeShortByteString $ fs_sbs fs -- | Returns a Z-encoded version of a 'FastString'. This might be the -- original, if it was already Z-encoded. The first time this -- function is applied to a particular 'FastString', the results are -- memoized. -- zEncodeFS :: FastString -> FastZString zEncodeFS fs = fs_zenc fs appendFS :: FastString -> FastString -> FastString appendFS fs1 fs2 = mkFastStringByteString $ BS.append (bytesFS fs1) (bytesFS fs2) concatFS :: [FastString] -> FastString concatFS = mkFastStringShortByteString . mconcat . map fs_sbs headFS :: FastString -> Char headFS fs | SBS.null $ fs_sbs fs = panic "headFS: Empty FastString" headFS fs = head $ unpackFS fs consFS :: Char -> FastString -> FastString consFS c fs = mkFastString (c : unpackFS fs) unconsFS :: FastString -> Maybe (Char, FastString) unconsFS fs = case unpackFS fs of [] -> Nothing (chr : str) -> Just (chr, mkFastString str) uniqueOfFS :: FastString -> Int uniqueOfFS fs = uniq fs nilFS :: FastString nilFS = mkFastString "" isUnderscoreFS :: FastString -> Bool isUnderscoreFS fs = fs == fsLit "_" -- ----------------------------------------------------------------------------- -- Stats getFastStringTable :: IO [[[FastString]]] getFastStringTable = forM [0 .. numSegments - 1] $ \(I# i#) -> do let (# segmentRef #) = indexArray# segments# i# FastStringTableSegment _ _ buckets# <- readIORef segmentRef let bucketSize = I# (sizeofMutableArray# buckets#) forM [0 .. bucketSize - 1] $ \(I# j#) -> IO $ readArray# buckets# j# where !(FastStringTable _ _ segments#) = stringTable getFastStringZEncCounter :: IO Int getFastStringZEncCounter = readFastMutInt n_zencs where !(FastStringTable _ n_zencs _) = stringTable -- ----------------------------------------------------------------------------- -- Outputting 'FastString's -- |Outputs a 'FastString' with /no decoding at all/, that is, you -- get the actual bytes in the 'FastString' written to the 'Handle'. hPutFS :: Handle -> FastString -> IO () hPutFS handle fs = BS.hPut handle $ bytesFS fs -- ToDo: we'll probably want an hPutFSLocal, or something, to output -- in the current locale's encoding (for error messages and suchlike). -- ----------------------------------------------------------------------------- -- PtrStrings, here for convenience only. -- | A 'PtrString' is a pointer to some array of Latin-1 encoded chars. data PtrString = PtrString !(Ptr Word8) !Int -- | Wrap an unboxed address into a 'PtrString'. mkPtrString# :: Addr# -> PtrString {-# INLINE mkPtrString# #-} mkPtrString# a# = PtrString (Ptr a#) (ptrStrLength (Ptr a#)) -- | Encode a 'String' into a newly allocated 'PtrString' using Latin-1 -- encoding. The original string must not contain non-Latin-1 characters -- (above codepoint @0xff@). {-# INLINE mkPtrString #-} mkPtrString :: String -> PtrString mkPtrString s = -- we don't use `unsafeDupablePerformIO` here to avoid potential memory leaks -- and because someone might be using `eqAddr#` to check for string equality. unsafePerformIO (do let len = length s p <- mallocBytes len let loop :: Int -> String -> IO () loop !_ [] = return () loop n (c:cs) = do pokeByteOff p n (fromIntegral (ord c) :: Word8) loop (1+n) cs loop 0 s return (PtrString p len) ) -- | Decode a 'PtrString' back into a 'String' using Latin-1 encoding. -- This does not free the memory associated with 'PtrString'. unpackPtrString :: PtrString -> String unpackPtrString (PtrString (Ptr p#) (I# n#)) = unpackNBytes# p# n# -- | Return the length of a 'PtrString' lengthPS :: PtrString -> Int lengthPS (PtrString _ n) = n -- ----------------------------------------------------------------------------- -- under the carpet #if !MIN_VERSION_GLASGOW_HASKELL(9,0,0,0) foreign import ccall unsafe "strlen" cstringLength# :: Addr# -> Int# #endif ptrStrLength :: Ptr Word8 -> Int {-# INLINE ptrStrLength #-} ptrStrLength (Ptr a) = I# (cstringLength# a) {-# NOINLINE sLit #-} sLit :: String -> PtrString sLit x = mkPtrString x {-# NOINLINE fsLit #-} fsLit :: String -> FastString fsLit x = mkFastString x {-# RULES "slit" forall x . sLit (unpackCString# x) = mkPtrString# x #-} {-# RULES "fslit" forall x . fsLit (unpackCString# x) = mkFastString# x #-}