-- (c) The University of Glasgow 2006 -- (c) The GRASP/AQUA Project, Glasgow University, 1998 -- -- Type - public interface {-# LANGUAGE CPP, FlexibleContexts, PatternSynonyms, ViewPatterns, MultiWayIf #-} {-# OPTIONS_GHC -fno-warn-orphans #-} {-# OPTIONS_GHC -Wno-incomplete-record-updates #-} -- | Main functions for manipulating types and type-related things module GHC.Core.Type ( -- Note some of this is just re-exports from TyCon.. -- * Main data types representing Types -- $type_classification -- $representation_types Type, ArgFlag(..), AnonArgFlag(..), Specificity(..), KindOrType, PredType, ThetaType, Var, TyVar, isTyVar, TyCoVar, TyCoBinder, TyCoVarBinder, TyVarBinder, Mult, Scaled, KnotTied, -- ** Constructing and deconstructing types mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, repGetTyVar_maybe, getCastedTyVar_maybe, tyVarKind, varType, mkAppTy, mkAppTys, splitAppTy, splitAppTys, repSplitAppTys, splitAppTy_maybe, repSplitAppTy_maybe, tcRepSplitAppTy_maybe, mkFunTy, mkVisFunTy, mkInvisFunTy, mkVisFunTys, mkVisFunTyMany, mkInvisFunTyMany, mkVisFunTysMany, mkInvisFunTysMany, splitFunTy, splitFunTy_maybe, splitFunTys, funResultTy, funArgTy, mkTyConApp, mkTyConTy, tYPE, tyConAppTyCon_maybe, tyConAppTyConPicky_maybe, tyConAppArgs_maybe, tyConAppTyCon, tyConAppArgs, splitTyConApp_maybe, splitTyConApp, tyConAppArgN, tcSplitTyConApp_maybe, splitListTyConApp_maybe, repSplitTyConApp_maybe, mkForAllTy, mkForAllTys, mkInvisForAllTys, mkTyCoInvForAllTys, mkSpecForAllTy, mkSpecForAllTys, mkVisForAllTys, mkTyCoInvForAllTy, mkInfForAllTy, mkInfForAllTys, splitForAllTyCoVars, splitForAllReqTVBinders, splitForAllInvisTVBinders, splitForAllTyCoVarBinders, splitForAllTyCoVar_maybe, splitForAllTyCoVar, splitForAllTyVar_maybe, splitForAllCoVar_maybe, splitPiTy_maybe, splitPiTy, splitPiTys, mkTyConBindersPreferAnon, mkPiTy, mkPiTys, piResultTy, piResultTys, applyTysX, dropForAlls, mkFamilyTyConApp, buildSynTyCon, mkNumLitTy, isNumLitTy, mkStrLitTy, isStrLitTy, mkCharLitTy, isCharLitTy, isLitTy, isPredTy, getRuntimeRep_maybe, kindRep_maybe, kindRep, mkCastTy, mkCoercionTy, splitCastTy_maybe, userTypeError_maybe, pprUserTypeErrorTy, coAxNthLHS, stripCoercionTy, splitInvisPiTys, splitInvisPiTysN, invisibleTyBndrCount, filterOutInvisibleTypes, filterOutInferredTypes, partitionInvisibleTypes, partitionInvisibles, tyConArgFlags, appTyArgFlags, -- ** Analyzing types TyCoMapper(..), mapTyCo, mapTyCoX, TyCoFolder(..), foldTyCo, -- (Newtypes) newTyConInstRhs, -- ** Binders sameVis, mkTyCoVarBinder, mkTyCoVarBinders, mkTyVarBinder, mkTyVarBinders, tyVarSpecToBinders, mkAnonBinder, isAnonTyCoBinder, binderVar, binderVars, binderType, binderArgFlag, tyCoBinderType, tyCoBinderVar_maybe, tyBinderType, binderRelevantType_maybe, isVisibleArgFlag, isInvisibleArgFlag, isVisibleBinder, isInvisibleBinder, isNamedBinder, tyConBindersTyCoBinders, -- ** Common type constructors funTyCon, unrestrictedFunTyCon, -- ** Predicates on types isTyVarTy, isFunTy, isCoercionTy, isCoercionTy_maybe, isForAllTy, isForAllTy_ty, isForAllTy_co, isPiTy, isTauTy, isFamFreeTy, isCoVarType, isAtomicTy, isValidJoinPointType, tyConAppNeedsKindSig, -- *** Levity and boxity isLiftedType_maybe, isLiftedTypeKind, isUnliftedTypeKind, isBoxedTypeKind, pickyIsLiftedTypeKind, isLiftedRuntimeRep, isUnliftedRuntimeRep, isBoxedRuntimeRep, isLiftedLevity, isUnliftedLevity, isUnliftedType, isBoxedType, mightBeUnliftedType, isUnboxedTupleType, isUnboxedSumType, isAlgType, isDataFamilyAppType, isPrimitiveType, isStrictType, isLevityTy, isLevityVar, isRuntimeRepTy, isRuntimeRepVar, isRuntimeRepKindedTy, dropRuntimeRepArgs, getRuntimeRep, -- * Multiplicity isMultiplicityTy, isMultiplicityVar, unrestricted, linear, tymult, mkScaled, irrelevantMult, scaledSet, pattern One, pattern Many, isOneDataConTy, isManyDataConTy, isLinearType, -- * Main data types representing Kinds Kind, -- ** Finding the kind of a type typeKind, tcTypeKind, isTypeLevPoly, resultIsLevPoly, tcIsLiftedTypeKind, tcIsConstraintKind, tcReturnsConstraintKind, tcIsBoxedTypeKind, tcIsRuntimeTypeKind, -- ** Common Kind liftedTypeKind, unliftedTypeKind, -- * Type free variables tyCoFVsOfType, tyCoFVsBndr, tyCoFVsVarBndr, tyCoFVsVarBndrs, tyCoVarsOfType, tyCoVarsOfTypes, tyCoVarsOfTypeDSet, coVarsOfType, coVarsOfTypes, anyFreeVarsOfType, anyFreeVarsOfTypes, noFreeVarsOfType, splitVisVarsOfType, splitVisVarsOfTypes, expandTypeSynonyms, typeSize, occCheckExpand, -- ** Closing over kinds closeOverKindsDSet, closeOverKindsList, closeOverKinds, -- * Well-scoped lists of variables scopedSort, tyCoVarsOfTypeWellScoped, tyCoVarsOfTypesWellScoped, -- * Type comparison eqType, eqTypeX, eqTypes, nonDetCmpType, nonDetCmpTypes, nonDetCmpTypeX, nonDetCmpTypesX, nonDetCmpTc, eqVarBndrs, -- * Forcing evaluation of types seqType, seqTypes, -- * Other views onto Types coreView, tcView, tyConsOfType, -- * Main type substitution data types TvSubstEnv, -- Representation widely visible TCvSubst(..), -- Representation visible to a few friends -- ** Manipulating type substitutions emptyTvSubstEnv, emptyTCvSubst, mkEmptyTCvSubst, mkTCvSubst, zipTvSubst, mkTvSubstPrs, zipTCvSubst, notElemTCvSubst, getTvSubstEnv, setTvSubstEnv, zapTCvSubst, getTCvInScope, getTCvSubstRangeFVs, extendTCvInScope, extendTCvInScopeList, extendTCvInScopeSet, extendTCvSubst, extendCvSubst, extendTvSubst, extendTvSubstBinderAndInScope, extendTvSubstList, extendTvSubstAndInScope, extendTCvSubstList, extendTvSubstWithClone, extendTCvSubstWithClone, isInScope, composeTCvSubstEnv, composeTCvSubst, zipTyEnv, zipCoEnv, isEmptyTCvSubst, unionTCvSubst, -- ** Performing substitution on types and kinds substTy, substTys, substScaledTy, substScaledTys, substTyWith, substTysWith, substTheta, substTyAddInScope, substTyUnchecked, substTysUnchecked, substScaledTyUnchecked, substScaledTysUnchecked, substThetaUnchecked, substTyWithUnchecked, substCoUnchecked, substCoWithUnchecked, substTyVarBndr, substTyVarBndrs, substTyVar, substTyVars, substVarBndr, substVarBndrs, substTyCoBndr, cloneTyVarBndr, cloneTyVarBndrs, lookupTyVar, -- * Tidying type related things up for printing tidyType, tidyTypes, tidyOpenType, tidyOpenTypes, tidyOpenKind, tidyVarBndr, tidyVarBndrs, tidyFreeTyCoVars, tidyOpenTyCoVar, tidyOpenTyCoVars, tidyTyCoVarOcc, tidyTopType, tidyKind, tidyTyCoVarBinder, tidyTyCoVarBinders, -- * Kinds isConstraintKindCon, classifiesTypeWithValues, isKindLevPoly ) where #include "HsVersions.h" import GHC.Prelude import GHC.Types.Basic -- We import the representation and primitive functions from GHC.Core.TyCo.Rep. -- Many things are reexported, but not the representation! import GHC.Core.TyCo.Rep import GHC.Core.TyCo.Subst import GHC.Core.TyCo.Tidy import GHC.Core.TyCo.FVs -- friends: import GHC.Types.Var import GHC.Types.Var.Env import GHC.Types.Var.Set import GHC.Types.Unique.Set import GHC.Core.TyCon import GHC.Builtin.Types.Prim import {-# SOURCE #-} GHC.Builtin.Types ( charTy, naturalTy, listTyCon , typeSymbolKind, liftedTypeKind, unliftedTypeKind , liftedRepTyCon, unliftedRepTyCon , constraintKind , unrestrictedFunTyCon , manyDataConTy, oneDataConTy ) import GHC.Types.Name( Name ) import GHC.Builtin.Names import GHC.Core.Coercion.Axiom import {-# SOURCE #-} GHC.Core.Coercion ( mkNomReflCo, mkGReflCo, mkReflCo , mkTyConAppCo, mkAppCo, mkCoVarCo, mkAxiomRuleCo , mkForAllCo, mkFunCo, mkAxiomInstCo, mkUnivCo , mkSymCo, mkTransCo, mkNthCo, mkLRCo, mkInstCo , mkKindCo, mkSubCo , decomposePiCos, coercionKind, coercionLKind , coercionRKind, coercionType , isReflexiveCo, seqCo ) -- others import GHC.Utils.Misc import GHC.Utils.FV import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Data.FastString import GHC.Data.Pair import GHC.Data.List.SetOps import GHC.Types.Unique ( nonDetCmpUnique ) import GHC.Data.Maybe ( orElse, expectJust ) import Data.Maybe ( isJust ) import Control.Monad ( guard ) -- $type_classification -- #type_classification# -- -- Types are any, but at least one, of: -- -- [Boxed] Iff its representation is a pointer to an object on the -- GC'd heap. Operationally, heap objects can be entered as -- a means of evaluation. -- -- [Lifted] Iff it has bottom as an element: An instance of a -- lifted type might diverge when evaluated. -- GHC Haskell's unboxed types are unlifted. -- An unboxed, but lifted type is not very useful. -- (Example: A byte-represented type, where evaluating 0xff -- computes the 12345678th collatz number modulo 0xff.) -- Only lifted types may be unified with a type variable. -- -- [Algebraic] Iff it is a type with one or more constructors, whether -- declared with @data@ or @newtype@. -- An algebraic type is one that can be deconstructed -- with a case expression. There are algebraic types that -- are not lifted types, like unlifted data types or -- unboxed tuples. -- -- [Data] Iff it is a type declared with @data@, or a boxed tuple. -- There are also /unlifted/ data types. -- -- [Primitive] Iff it is a built-in type that can't be expressed in Haskell. -- -- Currently, all primitive types are unlifted, but that's not necessarily -- the case: for example, @Int@ could be primitive. -- -- Some primitive types are unboxed, such as @Int#@, whereas some are boxed -- but unlifted (such as @ByteArray#@). The only primitive types that we -- classify as algebraic are the unboxed tuples. -- -- Some examples of type classifications that may make this a bit clearer are: -- -- @ -- Type primitive boxed lifted algebraic -- ----------------------------------------------------------------------------- -- Int# Yes No No No -- ByteArray# Yes Yes No No -- (\# a, b \#) Yes No No Yes -- (\# a | b \#) Yes No No Yes -- ( a, b ) No Yes Yes Yes -- [a] No Yes Yes Yes -- @ -- $representation_types -- A /source type/ is a type that is a separate type as far as the type checker is -- concerned, but which has a more low-level representation as far as Core-to-Core -- passes and the rest of the back end is concerned. -- -- You don't normally have to worry about this, as the utility functions in -- this module will automatically convert a source into a representation type -- if they are spotted, to the best of its abilities. If you don't want this -- to happen, use the equivalent functions from the "TcType" module. {- ************************************************************************ * * Type representation * * ************************************************************************ Note [coreView vs tcView] ~~~~~~~~~~~~~~~~~~~~~~~~~ So far as the typechecker is concerned, 'Constraint' and 'TYPE LiftedRep' are distinct kinds. But in Core these two are treated as identical. We implement this by making 'coreView' convert 'Constraint' to 'TYPE LiftedRep' on the fly. The function tcView (used in the type checker) does not do this. Accordingly, tcView is used in type-checker-oriented functions (including the pure unifier, used in instance resolution), while coreView is used during e.g. optimisation passes. See also #11715, which tracks removing this inconsistency. The inconsistency actually leads to a potential soundness bug, in that Constraint and Type are considered *apart* by the type family engine. To wit, we can write type family F a type instance F Type = Bool type instance F Constraint = Int and (because Type ~# Constraint in Core), thus build a coercion between Int and Bool. I (Richard E) conjecture that this never happens in practice, but it's very uncomfortable. This, essentially, is the root problem underneath #11715, which is quite resistant to an easy fix. The best idea is to have roles in kind coercions, but that has yet to be implemented. See also "A Role for Dependent Types in Haskell", ICFP 2019, which describes how roles in kinds might work out. -} -- | Gives the typechecker view of a type. This unwraps synonyms but -- leaves 'Constraint' alone. c.f. 'coreView', which turns 'Constraint' into -- 'Type'. Returns 'Nothing' if no unwrapping happens. -- See also Note [coreView vs tcView] tcView :: Type -> Maybe Type tcView (TyConApp tc tys) | res@(Just _) <- expandSynTyConApp_maybe tc tys = res tcView _ = Nothing -- See Note [Inlining coreView]. {-# INLINE tcView #-} coreView :: Type -> Maybe Type -- ^ This function strips off the /top layer only/ of a type synonym -- application (if any) its underlying representation type. -- Returns 'Nothing' if there is nothing to look through. -- This function considers 'Constraint' to be a synonym of @Type@. -- -- By being non-recursive and inlined, this case analysis gets efficiently -- joined onto the case analysis that the caller is already doing coreView ty@(TyConApp tc tys) | res@(Just _) <- expandSynTyConApp_maybe tc tys = res -- At the Core level, Constraint = Type -- See Note [coreView vs tcView] | isConstraintKindCon tc = ASSERT2( null tys, ppr ty ) Just liftedTypeKind coreView _ = Nothing -- See Note [Inlining coreView]. {-# INLINE coreView #-} ----------------------------------------------- -- | @expandSynTyConApp_maybe tc tys@ expands the RHS of type synonym @tc@ -- instantiated at arguments @tys@, or returns 'Nothing' if @tc@ is not a -- synonym. expandSynTyConApp_maybe :: TyCon -> [Type] -> Maybe Type expandSynTyConApp_maybe tc tys | Just (tvs, rhs) <- synTyConDefn_maybe tc , tys `lengthAtLeast` arity = Just (expand_syn arity tvs rhs tys) | otherwise = Nothing where arity = tyConArity tc -- Without this INLINE the call to expandSynTyConApp_maybe in coreView -- will result in an avoidable allocation. {-# INLINE expandSynTyConApp_maybe #-} -- | A helper for 'expandSynTyConApp_maybe' to avoid inlining this cold path -- into call-sites. expand_syn :: Int -- ^ the arity of the synonym -> [TyVar] -- ^ the variables bound by the synonym -> Type -- ^ the RHS of the synonym -> [Type] -- ^ the type arguments the synonym is instantiated at. -> Type expand_syn arity tvs rhs tys | tys `lengthExceeds` arity = mkAppTys rhs' (drop arity tys) | otherwise = rhs' where rhs' = substTy (mkTvSubstPrs (tvs `zip` tys)) rhs -- The free vars of 'rhs' should all be bound by 'tenv', so it's -- ok to use 'substTy' here (which is what expandSynTyConApp_maybe does). -- See also Note [The substitution invariant] in GHC.Core.TyCo.Subst. -- Its important to use mkAppTys, rather than (foldl AppTy), -- because the function part might well return a -- partially-applied type constructor; indeed, usually will! -- We never want to inline this cold-path. {-# INLINE expand_syn #-} coreFullView :: Type -> Type -- ^ Iterates 'coreView' until there is no more to synonym to expand. -- See Note [Inlining coreView]. coreFullView ty@(TyConApp tc _) | isTypeSynonymTyCon tc || isConstraintKindCon tc = go ty where go ty | Just ty' <- coreView ty = go ty' | otherwise = ty coreFullView ty = ty {-# INLINE coreFullView #-} {- Note [Inlining coreView] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is very common to have a function f :: Type -> ... f ty | Just ty' <- coreView ty = f ty' f (TyVarTy ...) = ... f ... = ... If f is not otherwise recursive, the initial call to coreView causes f to become recursive, which kills the possibility of inlining. Instead, for non-recursive functions, we prefer to use coreFullView, which guarantees to unwrap top-level type synonyms. It can be inlined and is efficient and non-allocating in its fast path. For this to really be fast, all calls made on its fast path must also be inlined, linked back to this Note. -} ----------------------------------------------- expandTypeSynonyms :: Type -> Type -- ^ Expand out all type synonyms. Actually, it'd suffice to expand out -- just the ones that discard type variables (e.g. type Funny a = Int) -- But we don't know which those are currently, so we just expand all. -- -- 'expandTypeSynonyms' only expands out type synonyms mentioned in the type, -- not in the kinds of any TyCon or TyVar mentioned in the type. -- -- Keep this synchronized with 'synonymTyConsOfType' expandTypeSynonyms ty = go (mkEmptyTCvSubst in_scope) ty where in_scope = mkInScopeSet (tyCoVarsOfType ty) go subst (TyConApp tc tys) | Just (tenv, rhs, tys') <- expandSynTyCon_maybe tc expanded_tys = let subst' = mkTvSubst in_scope (mkVarEnv tenv) -- Make a fresh substitution; rhs has nothing to -- do with anything that has happened so far -- NB: if you make changes here, be sure to build an -- /idempotent/ substitution, even in the nested case -- type T a b = a -> b -- type S x y = T y x -- (#11665) in mkAppTys (go subst' rhs) tys' | otherwise = TyConApp tc expanded_tys where expanded_tys = (map (go subst) tys) go _ (LitTy l) = LitTy l go subst (TyVarTy tv) = substTyVar subst tv go subst (AppTy t1 t2) = mkAppTy (go subst t1) (go subst t2) go subst ty@(FunTy _ mult arg res) = ty { ft_mult = go subst mult, ft_arg = go subst arg, ft_res = go subst res } go subst (ForAllTy (Bndr tv vis) t) = let (subst', tv') = substVarBndrUsing go subst tv in ForAllTy (Bndr tv' vis) (go subst' t) go subst (CastTy ty co) = mkCastTy (go subst ty) (go_co subst co) go subst (CoercionTy co) = mkCoercionTy (go_co subst co) go_mco _ MRefl = MRefl go_mco subst (MCo co) = MCo (go_co subst co) go_co subst (Refl ty) = mkNomReflCo (go subst ty) go_co subst (GRefl r ty mco) = mkGReflCo r (go subst ty) (go_mco subst mco) -- NB: coercions are always expanded upon creation go_co subst (TyConAppCo r tc args) = mkTyConAppCo r tc (map (go_co subst) args) go_co subst (AppCo co arg) = mkAppCo (go_co subst co) (go_co subst arg) go_co subst (ForAllCo tv kind_co co) = let (subst', tv', kind_co') = go_cobndr subst tv kind_co in mkForAllCo tv' kind_co' (go_co subst' co) go_co subst (FunCo r w co1 co2) = mkFunCo r (go_co subst w) (go_co subst co1) (go_co subst co2) go_co subst (CoVarCo cv) = substCoVar subst cv go_co subst (AxiomInstCo ax ind args) = mkAxiomInstCo ax ind (map (go_co subst) args) go_co subst (UnivCo p r t1 t2) = mkUnivCo (go_prov subst p) r (go subst t1) (go subst t2) go_co subst (SymCo co) = mkSymCo (go_co subst co) go_co subst (TransCo co1 co2) = mkTransCo (go_co subst co1) (go_co subst co2) go_co subst (NthCo r n co) = mkNthCo r n (go_co subst co) go_co subst (LRCo lr co) = mkLRCo lr (go_co subst co) go_co subst (InstCo co arg) = mkInstCo (go_co subst co) (go_co subst arg) go_co subst (KindCo co) = mkKindCo (go_co subst co) go_co subst (SubCo co) = mkSubCo (go_co subst co) go_co subst (AxiomRuleCo ax cs) = AxiomRuleCo ax (map (go_co subst) cs) go_co _ (HoleCo h) = pprPanic "expandTypeSynonyms hit a hole" (ppr h) go_prov subst (PhantomProv co) = PhantomProv (go_co subst co) go_prov subst (ProofIrrelProv co) = ProofIrrelProv (go_co subst co) go_prov _ p@(PluginProv _) = p go_prov _ p@CorePrepProv = p -- the "False" and "const" are to accommodate the type of -- substForAllCoBndrUsing, which is general enough to -- handle coercion optimization (which sometimes swaps the -- order of a coercion) go_cobndr subst = substForAllCoBndrUsing False (go_co subst) subst -- | An INLINE helper for function such as 'kindRep_maybe' below. -- -- @isTyConKeyApp_maybe key ty@ returns @Just tys@ iff -- the type @ty = T tys@, where T's unique = key isTyConKeyApp_maybe :: Unique -> Type -> Maybe [Type] isTyConKeyApp_maybe key ty | TyConApp tc args <- coreFullView ty , tc `hasKey` key = Just args | otherwise = Nothing {-# INLINE isTyConKeyApp_maybe #-} -- | Extract the RuntimeRep classifier of a type from its kind. For example, -- @kindRep * = LiftedRep@; Panics if this is not possible. -- Treats * and Constraint as the same kindRep :: HasDebugCallStack => Kind -> Type kindRep k = case kindRep_maybe k of Just r -> r Nothing -> pprPanic "kindRep" (ppr k) -- | Given a kind (TYPE rr), extract its RuntimeRep classifier rr. -- For example, @kindRep_maybe * = Just LiftedRep@ -- Returns 'Nothing' if the kind is not of form (TYPE rr) -- Treats * and Constraint as the same kindRep_maybe :: HasDebugCallStack => Kind -> Maybe Type kindRep_maybe kind | Just [arg] <- isTyConKeyApp_maybe tYPETyConKey kind = Just arg | otherwise = Nothing -- | Returns True if the kind classifies types which are allocated on -- the GC'd heap and False otherwise. Note that this returns False for -- levity-polymorphic kinds, which may be specialized to a kind that -- classifies AddrRep or even unboxed kinds. isBoxedTypeKind :: Kind -> Bool isBoxedTypeKind kind = case kindRep_maybe kind of Just rep -> isBoxedRuntimeRep rep Nothing -> False -- | This version considers Constraint to be the same as *. Returns True -- if the argument is equivalent to Type/Constraint and False otherwise. -- See Note [Kind Constraint and kind Type] isLiftedTypeKind :: Kind -> Bool isLiftedTypeKind kind = case kindRep_maybe kind of Just rep -> isLiftedRuntimeRep rep Nothing -> False pickyIsLiftedTypeKind :: Kind -> Bool -- Checks whether the kind is literally -- TYPE LiftedRep -- or TYPE ('BoxedRep 'Lifted) -- or Type -- without expanding type synonyms or anything -- Used only when deciding whether to suppress the ":: *" in -- (a :: *) when printing kinded type variables -- See Note [Suppressing * kinds] in GHC.Core.TyCo.Ppr pickyIsLiftedTypeKind kind | TyConApp tc [arg] <- kind , tc `hasKey` tYPETyConKey , TyConApp rr_tc rr_args <- arg = case rr_args of [] -> rr_tc `hasKey` liftedRepTyConKey [rr_arg] | rr_tc `hasKey` boxedRepDataConKey , TyConApp lev [] <- rr_arg , lev `hasKey` liftedDataConKey -> True _ -> False | TyConApp tc [] <- kind , tc `hasKey` liftedTypeKindTyConKey = True | otherwise = False -- | Returns True if the kind classifies unlifted types (like 'Int#') and False -- otherwise. Note that this returns False for levity-polymorphic kinds, which -- may be specialized to a kind that classifies unlifted types. isUnliftedTypeKind :: Kind -> Bool isUnliftedTypeKind kind = case kindRep_maybe kind of Just rep -> isUnliftedRuntimeRep rep Nothing -> False -- | See 'isBoxedRuntimeRep_maybe'. isBoxedRuntimeRep :: Type -> Bool isBoxedRuntimeRep rep = isJust (isBoxedRuntimeRep_maybe rep) -- | `isBoxedRuntimeRep_maybe (rep :: RuntimeRep)` returns `Just lev` if `rep` -- expands to `Boxed lev` and returns `Nothing` otherwise. -- -- Types with this runtime rep are represented by pointers on the GC'd heap. isBoxedRuntimeRep_maybe :: Type -> Maybe Type isBoxedRuntimeRep_maybe rep | Just [lev] <- isTyConKeyApp_maybe boxedRepDataConKey rep = Just lev | otherwise = Nothing isLiftedRuntimeRep :: Type -> Bool -- isLiftedRuntimeRep is true of LiftedRep :: RuntimeRep -- False of type variables (a :: RuntimeRep) -- and of other reps e.g. (IntRep :: RuntimeRep) isLiftedRuntimeRep rep | Just [lev] <- isTyConKeyApp_maybe boxedRepDataConKey rep = isLiftedLevity lev | otherwise = False isUnliftedRuntimeRep :: Type -> Bool -- PRECONDITION: The type has kind RuntimeRep -- True of definitely-unlifted RuntimeReps -- False of (LiftedRep :: RuntimeRep) -- and of variables (a :: RuntimeRep) isUnliftedRuntimeRep rep | TyConApp rr_tc args <- coreFullView rep -- NB: args might be non-empty -- e.g. TupleRep [r1, .., rn] , isPromotedDataCon rr_tc = -- NB: args might be non-empty e.g. TupleRep [r1, .., rn] if (rr_tc `hasKey` boxedRepDataConKey) then case args of [lev] -> isUnliftedLevity lev _ -> False else True -- Avoid searching all the unlifted RuntimeRep type cons -- In the RuntimeRep data type, only LiftedRep is lifted -- But be careful of type families (F tys) :: RuntimeRep, -- hence the isPromotedDataCon rr_tc isUnliftedRuntimeRep _ = False -- | An INLINE helper for function such as 'isLiftedRuntimeRep' below. isNullaryTyConKeyApp :: Unique -> Type -> Bool isNullaryTyConKeyApp key ty | Just args <- isTyConKeyApp_maybe key ty = ASSERT( null args ) True | otherwise = False {-# INLINE isNullaryTyConKeyApp #-} isLiftedLevity :: Type -> Bool isLiftedLevity = isNullaryTyConKeyApp liftedDataConKey isUnliftedLevity :: Type -> Bool isUnliftedLevity = isNullaryTyConKeyApp unliftedDataConKey -- | Is this the type 'Levity'? isLevityTy :: Type -> Bool isLevityTy = isNullaryTyConKeyApp levityTyConKey -- | Is this the type 'RuntimeRep'? isRuntimeRepTy :: Type -> Bool isRuntimeRepTy = isNullaryTyConKeyApp runtimeRepTyConKey -- | Is a tyvar of type 'RuntimeRep'? isRuntimeRepVar :: TyVar -> Bool isRuntimeRepVar = isRuntimeRepTy . tyVarKind -- | Is a tyvar of type 'Levity'? isLevityVar :: TyVar -> Bool isLevityVar = isLevityTy . tyVarKind -- | Is this the type 'Multiplicity'? isMultiplicityTy :: Type -> Bool isMultiplicityTy = isNullaryTyConKeyApp multiplicityTyConKey -- | Is a tyvar of type 'Multiplicity'? isMultiplicityVar :: TyVar -> Bool isMultiplicityVar = isMultiplicityTy . tyVarKind {- ********************************************************************* * * mapType * * ************************************************************************ These functions do a map-like operation over types, performing some operation on all variables and binding sites. Primarily used for zonking. Note [Efficiency for ForAllCo case of mapTyCoX] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As noted in Note [Forall coercions] in GHC.Core.TyCo.Rep, a ForAllCo is a bit redundant. It stores a TyCoVar and a Coercion, where the kind of the TyCoVar always matches the left-hand kind of the coercion. This is convenient lots of the time, but not when mapping a function over a coercion. The problem is that tcm_tybinder will affect the TyCoVar's kind and mapCoercion will affect the Coercion, and we hope that the results will be the same. Even if they are the same (which should generally happen with correct algorithms), then there is an efficiency issue. In particular, this problem seems to make what should be a linear algorithm into a potentially exponential one. But it's only going to be bad in the case where there's lots of foralls in the kinds of other foralls. Like this: forall a : (forall b : (forall c : ...). ...). ... This construction seems unlikely. So we'll do the inefficient, easy way for now. Note [Specialising mappers] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ These INLINE pragmas are indispensable. mapTyCo and mapTyCoX are used to implement zonking, and it's vital that they get specialised to the TcM monad and the particular mapper in use. Even specialising to the monad alone made a 20% allocation difference in perf/compiler/T5030. See Note [Specialising foldType] in "GHC.Core.TyCo.Rep" for more details of this idiom. -} -- | This describes how a "map" operation over a type/coercion should behave data TyCoMapper env m = TyCoMapper { tcm_tyvar :: env -> TyVar -> m Type , tcm_covar :: env -> CoVar -> m Coercion , tcm_hole :: env -> CoercionHole -> m Coercion -- ^ What to do with coercion holes. -- See Note [Coercion holes] in "GHC.Core.TyCo.Rep". , tcm_tycobinder :: env -> TyCoVar -> ArgFlag -> m (env, TyCoVar) -- ^ The returned env is used in the extended scope , tcm_tycon :: TyCon -> m TyCon -- ^ This is used only for TcTyCons -- a) To zonk TcTyCons -- b) To turn TcTyCons into TyCons. -- See Note [Type checking recursive type and class declarations] -- in "GHC.Tc.TyCl" } {-# INLINE mapTyCo #-} -- See Note [Specialising mappers] mapTyCo :: Monad m => TyCoMapper () m -> ( Type -> m Type , [Type] -> m [Type] , Coercion -> m Coercion , [Coercion] -> m[Coercion]) mapTyCo mapper = case mapTyCoX mapper of (go_ty, go_tys, go_co, go_cos) -> (go_ty (), go_tys (), go_co (), go_cos ()) {-# INLINE mapTyCoX #-} -- See Note [Specialising mappers] mapTyCoX :: Monad m => TyCoMapper env m -> ( env -> Type -> m Type , env -> [Type] -> m [Type] , env -> Coercion -> m Coercion , env -> [Coercion] -> m[Coercion]) mapTyCoX (TyCoMapper { tcm_tyvar = tyvar , tcm_tycobinder = tycobinder , tcm_tycon = tycon , tcm_covar = covar , tcm_hole = cohole }) = (go_ty, go_tys, go_co, go_cos) where go_tys _ [] = return [] go_tys env (ty:tys) = (:) <$> go_ty env ty <*> go_tys env tys go_ty env (TyVarTy tv) = tyvar env tv go_ty env (AppTy t1 t2) = mkAppTy <$> go_ty env t1 <*> go_ty env t2 go_ty _ ty@(LitTy {}) = return ty go_ty env (CastTy ty co) = mkCastTy <$> go_ty env ty <*> go_co env co go_ty env (CoercionTy co) = CoercionTy <$> go_co env co go_ty env ty@(FunTy _ w arg res) = do { w' <- go_ty env w; arg' <- go_ty env arg; res' <- go_ty env res ; return (ty { ft_mult = w', ft_arg = arg', ft_res = res' }) } go_ty env ty@(TyConApp tc tys) | isTcTyCon tc = do { tc' <- tycon tc ; mkTyConApp tc' <$> go_tys env tys } -- Not a TcTyCon | null tys -- Avoid allocation in this very = return ty -- common case (E.g. Int, LiftedRep etc) | otherwise = mkTyConApp tc <$> go_tys env tys go_ty env (ForAllTy (Bndr tv vis) inner) = do { (env', tv') <- tycobinder env tv vis ; inner' <- go_ty env' inner ; return $ ForAllTy (Bndr tv' vis) inner' } go_cos _ [] = return [] go_cos env (co:cos) = (:) <$> go_co env co <*> go_cos env cos go_mco _ MRefl = return MRefl go_mco env (MCo co) = MCo <$> (go_co env co) go_co env (Refl ty) = Refl <$> go_ty env ty go_co env (GRefl r ty mco) = mkGReflCo r <$> go_ty env ty <*> go_mco env mco go_co env (AppCo c1 c2) = mkAppCo <$> go_co env c1 <*> go_co env c2 go_co env (FunCo r cw c1 c2) = mkFunCo r <$> go_co env cw <*> go_co env c1 <*> go_co env c2 go_co env (CoVarCo cv) = covar env cv go_co env (HoleCo hole) = cohole env hole go_co env (UnivCo p r t1 t2) = mkUnivCo <$> go_prov env p <*> pure r <*> go_ty env t1 <*> go_ty env t2 go_co env (SymCo co) = mkSymCo <$> go_co env co go_co env (TransCo c1 c2) = mkTransCo <$> go_co env c1 <*> go_co env c2 go_co env (AxiomRuleCo r cos) = AxiomRuleCo r <$> go_cos env cos go_co env (NthCo r i co) = mkNthCo r i <$> go_co env co go_co env (LRCo lr co) = mkLRCo lr <$> go_co env co go_co env (InstCo co arg) = mkInstCo <$> go_co env co <*> go_co env arg go_co env (KindCo co) = mkKindCo <$> go_co env co go_co env (SubCo co) = mkSubCo <$> go_co env co go_co env (AxiomInstCo ax i cos) = mkAxiomInstCo ax i <$> go_cos env cos go_co env co@(TyConAppCo r tc cos) | isTcTyCon tc = do { tc' <- tycon tc ; mkTyConAppCo r tc' <$> go_cos env cos } -- Not a TcTyCon | null cos -- Avoid allocation in this very = return co -- common case (E.g. Int, LiftedRep etc) | otherwise = mkTyConAppCo r tc <$> go_cos env cos go_co env (ForAllCo tv kind_co co) = do { kind_co' <- go_co env kind_co ; (env', tv') <- tycobinder env tv Inferred ; co' <- go_co env' co ; return $ mkForAllCo tv' kind_co' co' } -- See Note [Efficiency for ForAllCo case of mapTyCoX] go_prov env (PhantomProv co) = PhantomProv <$> go_co env co go_prov env (ProofIrrelProv co) = ProofIrrelProv <$> go_co env co go_prov _ p@(PluginProv _) = return p go_prov _ p@CorePrepProv = return p {- ************************************************************************ * * \subsection{Constructor-specific functions} * * ************************************************************************ --------------------------------------------------------------------- TyVarTy ~~~~~~~ -} -- | Attempts to obtain the type variable underlying a 'Type', and panics with the -- given message if this is not a type variable type. See also 'getTyVar_maybe' getTyVar :: String -> Type -> TyVar getTyVar msg ty = case getTyVar_maybe ty of Just tv -> tv Nothing -> panic ("getTyVar: " ++ msg) isTyVarTy :: Type -> Bool isTyVarTy ty = isJust (getTyVar_maybe ty) -- | Attempts to obtain the type variable underlying a 'Type' getTyVar_maybe :: Type -> Maybe TyVar getTyVar_maybe = repGetTyVar_maybe . coreFullView -- | If the type is a tyvar, possibly under a cast, returns it, along -- with the coercion. Thus, the co is :: kind tv ~N kind ty getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN) getCastedTyVar_maybe ty = case coreFullView ty of CastTy (TyVarTy tv) co -> Just (tv, co) TyVarTy tv -> Just (tv, mkReflCo Nominal (tyVarKind tv)) _ -> Nothing -- | Attempts to obtain the type variable underlying a 'Type', without -- any expansion repGetTyVar_maybe :: Type -> Maybe TyVar repGetTyVar_maybe (TyVarTy tv) = Just tv repGetTyVar_maybe _ = Nothing {- --------------------------------------------------------------------- AppTy ~~~~~ We need to be pretty careful with AppTy to make sure we obey the invariant that a TyConApp is always visibly so. mkAppTy maintains the invariant: use it. Note [Decomposing fat arrow c=>t] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Can we unify (a b) with (Eq a => ty)? If we do so, we end up with a partial application like ((=>) Eq a) which doesn't make sense in source Haskell. In contrast, we *can* unify (a b) with (t1 -> t2). Here's an example (#9858) of how you might do it: i :: (Typeable a, Typeable b) => Proxy (a b) -> TypeRep i p = typeRep p j = i (Proxy :: Proxy (Eq Int => Int)) The type (Proxy (Eq Int => Int)) is only accepted with -XImpredicativeTypes, but suppose we want that. But then in the call to 'i', we end up decomposing (Eq Int => Int), and we definitely don't want that. This really only applies to the type checker; in Core, '=>' and '->' are the same, as are 'Constraint' and '*'. But for now I've put the test in repSplitAppTy_maybe, which applies throughout, because the other calls to splitAppTy are in GHC.Core.Unify, which is also used by the type checker (e.g. when matching type-function equations). -} -- | Applies a type to another, as in e.g. @k a@ mkAppTy :: Type -> Type -> Type -- See Note [Respecting definitional equality], invariant (EQ1). mkAppTy (CastTy fun_ty co) arg_ty | ([arg_co], res_co) <- decomposePiCos co (coercionKind co) [arg_ty] = (fun_ty `mkAppTy` (arg_ty `mkCastTy` arg_co)) `mkCastTy` res_co mkAppTy (TyConApp tc tys) ty2 = mkTyConApp tc (tys ++ [ty2]) mkAppTy ty1 ty2 = AppTy ty1 ty2 -- Note that the TyConApp could be an -- under-saturated type synonym. GHC allows that; e.g. -- type Foo k = k a -> k a -- type Id x = x -- foo :: Foo Id -> Foo Id -- -- Here Id is partially applied in the type sig for Foo, -- but once the type synonyms are expanded all is well -- -- Moreover in GHC.Tc.Types.tcInferTyApps we build up a type -- (T t1 t2 t3) one argument at a type, thus forming -- (T t1), (T t1 t2), etc mkAppTys :: Type -> [Type] -> Type mkAppTys ty1 [] = ty1 mkAppTys (CastTy fun_ty co) arg_tys -- much more efficient then nested mkAppTy -- Why do this? See (EQ1) of -- Note [Respecting definitional equality] -- in GHC.Core.TyCo.Rep = foldl' AppTy ((mkAppTys fun_ty casted_arg_tys) `mkCastTy` res_co) leftovers where (arg_cos, res_co) = decomposePiCos co (coercionKind co) arg_tys (args_to_cast, leftovers) = splitAtList arg_cos arg_tys casted_arg_tys = zipWith mkCastTy args_to_cast arg_cos mkAppTys (TyConApp tc tys1) tys2 = mkTyConApp tc (tys1 ++ tys2) mkAppTys ty1 tys2 = foldl' AppTy ty1 tys2 ------------- splitAppTy_maybe :: Type -> Maybe (Type, Type) -- ^ Attempt to take a type application apart, whether it is a -- function, type constructor, or plain type application. Note -- that type family applications are NEVER unsaturated by this! splitAppTy_maybe = repSplitAppTy_maybe . coreFullView ------------- repSplitAppTy_maybe :: HasDebugCallStack => Type -> Maybe (Type,Type) -- ^ Does the AppTy split as in 'splitAppTy_maybe', but assumes that -- any Core view stuff is already done repSplitAppTy_maybe (FunTy _ w ty1 ty2) = Just (TyConApp funTyCon [w, rep1, rep2, ty1], ty2) where rep1 = getRuntimeRep ty1 rep2 = getRuntimeRep ty2 repSplitAppTy_maybe (AppTy ty1 ty2) = Just (ty1, ty2) repSplitAppTy_maybe (TyConApp tc tys) | not (mustBeSaturated tc) || tys `lengthExceeds` tyConArity tc , Just (tys', ty') <- snocView tys = Just (TyConApp tc tys', ty') -- Never create unsaturated type family apps! repSplitAppTy_maybe _other = Nothing -- This one doesn't break apart (c => t). -- See Note [Decomposing fat arrow c=>t] -- Defined here to avoid module loops between Unify and TcType. tcRepSplitAppTy_maybe :: Type -> Maybe (Type,Type) -- ^ Does the AppTy split as in 'tcSplitAppTy_maybe', but assumes that -- any coreView stuff is already done. Refuses to look through (c => t) tcRepSplitAppTy_maybe (FunTy { ft_af = af, ft_mult = w, ft_arg = ty1, ft_res = ty2 }) | InvisArg <- af = Nothing -- See Note [Decomposing fat arrow c=>t] | otherwise = Just (TyConApp funTyCon [w, rep1, rep2, ty1], ty2) where rep1 = getRuntimeRep ty1 rep2 = getRuntimeRep ty2 tcRepSplitAppTy_maybe (AppTy ty1 ty2) = Just (ty1, ty2) tcRepSplitAppTy_maybe (TyConApp tc tys) | not (mustBeSaturated tc) || tys `lengthExceeds` tyConArity tc , Just (tys', ty') <- snocView tys = Just (TyConApp tc tys', ty') -- Never create unsaturated type family apps! tcRepSplitAppTy_maybe _other = Nothing ------------- splitAppTy :: Type -> (Type, Type) -- ^ Attempts to take a type application apart, as in 'splitAppTy_maybe', -- and panics if this is not possible splitAppTy ty = case splitAppTy_maybe ty of Just pr -> pr Nothing -> panic "splitAppTy" ------------- splitAppTys :: Type -> (Type, [Type]) -- ^ Recursively splits a type as far as is possible, leaving a residual -- type being applied to and the type arguments applied to it. Never fails, -- even if that means returning an empty list of type applications. splitAppTys ty = split ty ty [] where split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args split _ (AppTy ty arg) args = split ty ty (arg:args) split _ (TyConApp tc tc_args) args = let -- keep type families saturated n | mustBeSaturated tc = tyConArity tc | otherwise = 0 (tc_args1, tc_args2) = splitAt n tc_args in (TyConApp tc tc_args1, tc_args2 ++ args) split _ (FunTy _ w ty1 ty2) args = ASSERT( null args ) (TyConApp funTyCon [], [w, rep1, rep2, ty1, ty2]) where rep1 = getRuntimeRep ty1 rep2 = getRuntimeRep ty2 split orig_ty _ args = (orig_ty, args) -- | Like 'splitAppTys', but doesn't look through type synonyms repSplitAppTys :: HasDebugCallStack => Type -> (Type, [Type]) repSplitAppTys ty = split ty [] where split (AppTy ty arg) args = split ty (arg:args) split (TyConApp tc tc_args) args = let n | mustBeSaturated tc = tyConArity tc | otherwise = 0 (tc_args1, tc_args2) = splitAt n tc_args in (TyConApp tc tc_args1, tc_args2 ++ args) split (FunTy _ w ty1 ty2) args = ASSERT( null args ) (TyConApp funTyCon [], [w, rep1, rep2, ty1, ty2]) where rep1 = getRuntimeRep ty1 rep2 = getRuntimeRep ty2 split ty args = (ty, args) {- LitTy ~~~~~ -} mkNumLitTy :: Integer -> Type mkNumLitTy n = LitTy (NumTyLit n) -- | Is this a numeric literal. We also look through type synonyms. isNumLitTy :: Type -> Maybe Integer isNumLitTy ty | LitTy (NumTyLit n) <- coreFullView ty = Just n | otherwise = Nothing mkStrLitTy :: FastString -> Type mkStrLitTy s = LitTy (StrTyLit s) -- | Is this a symbol literal. We also look through type synonyms. isStrLitTy :: Type -> Maybe FastString isStrLitTy ty | LitTy (StrTyLit s) <- coreFullView ty = Just s | otherwise = Nothing mkCharLitTy :: Char -> Type mkCharLitTy c = LitTy (CharTyLit c) -- | Is this a char literal? We also look through type synonyms. isCharLitTy :: Type -> Maybe Char isCharLitTy ty | LitTy (CharTyLit s) <- coreFullView ty = Just s | otherwise = Nothing -- | Is this a type literal (symbol, numeric, or char)? isLitTy :: Type -> Maybe TyLit isLitTy ty | LitTy l <- coreFullView ty = Just l | otherwise = Nothing -- | Is this type a custom user error? -- If so, give us the kind and the error message. userTypeError_maybe :: Type -> Maybe Type userTypeError_maybe t = do { (tc, _kind : msg : _) <- splitTyConApp_maybe t -- There may be more than 2 arguments, if the type error is -- used as a type constructor (e.g. at kind `Type -> Type`). ; guard (tyConName tc == errorMessageTypeErrorFamName) ; return msg } -- | Render a type corresponding to a user type error into a SDoc. pprUserTypeErrorTy :: Type -> SDoc pprUserTypeErrorTy ty = case splitTyConApp_maybe ty of -- Text "Something" Just (tc,[txt]) | tyConName tc == typeErrorTextDataConName , Just str <- isStrLitTy txt -> ftext str -- ShowType t Just (tc,[_k,t]) | tyConName tc == typeErrorShowTypeDataConName -> ppr t -- t1 :<>: t2 Just (tc,[t1,t2]) | tyConName tc == typeErrorAppendDataConName -> pprUserTypeErrorTy t1 <> pprUserTypeErrorTy t2 -- t1 :$$: t2 Just (tc,[t1,t2]) | tyConName tc == typeErrorVAppendDataConName -> pprUserTypeErrorTy t1 $$ pprUserTypeErrorTy t2 -- An unevaluated type function _ -> ppr ty {- --------------------------------------------------------------------- FunTy ~~~~~ Note [Representation of function types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Functions (e.g. Int -> Char) can be thought of as being applications of funTyCon (known in Haskell surface syntax as (->)), (note that `RuntimeRep' quantifiers are left inferred) (->) :: forall {r1 :: RuntimeRep} {r2 :: RuntimeRep} (a :: TYPE r1) (b :: TYPE r2). a -> b -> Type However, for efficiency's sake we represent saturated applications of (->) with FunTy. For instance, the type, (->) r1 r2 a b is equivalent to, FunTy (Anon a) b Note how the RuntimeReps are implied in the FunTy representation. For this reason we must be careful when reconstructing the TyConApp representation (see, for instance, splitTyConApp_maybe). In the compiler we maintain the invariant that all saturated applications of (->) are represented with FunTy. See #11714. -} splitFunTy :: Type -> (Mult, Type, Type) -- ^ Attempts to extract the multiplicity, argument and result types from a type, -- and panics if that is not possible. See also 'splitFunTy_maybe' splitFunTy = expectJust "splitFunTy" . splitFunTy_maybe {-# INLINE splitFunTy_maybe #-} splitFunTy_maybe :: Type -> Maybe (Mult, Type, Type) -- ^ Attempts to extract the multiplicity, argument and result types from a type splitFunTy_maybe ty | FunTy _ w arg res <- coreFullView ty = Just (w, arg, res) | otherwise = Nothing splitFunTys :: Type -> ([Scaled Type], Type) splitFunTys ty = split [] ty ty where -- common case first split args _ (FunTy _ w arg res) = split ((Scaled w arg):args) res res split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty' split args orig_ty _ = (reverse args, orig_ty) funResultTy :: Type -> Type -- ^ Extract the function result type and panic if that is not possible funResultTy ty | FunTy { ft_res = res } <- coreFullView ty = res | otherwise = pprPanic "funResultTy" (ppr ty) funArgTy :: Type -> Type -- ^ Extract the function argument type and panic if that is not possible funArgTy ty | FunTy { ft_arg = arg } <- coreFullView ty = arg | otherwise = pprPanic "funArgTy" (ppr ty) -- ^ Just like 'piResultTys' but for a single argument -- Try not to iterate 'piResultTy', because it's inefficient to substitute -- one variable at a time; instead use 'piResultTys" piResultTy :: HasDebugCallStack => Type -> Type -> Type piResultTy ty arg = case piResultTy_maybe ty arg of Just res -> res Nothing -> pprPanic "piResultTy" (ppr ty $$ ppr arg) piResultTy_maybe :: Type -> Type -> Maybe Type -- We don't need a 'tc' version, because -- this function behaves the same for Type and Constraint piResultTy_maybe ty arg = case coreFullView ty of FunTy { ft_res = res } -> Just res ForAllTy (Bndr tv _) res -> let empty_subst = mkEmptyTCvSubst $ mkInScopeSet $ tyCoVarsOfTypes [arg,res] in Just (substTy (extendTCvSubst empty_subst tv arg) res) _ -> Nothing -- | (piResultTys f_ty [ty1, .., tyn]) gives the type of (f ty1 .. tyn) -- where f :: f_ty -- 'piResultTys' is interesting because: -- 1. 'f_ty' may have more for-alls than there are args -- 2. Less obviously, it may have fewer for-alls -- For case 2. think of: -- piResultTys (forall a.a) [forall b.b, Int] -- This really can happen, but only (I think) in situations involving -- undefined. For example: -- undefined :: forall a. a -- Term: undefined @(forall b. b->b) @Int -- This term should have type (Int -> Int), but notice that -- there are more type args than foralls in 'undefined's type. -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] in GHC.Core.Lint -- This is a heavily used function (e.g. from typeKind), -- so we pay attention to efficiency, especially in the special case -- where there are no for-alls so we are just dropping arrows from -- a function type/kind. piResultTys :: HasDebugCallStack => Type -> [Type] -> Type piResultTys ty [] = ty piResultTys ty orig_args@(arg:args) | FunTy { ft_res = res } <- ty = piResultTys res args | ForAllTy (Bndr tv _) res <- ty = go (extendTCvSubst init_subst tv arg) res args | Just ty' <- coreView ty = piResultTys ty' orig_args | otherwise = pprPanic "piResultTys1" (ppr ty $$ ppr orig_args) where init_subst = mkEmptyTCvSubst $ mkInScopeSet (tyCoVarsOfTypes (ty:orig_args)) go :: TCvSubst -> Type -> [Type] -> Type go subst ty [] = substTyUnchecked subst ty go subst ty all_args@(arg:args) | FunTy { ft_res = res } <- ty = go subst res args | ForAllTy (Bndr tv _) res <- ty = go (extendTCvSubst subst tv arg) res args | Just ty' <- coreView ty = go subst ty' all_args | not (isEmptyTCvSubst subst) -- See Note [Care with kind instantiation] = go init_subst (substTy subst ty) all_args | otherwise = -- We have not run out of arguments, but the function doesn't -- have the right kind to apply to them; so panic. -- Without the explicit isEmptyVarEnv test, an ill-kinded type -- would give an infinite loop, which is very unhelpful -- c.f. #15473 pprPanic "piResultTys2" (ppr ty $$ ppr orig_args $$ ppr all_args) applyTysX :: [TyVar] -> Type -> [Type] -> Type -- applyTyxX beta-reduces (/\tvs. body_ty) arg_tys -- Assumes that (/\tvs. body_ty) is closed applyTysX tvs body_ty arg_tys = ASSERT2( arg_tys `lengthAtLeast` n_tvs, pp_stuff ) ASSERT2( tyCoVarsOfType body_ty `subVarSet` mkVarSet tvs, pp_stuff ) mkAppTys (substTyWith tvs (take n_tvs arg_tys) body_ty) (drop n_tvs arg_tys) where pp_stuff = vcat [ppr tvs, ppr body_ty, ppr arg_tys] n_tvs = length tvs {- Note [Care with kind instantiation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we have T :: forall k. k and we are finding the kind of T (forall b. b -> b) * Int Then T (forall b. b->b) :: k[ k :-> forall b. b->b] :: forall b. b -> b So T (forall b. b->b) * :: (b -> b)[ b :-> *] :: * -> * In other words we must instantiate the forall! Similarly (#15428) S :: forall k f. k -> f k and we are finding the kind of S * (* ->) Int Bool We have S * (* ->) :: (k -> f k)[ k :-> *, f :-> (* ->)] :: * -> * -> * So again we must instantiate. The same thing happens in GHC.CoreToIface.toIfaceAppArgsX. --------------------------------------------------------------------- TyConApp ~~~~~~~~ -} -- splitTyConApp "looks through" synonyms, because they don't -- mean a distinct type, but all other type-constructor applications -- including functions are returned as Just .. -- | Retrieve the tycon heading this type, if there is one. Does /not/ -- look through synonyms. tyConAppTyConPicky_maybe :: Type -> Maybe TyCon tyConAppTyConPicky_maybe (TyConApp tc _) = Just tc tyConAppTyConPicky_maybe (FunTy {}) = Just funTyCon tyConAppTyConPicky_maybe _ = Nothing -- | The same as @fst . splitTyConApp@ {-# INLINE tyConAppTyCon_maybe #-} tyConAppTyCon_maybe :: Type -> Maybe TyCon tyConAppTyCon_maybe ty = case coreFullView ty of TyConApp tc _ -> Just tc FunTy {} -> Just funTyCon _ -> Nothing tyConAppTyCon :: Type -> TyCon tyConAppTyCon ty = tyConAppTyCon_maybe ty `orElse` pprPanic "tyConAppTyCon" (ppr ty) -- | The same as @snd . splitTyConApp@ tyConAppArgs_maybe :: Type -> Maybe [Type] tyConAppArgs_maybe ty = case coreFullView ty of TyConApp _ tys -> Just tys FunTy _ w arg res | Just rep1 <- getRuntimeRep_maybe arg , Just rep2 <- getRuntimeRep_maybe res -> Just [w, rep1, rep2, arg, res] _ -> Nothing tyConAppArgs :: Type -> [Type] tyConAppArgs ty = tyConAppArgs_maybe ty `orElse` pprPanic "tyConAppArgs" (ppr ty) tyConAppArgN :: Int -> Type -> Type -- Executing Nth tyConAppArgN n ty = case tyConAppArgs_maybe ty of Just tys -> tys `getNth` n Nothing -> pprPanic "tyConAppArgN" (ppr n <+> ppr ty) -- | Attempts to tease a type apart into a type constructor and the application -- of a number of arguments to that constructor. Panics if that is not possible. -- See also 'splitTyConApp_maybe' splitTyConApp :: Type -> (TyCon, [Type]) splitTyConApp ty = case splitTyConApp_maybe ty of Just stuff -> stuff Nothing -> pprPanic "splitTyConApp" (ppr ty) -- | Attempts to tease a type apart into a type constructor and the application -- of a number of arguments to that constructor splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) splitTyConApp_maybe = repSplitTyConApp_maybe . coreFullView -- | Split a type constructor application into its type constructor and -- applied types. Note that this may fail in the case of a 'FunTy' with an -- argument of unknown kind 'FunTy' (e.g. @FunTy (a :: k) Int@. since the kind -- of @a@ isn't of the form @TYPE rep@). Consequently, you may need to zonk your -- type before using this function. -- -- This does *not* split types headed with (=>), as that's not a TyCon in the -- type-checker. -- -- If you only need the 'TyCon', consider using 'tcTyConAppTyCon_maybe'. tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type]) -- Defined here to avoid module loops between Unify and TcType. tcSplitTyConApp_maybe ty | Just ty' <- tcView ty = tcSplitTyConApp_maybe ty' tcSplitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys) tcSplitTyConApp_maybe (FunTy VisArg w arg res) | Just arg_rep <- getRuntimeRep_maybe arg , Just res_rep <- getRuntimeRep_maybe res = Just (funTyCon, [w, arg_rep, res_rep, arg, res]) tcSplitTyConApp_maybe _ = Nothing ------------------- repSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) -- ^ Like 'splitTyConApp_maybe', but doesn't look through synonyms. This -- assumes the synonyms have already been dealt with. -- -- Moreover, for a FunTy, it only succeeds if the argument types -- have enough info to extract the runtime-rep arguments that -- the funTyCon requires. This will usually be true; -- but may be temporarily false during canonicalization: -- see Note [Decomposing FunTy] in GHC.Tc.Solver.Canonical -- repSplitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys) repSplitTyConApp_maybe (FunTy _ w arg res) | Just arg_rep <- getRuntimeRep_maybe arg , Just res_rep <- getRuntimeRep_maybe res = Just (funTyCon, [w, arg_rep, res_rep, arg, res]) repSplitTyConApp_maybe _ = Nothing ------------------- -- | Attempts to tease a list type apart and gives the type of the elements if -- successful (looks through type synonyms) splitListTyConApp_maybe :: Type -> Maybe Type splitListTyConApp_maybe ty = case splitTyConApp_maybe ty of Just (tc,[e]) | tc == listTyCon -> Just e _other -> Nothing newTyConInstRhs :: TyCon -> [Type] -> Type -- ^ Unwrap one 'layer' of newtype on a type constructor and its -- arguments, using an eta-reduced version of the @newtype@ if possible. -- This requires tys to have at least @newTyConInstArity tycon@ elements. newTyConInstRhs tycon tys = ASSERT2( tvs `leLength` tys, ppr tycon $$ ppr tys $$ ppr tvs ) applyTysX tvs rhs tys where (tvs, rhs) = newTyConEtadRhs tycon {- --------------------------------------------------------------------- CastTy ~~~~~~ A casted type has its *kind* casted into something new. -} splitCastTy_maybe :: Type -> Maybe (Type, Coercion) splitCastTy_maybe ty | CastTy ty' co <- coreFullView ty = Just (ty', co) | otherwise = Nothing -- | Make a 'CastTy'. The Coercion must be nominal. Checks the -- Coercion for reflexivity, dropping it if it's reflexive. -- See Note [Respecting definitional equality] in "GHC.Core.TyCo.Rep" mkCastTy :: Type -> Coercion -> Type mkCastTy ty co | isReflexiveCo co = ty -- (EQ2) from the Note -- NB: Do the slow check here. This is important to keep the splitXXX -- functions working properly. Otherwise, we may end up with something -- like (((->) |> something_reflexive_but_not_obviously_so) biz baz) -- fails under splitFunTy_maybe. This happened with the cheaper check -- in test dependent/should_compile/dynamic-paper. mkCastTy (CastTy ty co1) co2 -- (EQ3) from the Note = mkCastTy ty (co1 `mkTransCo` co2) -- call mkCastTy again for the reflexivity check mkCastTy (ForAllTy (Bndr tv vis) inner_ty) co -- (EQ4) from the Note -- See Note [Weird typing rule for ForAllTy] in GHC.Core.TyCo.Rep. | isTyVar tv , let fvs = tyCoVarsOfCo co = -- have to make sure that pushing the co in doesn't capture the bound var! if tv `elemVarSet` fvs then let empty_subst = mkEmptyTCvSubst (mkInScopeSet fvs) (subst, tv') = substVarBndr empty_subst tv in ForAllTy (Bndr tv' vis) (substTy subst inner_ty `mkCastTy` co) else ForAllTy (Bndr tv vis) (inner_ty `mkCastTy` co) mkCastTy ty co = CastTy ty co tyConBindersTyCoBinders :: [TyConBinder] -> [TyCoBinder] -- Return the tyConBinders in TyCoBinder form tyConBindersTyCoBinders = map to_tyb where to_tyb (Bndr tv (NamedTCB vis)) = Named (Bndr tv vis) to_tyb (Bndr tv (AnonTCB af)) = Anon af (tymult (varType tv)) -- | Create the plain type constructor type which has been applied to no type arguments at all. mkTyConTy :: TyCon -> Type mkTyConTy tycon = tyConNullaryTy tycon -- see Note [Sharing nullary TyConApps] in GHC.Core.TyCon -- | A key function: builds a 'TyConApp' or 'FunTy' as appropriate to -- its arguments. Applies its arguments to the constructor from left to right. mkTyConApp :: TyCon -> [Type] -> Type mkTyConApp tycon tys | null tys = mkTyConTy tycon | isFunTyCon tycon , [w, _rep1,_rep2,ty1,ty2] <- tys -- The FunTyCon (->) is always a visible one = FunTy { ft_af = VisArg, ft_mult = w, ft_arg = ty1, ft_res = ty2 } -- See Note [Prefer Type over TYPE 'LiftedRep]. | tycon `hasKey` tYPETyConKey , [rep] <- tys = tYPE rep -- The catch-all case | otherwise = TyConApp tycon tys {- Note [Prefer Type over TYPE 'LiftedRep] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Core of nearly any program will have numerous occurrences of @TYPE 'LiftedRep@ (and, equivalently, 'Type') floating about. Concretely, while investigating #17292 we found that these constituting a majority of TyConApp constructors on the heap: ``` (From a sample of 100000 TyConApp closures) 0x45f3523 - 28732 - `Type` 0x420b840702 - 9629 - generic type constructors 0x42055b7e46 - 9596 0x420559b582 - 9511 0x420bb15a1e - 9509 0x420b86c6ba - 9501 0x42055bac1e - 9496 0x45e68fd - 538 - `TYPE ...` ``` Consequently, we try hard to ensure that operations on such types are efficient. Specifically, we strive to a. Avoid heap allocation of such types b. Use a small (shallow in the tree-depth sense) representation for such types Goal (b) is particularly useful as it makes traversals (e.g. free variable traversal, substitution, and comparison) more efficient. Comparison in particular takes special advantage of nullary type synonym applications (e.g. things like @TyConApp typeTyCon []@), Note [Comparing nullary type synonyms] in "GHC.Core.Type". To accomplish these we use a number of tricks: 1. Instead of representing the lifted kind as @TyConApp tYPETyCon [liftedRepDataCon]@ we rather prefer to use the 'GHC.Types.Type' type synonym (represented as a nullary TyConApp). This serves goal (b) since there are no applied type arguments to traverse, e.g., during comparison. 2. We have a top-level binding to represent `TyConApp GHC.Types.Type []` (namely 'GHC.Builtin.Types.Prim.liftedTypeKind'), ensuring that we don't need to allocate such types (goal (a)). 3. We use the sharing mechanism described in Note [Sharing nullary TyConApps] in GHC.Core.TyCon to ensure that we never need to allocate such nullary applications (goal (a)). See #17958. -} -- | Given a @RuntimeRep@, applies @TYPE@ to it. -- See Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim. tYPE :: Type -> Type tYPE rr@(TyConApp tc [arg]) -- See Note [Prefer Type of TYPE 'LiftedRep] | tc `hasKey` boxedRepDataConKey , TyConApp tc' [] <- arg = if | tc' `hasKey` liftedDataConKey -> liftedTypeKind -- TYPE (BoxedRep 'Lifted) | tc' `hasKey` unliftedDataConKey -> unliftedTypeKind -- TYPE (BoxedRep 'Unlifted) | otherwise -> TyConApp tYPETyCon [rr] | tc == liftedRepTyCon -- TYPE LiftedRep = liftedTypeKind | tc == unliftedRepTyCon -- TYPE UnliftedRep = unliftedTypeKind tYPE rr = TyConApp tYPETyCon [rr] {- -------------------------------------------------------------------- CoercionTy ~~~~~~~~~~ CoercionTy allows us to inject coercions into types. A CoercionTy should appear only in the right-hand side of an application. -} mkCoercionTy :: Coercion -> Type mkCoercionTy = CoercionTy isCoercionTy :: Type -> Bool isCoercionTy (CoercionTy _) = True isCoercionTy _ = False isCoercionTy_maybe :: Type -> Maybe Coercion isCoercionTy_maybe (CoercionTy co) = Just co isCoercionTy_maybe _ = Nothing stripCoercionTy :: Type -> Coercion stripCoercionTy (CoercionTy co) = co stripCoercionTy ty = pprPanic "stripCoercionTy" (ppr ty) {- --------------------------------------------------------------------- SynTy ~~~~~ Notes on type synonyms ~~~~~~~~~~~~~~~~~~~~~~ The various "split" functions (splitFunTy, splitRhoTy, splitForAllTy) try to return type synonyms wherever possible. Thus type Foo a = a -> a we want splitFunTys (a -> Foo a) = ([a], Foo a) not ([a], a -> a) The reason is that we then get better (shorter) type signatures in interfaces. Notably this plays a role in tcTySigs in GHC.Tc.Gen.Bind. --------------------------------------------------------------------- ForAllTy ~~~~~~~~ -} -- | Make a dependent forall over an 'Inferred' variable mkTyCoInvForAllTy :: TyCoVar -> Type -> Type mkTyCoInvForAllTy tv ty | isCoVar tv , not (tv `elemVarSet` tyCoVarsOfType ty) = mkVisFunTyMany (varType tv) ty | otherwise = ForAllTy (Bndr tv Inferred) ty -- | Like 'mkTyCoInvForAllTy', but tv should be a tyvar mkInfForAllTy :: TyVar -> Type -> Type mkInfForAllTy tv ty = ASSERT( isTyVar tv ) ForAllTy (Bndr tv Inferred) ty -- | Like 'mkForAllTys', but assumes all variables are dependent and -- 'Inferred', a common case mkTyCoInvForAllTys :: [TyCoVar] -> Type -> Type mkTyCoInvForAllTys tvs ty = foldr mkTyCoInvForAllTy ty tvs -- | Like 'mkTyCoInvForAllTys', but tvs should be a list of tyvar mkInfForAllTys :: [TyVar] -> Type -> Type mkInfForAllTys tvs ty = foldr mkInfForAllTy ty tvs -- | Like 'mkForAllTy', but assumes the variable is dependent and 'Specified', -- a common case mkSpecForAllTy :: TyVar -> Type -> Type mkSpecForAllTy tv ty = ASSERT( isTyVar tv ) -- covar is always Inferred, so input should be tyvar ForAllTy (Bndr tv Specified) ty -- | Like 'mkForAllTys', but assumes all variables are dependent and -- 'Specified', a common case mkSpecForAllTys :: [TyVar] -> Type -> Type mkSpecForAllTys tvs ty = foldr mkSpecForAllTy ty tvs -- | Like mkForAllTys, but assumes all variables are dependent and visible mkVisForAllTys :: [TyVar] -> Type -> Type mkVisForAllTys tvs = ASSERT( all isTyVar tvs ) -- covar is always Inferred, so all inputs should be tyvar mkForAllTys [ Bndr tv Required | tv <- tvs ] -- | Given a list of type-level vars and the free vars of a result kind, -- makes TyCoBinders, preferring anonymous binders -- if the variable is, in fact, not dependent. -- e.g. mkTyConBindersPreferAnon [(k:*),(b:k),(c:k)] (k->k) -- We want (k:*) Named, (b:k) Anon, (c:k) Anon -- -- All non-coercion binders are /visible/. mkTyConBindersPreferAnon :: [TyVar] -- ^ binders -> TyCoVarSet -- ^ free variables of result -> [TyConBinder] mkTyConBindersPreferAnon vars inner_tkvs = ASSERT( all isTyVar vars) fst (go vars) where go :: [TyVar] -> ([TyConBinder], VarSet) -- also returns the free vars go [] = ([], inner_tkvs) go (v:vs) | v `elemVarSet` fvs = ( Bndr v (NamedTCB Required) : binders , fvs `delVarSet` v `unionVarSet` kind_vars ) | otherwise = ( Bndr v (AnonTCB VisArg) : binders , fvs `unionVarSet` kind_vars ) where (binders, fvs) = go vs kind_vars = tyCoVarsOfType $ tyVarKind v -- | Take a ForAllTy apart, returning the list of tycovars and the result type. -- This always succeeds, even if it returns only an empty list. Note that the -- result type returned may have free variables that were bound by a forall. splitForAllTyCoVars :: Type -> ([TyCoVar], Type) splitForAllTyCoVars ty = split ty ty [] where split _ (ForAllTy (Bndr tv _) ty) tvs = split ty ty (tv:tvs) split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs split orig_ty _ tvs = (reverse tvs, orig_ty) -- | Splits the longest initial sequence of 'ForAllTy's that satisfy -- @argf_pred@, returning the binders transformed by @argf_pred@ splitSomeForAllTyCoVarBndrs :: (ArgFlag -> Maybe af) -> Type -> ([VarBndr TyCoVar af], Type) splitSomeForAllTyCoVarBndrs argf_pred ty = split ty ty [] where split _ (ForAllTy (Bndr tcv argf) ty) tvs | Just argf' <- argf_pred argf = split ty ty (Bndr tcv argf' : tvs) split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs split orig_ty _ tvs = (reverse tvs, orig_ty) -- | Like 'splitForAllTyCoVars', but only splits 'ForAllTy's with 'Required' type -- variable binders. Furthermore, each returned tyvar is annotated with '()'. splitForAllReqTVBinders :: Type -> ([ReqTVBinder], Type) splitForAllReqTVBinders ty = splitSomeForAllTyCoVarBndrs argf_pred ty where argf_pred :: ArgFlag -> Maybe () argf_pred Required = Just () argf_pred (Invisible {}) = Nothing -- | Like 'splitForAllTyCoVars', but only splits 'ForAllTy's with 'Invisible' type -- variable binders. Furthermore, each returned tyvar is annotated with its -- 'Specificity'. splitForAllInvisTVBinders :: Type -> ([InvisTVBinder], Type) splitForAllInvisTVBinders ty = splitSomeForAllTyCoVarBndrs argf_pred ty where argf_pred :: ArgFlag -> Maybe Specificity argf_pred Required = Nothing argf_pred (Invisible spec) = Just spec -- | Like 'splitForAllTyCoVars', but split only for tyvars. -- This always succeeds, even if it returns only an empty list. Note that the -- result type returned may have free variables that were bound by a forall. splitForAllTyVars :: Type -> ([TyVar], Type) splitForAllTyVars ty = split ty ty [] where split _ (ForAllTy (Bndr tv _) ty) tvs | isTyVar tv = split ty ty (tv:tvs) split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs split orig_ty _ tvs = (reverse tvs, orig_ty) -- | Checks whether this is a proper forall (with a named binder) isForAllTy :: Type -> Bool isForAllTy ty | ForAllTy {} <- coreFullView ty = True | otherwise = False -- | Like `isForAllTy`, but returns True only if it is a tyvar binder isForAllTy_ty :: Type -> Bool isForAllTy_ty ty | ForAllTy (Bndr tv _) _ <- coreFullView ty , isTyVar tv = True | otherwise = False -- | Like `isForAllTy`, but returns True only if it is a covar binder isForAllTy_co :: Type -> Bool isForAllTy_co ty | ForAllTy (Bndr tv _) _ <- coreFullView ty , isCoVar tv = True | otherwise = False -- | Is this a function or forall? isPiTy :: Type -> Bool isPiTy ty = case coreFullView ty of ForAllTy {} -> True FunTy {} -> True _ -> False -- | Is this a function? isFunTy :: Type -> Bool isFunTy ty | FunTy {} <- coreFullView ty = True | otherwise = False -- | Take a forall type apart, or panics if that is not possible. splitForAllTyCoVar :: Type -> (TyCoVar, Type) splitForAllTyCoVar ty | Just answer <- splitForAllTyCoVar_maybe ty = answer | otherwise = pprPanic "splitForAllTyCoVar" (ppr ty) -- | Drops all ForAllTys dropForAlls :: Type -> Type dropForAlls ty = go ty where go (ForAllTy _ res) = go res go ty | Just ty' <- coreView ty = go ty' go res = res -- | Attempts to take a forall type apart, but only if it's a proper forall, -- with a named binder splitForAllTyCoVar_maybe :: Type -> Maybe (TyCoVar, Type) splitForAllTyCoVar_maybe ty | ForAllTy (Bndr tv _) inner_ty <- coreFullView ty = Just (tv, inner_ty) | otherwise = Nothing -- | Like 'splitForAllTyCoVar_maybe', but only returns Just if it is a tyvar binder. splitForAllTyVar_maybe :: Type -> Maybe (TyCoVar, Type) splitForAllTyVar_maybe ty | ForAllTy (Bndr tv _) inner_ty <- coreFullView ty , isTyVar tv = Just (tv, inner_ty) | otherwise = Nothing -- | Like 'splitForAllTyCoVar_maybe', but only returns Just if it is a covar binder. splitForAllCoVar_maybe :: Type -> Maybe (TyCoVar, Type) splitForAllCoVar_maybe ty | ForAllTy (Bndr tv _) inner_ty <- coreFullView ty , isCoVar tv = Just (tv, inner_ty) | otherwise = Nothing -- | Attempts to take a forall type apart; works with proper foralls and -- functions {-# INLINE splitPiTy_maybe #-} -- callers will immediately deconstruct splitPiTy_maybe :: Type -> Maybe (TyCoBinder, Type) splitPiTy_maybe ty = case coreFullView ty of ForAllTy bndr ty -> Just (Named bndr, ty) FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res} -> Just (Anon af (mkScaled w arg), res) _ -> Nothing -- | Takes a forall type apart, or panics splitPiTy :: Type -> (TyCoBinder, Type) splitPiTy ty | Just answer <- splitPiTy_maybe ty = answer | otherwise = pprPanic "splitPiTy" (ppr ty) -- | Split off all TyCoBinders to a type, splitting both proper foralls -- and functions splitPiTys :: Type -> ([TyCoBinder], Type) splitPiTys ty = split ty ty [] where split _ (ForAllTy b res) bs = split res res (Named b : bs) split _ (FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res }) bs = split res res (Anon af (Scaled w arg) : bs) split orig_ty ty bs | Just ty' <- coreView ty = split orig_ty ty' bs split orig_ty _ bs = (reverse bs, orig_ty) -- | Like 'splitPiTys' but split off only /named/ binders -- and returns 'TyCoVarBinder's rather than 'TyCoBinder's splitForAllTyCoVarBinders :: Type -> ([TyCoVarBinder], Type) splitForAllTyCoVarBinders ty = split ty ty [] where split orig_ty ty bs | Just ty' <- coreView ty = split orig_ty ty' bs split _ (ForAllTy b res) bs = split res res (b:bs) split orig_ty _ bs = (reverse bs, orig_ty) {-# INLINE splitForAllTyCoVarBinders #-} invisibleTyBndrCount :: Type -> Int -- Returns the number of leading invisible forall'd binders in the type -- Includes invisible predicate arguments; e.g. for -- e.g. forall {k}. (k ~ *) => k -> k -- returns 2 not 1 invisibleTyBndrCount ty = length (fst (splitInvisPiTys ty)) -- | Like 'splitPiTys', but returns only *invisible* binders, including constraints. -- Stops at the first visible binder. splitInvisPiTys :: Type -> ([TyCoBinder], Type) splitInvisPiTys ty = split ty ty [] where split _ (ForAllTy b res) bs | Bndr _ vis <- b , isInvisibleArgFlag vis = split res res (Named b : bs) split _ (FunTy { ft_af = InvisArg, ft_mult = mult, ft_arg = arg, ft_res = res }) bs = split res res (Anon InvisArg (mkScaled mult arg) : bs) split orig_ty ty bs | Just ty' <- coreView ty = split orig_ty ty' bs split orig_ty _ bs = (reverse bs, orig_ty) splitInvisPiTysN :: Int -> Type -> ([TyCoBinder], Type) -- ^ Same as 'splitInvisPiTys', but stop when -- - you have found @n@ 'TyCoBinder's, -- - or you run out of invisible binders splitInvisPiTysN n ty = split n ty ty [] where split n orig_ty ty bs | n == 0 = (reverse bs, orig_ty) | Just ty' <- coreView ty = split n orig_ty ty' bs | ForAllTy b res <- ty , Bndr _ vis <- b , isInvisibleArgFlag vis = split (n-1) res res (Named b : bs) | FunTy { ft_af = InvisArg, ft_mult = mult, ft_arg = arg, ft_res = res } <- ty = split (n-1) res res (Anon InvisArg (Scaled mult arg) : bs) | otherwise = (reverse bs, orig_ty) -- | Given a 'TyCon' and a list of argument types, filter out any invisible -- (i.e., 'Inferred' or 'Specified') arguments. filterOutInvisibleTypes :: TyCon -> [Type] -> [Type] filterOutInvisibleTypes tc tys = snd $ partitionInvisibleTypes tc tys -- | Given a 'TyCon' and a list of argument types, filter out any 'Inferred' -- arguments. filterOutInferredTypes :: TyCon -> [Type] -> [Type] filterOutInferredTypes tc tys = filterByList (map (/= Inferred) $ tyConArgFlags tc tys) tys -- | Given a 'TyCon' and a list of argument types, partition the arguments -- into: -- -- 1. 'Inferred' or 'Specified' (i.e., invisible) arguments and -- -- 2. 'Required' (i.e., visible) arguments partitionInvisibleTypes :: TyCon -> [Type] -> ([Type], [Type]) partitionInvisibleTypes tc tys = partitionByList (map isInvisibleArgFlag $ tyConArgFlags tc tys) tys -- | Given a list of things paired with their visibilities, partition the -- things into (invisible things, visible things). partitionInvisibles :: [(a, ArgFlag)] -> ([a], [a]) partitionInvisibles = partitionWith pick_invis where pick_invis :: (a, ArgFlag) -> Either a a pick_invis (thing, vis) | isInvisibleArgFlag vis = Left thing | otherwise = Right thing -- | Given a 'TyCon' and a list of argument types to which the 'TyCon' is -- applied, determine each argument's visibility -- ('Inferred', 'Specified', or 'Required'). -- -- Wrinkle: consider the following scenario: -- -- > T :: forall k. k -> k -- > tyConArgFlags T [forall m. m -> m -> m, S, R, Q] -- -- After substituting, we get -- -- > T (forall m. m -> m -> m) :: (forall m. m -> m -> m) -> forall n. n -> n -> n -- -- Thus, the first argument is invisible, @S@ is visible, @R@ is invisible again, -- and @Q@ is visible. tyConArgFlags :: TyCon -> [Type] -> [ArgFlag] tyConArgFlags tc = fun_kind_arg_flags (tyConKind tc) -- | Given a 'Type' and a list of argument types to which the 'Type' is -- applied, determine each argument's visibility -- ('Inferred', 'Specified', or 'Required'). -- -- Most of the time, the arguments will be 'Required', but not always. Consider -- @f :: forall a. a -> Type@. In @f Type Bool@, the first argument (@Type@) is -- 'Specified' and the second argument (@Bool@) is 'Required'. It is precisely -- this sort of higher-rank situation in which 'appTyArgFlags' comes in handy, -- since @f Type Bool@ would be represented in Core using 'AppTy's. -- (See also #15792). appTyArgFlags :: Type -> [Type] -> [ArgFlag] appTyArgFlags ty = fun_kind_arg_flags (typeKind ty) -- | Given a function kind and a list of argument types (where each argument's -- kind aligns with the corresponding position in the argument kind), determine -- each argument's visibility ('Inferred', 'Specified', or 'Required'). fun_kind_arg_flags :: Kind -> [Type] -> [ArgFlag] fun_kind_arg_flags = go emptyTCvSubst where go subst ki arg_tys | Just ki' <- coreView ki = go subst ki' arg_tys go _ _ [] = [] go subst (ForAllTy (Bndr tv argf) res_ki) (arg_ty:arg_tys) = argf : go subst' res_ki arg_tys where subst' = extendTvSubst subst tv arg_ty go subst (TyVarTy tv) arg_tys | Just ki <- lookupTyVar subst tv = go subst ki arg_tys -- This FunTy case is important to handle kinds with nested foralls, such -- as this kind (inspired by #16518): -- -- forall {k1} k2. k1 -> k2 -> forall k3. k3 -> Type -- -- Here, we want to get the following ArgFlags: -- -- [Inferred, Specified, Required, Required, Specified, Required] -- forall {k1}. forall k2. k1 -> k2 -> forall k3. k3 -> Type go subst (FunTy{ft_af = af, ft_res = res_ki}) (_:arg_tys) = argf : go subst res_ki arg_tys where argf = case af of VisArg -> Required InvisArg -> Inferred go _ _ arg_tys = map (const Required) arg_tys -- something is ill-kinded. But this can happen -- when printing errors. Assume everything is Required. -- @isTauTy@ tests if a type has no foralls or (=>) isTauTy :: Type -> Bool isTauTy ty | Just ty' <- coreView ty = isTauTy ty' isTauTy (TyVarTy _) = True isTauTy (LitTy {}) = True isTauTy (TyConApp tc tys) = all isTauTy tys && isTauTyCon tc isTauTy (AppTy a b) = isTauTy a && isTauTy b isTauTy (FunTy af w a b) = case af of InvisArg -> False -- e.g., Eq a => b VisArg -> isTauTy w && isTauTy a && isTauTy b -- e.g., a -> b isTauTy (ForAllTy {}) = False isTauTy (CastTy ty _) = isTauTy ty isTauTy (CoercionTy _) = False -- Not sure about this isAtomicTy :: Type -> Bool -- True if the type is just a single token, and can be printed compactly -- Used when deciding how to lay out type error messages; see the -- call in GHC.Tc.Errors isAtomicTy (TyVarTy {}) = True isAtomicTy (LitTy {}) = True isAtomicTy (TyConApp _ []) = True isAtomicTy ty | isLiftedTypeKind ty = True -- 'Type' prints compactly as * -- See GHC.Iface.Type.ppr_kind_type isAtomicTy _ = False {- %************************************************************************ %* * TyCoBinders %* * %************************************************************************ -} -- | Make an anonymous binder mkAnonBinder :: AnonArgFlag -> Scaled Type -> TyCoBinder mkAnonBinder = Anon -- | Does this binder bind a variable that is /not/ erased? Returns -- 'True' for anonymous binders. isAnonTyCoBinder :: TyCoBinder -> Bool isAnonTyCoBinder (Named {}) = False isAnonTyCoBinder (Anon {}) = True tyCoBinderVar_maybe :: TyCoBinder -> Maybe TyCoVar tyCoBinderVar_maybe (Named tv) = Just $ binderVar tv tyCoBinderVar_maybe _ = Nothing tyCoBinderType :: TyCoBinder -> Type tyCoBinderType (Named tvb) = binderType tvb tyCoBinderType (Anon _ ty) = scaledThing ty tyBinderType :: TyBinder -> Type tyBinderType (Named (Bndr tv _)) = ASSERT( isTyVar tv ) tyVarKind tv tyBinderType (Anon _ ty) = scaledThing ty -- | Extract a relevant type, if there is one. binderRelevantType_maybe :: TyCoBinder -> Maybe Type binderRelevantType_maybe (Named {}) = Nothing binderRelevantType_maybe (Anon _ ty) = Just (scaledThing ty) {- ************************************************************************ * * \subsection{Type families} * * ************************************************************************ -} mkFamilyTyConApp :: TyCon -> [Type] -> Type -- ^ Given a family instance TyCon and its arg types, return the -- corresponding family type. E.g: -- -- > data family T a -- > data instance T (Maybe b) = MkT b -- -- Where the instance tycon is :RTL, so: -- -- > mkFamilyTyConApp :RTL Int = T (Maybe Int) mkFamilyTyConApp tc tys | Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc , let tvs = tyConTyVars tc fam_subst = ASSERT2( tvs `equalLength` tys, ppr tc <+> ppr tys ) zipTvSubst tvs tys = mkTyConApp fam_tc (substTys fam_subst fam_tys) | otherwise = mkTyConApp tc tys -- | Get the type on the LHS of a coercion induced by a type/data -- family instance. coAxNthLHS :: CoAxiom br -> Int -> Type coAxNthLHS ax ind = mkTyConApp (coAxiomTyCon ax) (coAxBranchLHS (coAxiomNthBranch ax ind)) isFamFreeTy :: Type -> Bool isFamFreeTy ty | Just ty' <- coreView ty = isFamFreeTy ty' isFamFreeTy (TyVarTy _) = True isFamFreeTy (LitTy {}) = True isFamFreeTy (TyConApp tc tys) = all isFamFreeTy tys && isFamFreeTyCon tc isFamFreeTy (AppTy a b) = isFamFreeTy a && isFamFreeTy b isFamFreeTy (FunTy _ w a b) = isFamFreeTy w && isFamFreeTy a && isFamFreeTy b isFamFreeTy (ForAllTy _ ty) = isFamFreeTy ty isFamFreeTy (CastTy ty _) = isFamFreeTy ty isFamFreeTy (CoercionTy _) = False -- Not sure about this -- | Does this type classify a core (unlifted) Coercion? -- At either role nominal or representational -- (t1 ~# t2) or (t1 ~R# t2) -- See Note [Types for coercions, predicates, and evidence] in "GHC.Core.TyCo.Rep" isCoVarType :: Type -> Bool -- ToDo: should we check saturation? isCoVarType ty | Just tc <- tyConAppTyCon_maybe ty = tc `hasKey` eqPrimTyConKey || tc `hasKey` eqReprPrimTyConKey | otherwise = False buildSynTyCon :: Name -> [KnotTied TyConBinder] -> Kind -- ^ /result/ kind -> [Role] -> KnotTied Type -> TyCon -- This function is here because here is where we have -- isFamFree and isTauTy buildSynTyCon name binders res_kind roles rhs = mkSynonymTyCon name binders res_kind roles rhs is_tau is_fam_free is_forgetful where is_tau = isTauTy rhs is_fam_free = isFamFreeTy rhs is_forgetful = any (not . (`elemVarSet` tyCoVarsOfType rhs) . binderVar) binders || uniqSetAny isForgetfulSynTyCon (tyConsOfType rhs) -- NB: This is allowed to be conservative, returning True more often -- than it should. See comments on GHC.Core.TyCon.isForgetfulSynTyCon {- ************************************************************************ * * \subsection{Liftedness} * * ************************************************************************ -} -- | Returns Just True if this type is surely lifted, Just False -- if it is surely unlifted, Nothing if we can't be sure (i.e., it is -- levity polymorphic), and panics if the kind does not have the shape -- TYPE r. isLiftedType_maybe :: HasDebugCallStack => Type -> Maybe Bool isLiftedType_maybe ty = case coreFullView (getRuntimeRep ty) of ty' | isLiftedRuntimeRep ty' -> Just True TyConApp {} -> Just False -- Everything else is unlifted _ -> Nothing -- levity polymorphic -- | See "Type#type_classification" for what an unlifted type is. -- Panics on levity polymorphic types; See 'mightBeUnliftedType' for -- a more approximate predicate that behaves better in the presence of -- levity polymorphism. isUnliftedType :: HasDebugCallStack => Type -> Bool -- isUnliftedType returns True for forall'd unlifted types: -- x :: forall a. Int# -- I found bindings like these were getting floated to the top level. -- They are pretty bogus types, mind you. It would be better never to -- construct them isUnliftedType ty = not (isLiftedType_maybe ty `orElse` pprPanic "isUnliftedType" (ppr ty <+> dcolon <+> ppr (typeKind ty))) -- | Returns: -- -- * 'False' if the type is /guaranteed/ lifted or -- * 'True' if it is unlifted, OR we aren't sure (e.g. in a levity-polymorphic case) mightBeUnliftedType :: Type -> Bool mightBeUnliftedType ty = case isLiftedType_maybe ty of Just is_lifted -> not is_lifted Nothing -> True -- | See "Type#type_classification" for what a boxed type is. -- Panics on levity polymorphic types; See 'mightBeUnliftedType' for -- a more approximate predicate that behaves better in the presence of -- levity polymorphism. isBoxedType :: Type -> Bool isBoxedType ty = isBoxedRuntimeRep (getRuntimeRep ty) -- | Is this a type of kind RuntimeRep? (e.g. LiftedRep) isRuntimeRepKindedTy :: Type -> Bool isRuntimeRepKindedTy = isRuntimeRepTy . typeKind -- | Drops prefix of RuntimeRep constructors in 'TyConApp's. Useful for e.g. -- dropping 'LiftedRep arguments of unboxed tuple TyCon applications: -- -- dropRuntimeRepArgs [ 'LiftedRep, 'IntRep -- , String, Int# ] == [String, Int#] -- dropRuntimeRepArgs :: [Type] -> [Type] dropRuntimeRepArgs = dropWhile isRuntimeRepKindedTy -- | Extract the RuntimeRep classifier of a type. For instance, -- @getRuntimeRep_maybe Int = LiftedRep@. Returns 'Nothing' if this is not -- possible. getRuntimeRep_maybe :: HasDebugCallStack => Type -> Maybe Type getRuntimeRep_maybe = kindRep_maybe . typeKind -- | Extract the RuntimeRep classifier of a type. For instance, -- @getRuntimeRep_maybe Int = LiftedRep@. Panics if this is not possible. getRuntimeRep :: HasDebugCallStack => Type -> Type getRuntimeRep ty = case getRuntimeRep_maybe ty of Just r -> r Nothing -> pprPanic "getRuntimeRep" (ppr ty <+> dcolon <+> ppr (typeKind ty)) isUnboxedTupleType :: Type -> Bool isUnboxedTupleType ty = tyConAppTyCon (getRuntimeRep ty) `hasKey` tupleRepDataConKey -- NB: Do not use typePrimRep, as that can't tell the difference between -- unboxed tuples and unboxed sums isUnboxedSumType :: Type -> Bool isUnboxedSumType ty = tyConAppTyCon (getRuntimeRep ty) `hasKey` sumRepDataConKey -- | See "Type#type_classification" for what an algebraic type is. -- Should only be applied to /types/, as opposed to e.g. partially -- saturated type constructors isAlgType :: Type -> Bool isAlgType ty = case splitTyConApp_maybe ty of Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc ) isAlgTyCon tc _other -> False -- | Check whether a type is a data family type isDataFamilyAppType :: Type -> Bool isDataFamilyAppType ty = case tyConAppTyCon_maybe ty of Just tc -> isDataFamilyTyCon tc _ -> False -- | Computes whether an argument (or let right hand side) should -- be computed strictly or lazily, based only on its type. -- Currently, it's just 'isUnliftedType'. Panics on levity-polymorphic types. isStrictType :: HasDebugCallStack => Type -> Bool isStrictType = isUnliftedType isPrimitiveType :: Type -> Bool -- ^ Returns true of types that are opaque to Haskell. isPrimitiveType ty = case splitTyConApp_maybe ty of Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc ) isPrimTyCon tc _ -> False {- ************************************************************************ * * \subsection{Join points} * * ************************************************************************ -} -- | Determine whether a type could be the type of a join point of given total -- arity, according to the polymorphism rule. A join point cannot be polymorphic -- in its return type, since given -- join j @a @b x y z = e1 in e2, -- the types of e1 and e2 must be the same, and a and b are not in scope for e2. -- (See Note [The polymorphism rule of join points] in "GHC.Core".) Returns False -- also if the type simply doesn't have enough arguments. -- -- Note that we need to know how many arguments (type *and* value) the putative -- join point takes; for instance, if -- j :: forall a. a -> Int -- then j could be a binary join point returning an Int, but it could *not* be a -- unary join point returning a -> Int. -- -- TODO: See Note [Excess polymorphism and join points] isValidJoinPointType :: JoinArity -> Type -> Bool isValidJoinPointType arity ty = valid_under emptyVarSet arity ty where valid_under tvs arity ty | arity == 0 = tvs `disjointVarSet` tyCoVarsOfType ty | Just (t, ty') <- splitForAllTyCoVar_maybe ty = valid_under (tvs `extendVarSet` t) (arity-1) ty' | Just (_, _, res_ty) <- splitFunTy_maybe ty = valid_under tvs (arity-1) res_ty | otherwise = False {- Note [Excess polymorphism and join points] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In principle, if a function would be a join point except that it fails the polymorphism rule (see Note [The polymorphism rule of join points] in GHC.Core), it can still be made a join point with some effort. This is because all tail calls must return the same type (they return to the same context!), and thus if the return type depends on an argument, that argument must always be the same. For instance, consider: let f :: forall a. a -> Char -> [a] f @a x c = ... f @a y 'a' ... in ... f @Int 1 'b' ... f @Int 2 'c' ... (where the calls are tail calls). `f` fails the polymorphism rule because its return type is [a], where [a] is bound. But since the type argument is always 'Int', we can rewrite it as: let f' :: Int -> Char -> [Int] f' x c = ... f' y 'a' ... in ... f' 1 'b' ... f 2 'c' ... and now we can make f' a join point: join f' :: Int -> Char -> [Int] f' x c = ... jump f' y 'a' ... in ... jump f' 1 'b' ... jump f' 2 'c' ... It's not clear that this comes up often, however. TODO: Measure how often and add this analysis if necessary. See #14620. ************************************************************************ * * \subsection{Sequencing on types} * * ************************************************************************ -} seqType :: Type -> () seqType (LitTy n) = n `seq` () seqType (TyVarTy tv) = tv `seq` () seqType (AppTy t1 t2) = seqType t1 `seq` seqType t2 seqType (FunTy _ w t1 t2) = seqType w `seq` seqType t1 `seq` seqType t2 seqType (TyConApp tc tys) = tc `seq` seqTypes tys seqType (ForAllTy (Bndr tv _) ty) = seqType (varType tv) `seq` seqType ty seqType (CastTy ty co) = seqType ty `seq` seqCo co seqType (CoercionTy co) = seqCo co seqTypes :: [Type] -> () seqTypes [] = () seqTypes (ty:tys) = seqType ty `seq` seqTypes tys {- ************************************************************************ * * Comparison for types (We don't use instances so that we know where it happens) * * ************************************************************************ Note [Equality on AppTys] ~~~~~~~~~~~~~~~~~~~~~~~~~ In our cast-ignoring equality, we want to say that the following two are equal: (Maybe |> co) (Int |> co') ~? Maybe Int But the left is an AppTy while the right is a TyConApp. The solution is to use repSplitAppTy_maybe to break up the TyConApp into its pieces and then continue. Easy to do, but also easy to forget to do. Note [Comparing nullary type synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider the task of testing equality between two 'Type's of the form TyConApp tc [] where @tc@ is a type synonym. A naive way to perform this comparison these would first expand the synonym and then compare the resulting expansions. However, this is obviously wasteful and the RHS of @tc@ may be large; it is much better to rather compare the TyCons directly. Consequently, before expanding type synonyms in type comparisons we first look for a nullary TyConApp and simply compare the TyCons if we find one. Of course, if we find that the TyCons are *not* equal then we still need to perform the expansion as their RHSs may still be equal. We perform this optimisation in a number of places: * GHC.Core.Types.eqType * GHC.Core.Types.nonDetCmpType * GHC.Core.Unify.unify_ty * TcCanonical.can_eq_nc' * TcUnify.uType This optimisation is especially helpful for the ubiquitous GHC.Types.Type, since GHC prefers to use the type synonym over @TYPE 'LiftedRep@ applications whenever possible. See Note [Prefer Type over TYPE 'LiftedRep] in GHC.Core.TyCo.Rep for details. -} eqType :: Type -> Type -> Bool -- ^ Type equality on source types. Does not look through @newtypes@ or -- 'PredType's, but it does look through type synonyms. -- This first checks that the kinds of the types are equal and then -- checks whether the types are equal, ignoring casts and coercions. -- (The kind check is a recursive call, but since all kinds have type -- @Type@, there is no need to check the types of kinds.) -- See also Note [Non-trivial definitional equality] in "GHC.Core.TyCo.Rep". eqType t1 t2 = isEqual $ nonDetCmpType t1 t2 -- It's OK to use nonDetCmpType here and eqType is deterministic, -- nonDetCmpType does equality deterministically -- | Compare types with respect to a (presumably) non-empty 'RnEnv2'. eqTypeX :: RnEnv2 -> Type -> Type -> Bool eqTypeX env t1 t2 = isEqual $ nonDetCmpTypeX env t1 t2 -- It's OK to use nonDetCmpType here and eqTypeX is deterministic, -- nonDetCmpTypeX does equality deterministically -- | Type equality on lists of types, looking through type synonyms -- but not newtypes. eqTypes :: [Type] -> [Type] -> Bool eqTypes tys1 tys2 = isEqual $ nonDetCmpTypes tys1 tys2 -- It's OK to use nonDetCmpType here and eqTypes is deterministic, -- nonDetCmpTypes does equality deterministically eqVarBndrs :: RnEnv2 -> [Var] -> [Var] -> Maybe RnEnv2 -- Check that the var lists are the same length -- and have matching kinds; if so, extend the RnEnv2 -- Returns Nothing if they don't match eqVarBndrs env [] [] = Just env eqVarBndrs env (tv1:tvs1) (tv2:tvs2) | eqTypeX env (varType tv1) (varType tv2) = eqVarBndrs (rnBndr2 env tv1 tv2) tvs1 tvs2 eqVarBndrs _ _ _= Nothing -- Now here comes the real worker {- Note [nonDetCmpType nondeterminism] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ nonDetCmpType is implemented in terms of nonDetCmpTypeX. nonDetCmpTypeX uses nonDetCmpTc which compares TyCons by their Unique value. Using Uniques for ordering leads to nondeterminism. We hit the same problem in the TyVarTy case, comparing type variables is nondeterministic, note the call to nonDetCmpVar in nonDetCmpTypeX. See Note [Unique Determinism] for more details. -} nonDetCmpType :: Type -> Type -> Ordering nonDetCmpType (TyConApp tc1 []) (TyConApp tc2 []) | tc1 == tc2 = EQ nonDetCmpType t1 t2 -- we know k1 and k2 have the same kind, because they both have kind *. = nonDetCmpTypeX rn_env t1 t2 where rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfTypes [t1, t2])) {-# INLINE nonDetCmpType #-} nonDetCmpTypes :: [Type] -> [Type] -> Ordering nonDetCmpTypes ts1 ts2 = nonDetCmpTypesX rn_env ts1 ts2 where rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfTypes (ts1 ++ ts2))) -- | An ordering relation between two 'Type's (known below as @t1 :: k1@ -- and @t2 :: k2@) data TypeOrdering = TLT -- ^ @t1 < t2@ | TEQ -- ^ @t1 ~ t2@ and there are no casts in either, -- therefore we can conclude @k1 ~ k2@ | TEQX -- ^ @t1 ~ t2@ yet one of the types contains a cast so -- they may differ in kind. | TGT -- ^ @t1 > t2@ deriving (Eq, Ord, Enum, Bounded) nonDetCmpTypeX :: RnEnv2 -> Type -> Type -> Ordering -- Main workhorse -- See Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep nonDetCmpTypeX env orig_t1 orig_t2 = case go env orig_t1 orig_t2 of -- If there are casts then we also need to do a comparison of the kinds of -- the types being compared TEQX -> toOrdering $ go env k1 k2 ty_ordering -> toOrdering ty_ordering where k1 = typeKind orig_t1 k2 = typeKind orig_t2 toOrdering :: TypeOrdering -> Ordering toOrdering TLT = LT toOrdering TEQ = EQ toOrdering TEQX = EQ toOrdering TGT = GT liftOrdering :: Ordering -> TypeOrdering liftOrdering LT = TLT liftOrdering EQ = TEQ liftOrdering GT = TGT thenCmpTy :: TypeOrdering -> TypeOrdering -> TypeOrdering thenCmpTy TEQ rel = rel thenCmpTy TEQX rel = hasCast rel thenCmpTy rel _ = rel hasCast :: TypeOrdering -> TypeOrdering hasCast TEQ = TEQX hasCast rel = rel -- Returns both the resulting ordering relation between the two types -- and whether either contains a cast. go :: RnEnv2 -> Type -> Type -> TypeOrdering -- See Note [Comparing nullary type synonyms]. go _ (TyConApp tc1 []) (TyConApp tc2 []) | tc1 == tc2 = TEQ go env t1 t2 | Just t1' <- coreView t1 = go env t1' t2 | Just t2' <- coreView t2 = go env t1 t2' go env (TyVarTy tv1) (TyVarTy tv2) = liftOrdering $ rnOccL env tv1 `nonDetCmpVar` rnOccR env tv2 go env (ForAllTy (Bndr tv1 _) t1) (ForAllTy (Bndr tv2 _) t2) = go env (varType tv1) (varType tv2) `thenCmpTy` go (rnBndr2 env tv1 tv2) t1 t2 -- See Note [Equality on AppTys] go env (AppTy s1 t1) ty2 | Just (s2, t2) <- repSplitAppTy_maybe ty2 = go env s1 s2 `thenCmpTy` go env t1 t2 go env ty1 (AppTy s2 t2) | Just (s1, t1) <- repSplitAppTy_maybe ty1 = go env s1 s2 `thenCmpTy` go env t1 t2 go env (FunTy _ w1 s1 t1) (FunTy _ w2 s2 t2) = go env s1 s2 `thenCmpTy` go env t1 t2 `thenCmpTy` go env w1 w2 -- Comparing multiplicities last because the test is usually true go env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = liftOrdering (tc1 `nonDetCmpTc` tc2) `thenCmpTy` gos env tys1 tys2 go _ (LitTy l1) (LitTy l2) = liftOrdering (nonDetCmpTyLit l1 l2) go env (CastTy t1 _) t2 = hasCast $ go env t1 t2 go env t1 (CastTy t2 _) = hasCast $ go env t1 t2 go _ (CoercionTy {}) (CoercionTy {}) = TEQ -- Deal with the rest: TyVarTy < CoercionTy < AppTy < LitTy < TyConApp < ForAllTy go _ ty1 ty2 = liftOrdering $ (get_rank ty1) `compare` (get_rank ty2) where get_rank :: Type -> Int get_rank (CastTy {}) = pprPanic "nonDetCmpTypeX.get_rank" (ppr [ty1,ty2]) get_rank (TyVarTy {}) = 0 get_rank (CoercionTy {}) = 1 get_rank (AppTy {}) = 3 get_rank (LitTy {}) = 4 get_rank (TyConApp {}) = 5 get_rank (FunTy {}) = 6 get_rank (ForAllTy {}) = 7 gos :: RnEnv2 -> [Type] -> [Type] -> TypeOrdering gos _ [] [] = TEQ gos _ [] _ = TLT gos _ _ [] = TGT gos env (ty1:tys1) (ty2:tys2) = go env ty1 ty2 `thenCmpTy` gos env tys1 tys2 ------------- nonDetCmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering nonDetCmpTypesX _ [] [] = EQ nonDetCmpTypesX env (t1:tys1) (t2:tys2) = nonDetCmpTypeX env t1 t2 `thenCmp` nonDetCmpTypesX env tys1 tys2 nonDetCmpTypesX _ [] _ = LT nonDetCmpTypesX _ _ [] = GT ------------- -- | Compare two 'TyCon's. NB: This should /never/ see 'Constraint' (as -- recognized by Kind.isConstraintKindCon) which is considered a synonym for -- 'Type' in Core. -- See Note [Kind Constraint and kind Type] in "GHC.Core.Type". -- See Note [nonDetCmpType nondeterminism] nonDetCmpTc :: TyCon -> TyCon -> Ordering nonDetCmpTc tc1 tc2 = ASSERT( not (isConstraintKindCon tc1) && not (isConstraintKindCon tc2) ) u1 `nonDetCmpUnique` u2 where u1 = tyConUnique tc1 u2 = tyConUnique tc2 {- ************************************************************************ * * The kind of a type * * ************************************************************************ Note [typeKind vs tcTypeKind] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We have two functions to get the kind of a type * typeKind ignores the distinction between Constraint and * * tcTypeKind respects the distinction between Constraint and * tcTypeKind is used by the type inference engine, for which Constraint and * are different; after that we use typeKind. See also Note [coreView vs tcView] Note [Kinding rules for types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In typeKind we consider Constraint and (TYPE LiftedRep) to be identical. We then have t1 : TYPE rep1 t2 : TYPE rep2 (FUN) ---------------- t1 -> t2 : Type ty : TYPE rep `a` is not free in rep (FORALL) ----------------------- forall a. ty : TYPE rep In tcTypeKind we consider Constraint and (TYPE LiftedRep) to be distinct: t1 : TYPE rep1 t2 : TYPE rep2 (FUN) ---------------- t1 -> t2 : Type t1 : Constraint t2 : TYPE rep (PRED1) ---------------- t1 => t2 : Type t1 : Constraint t2 : Constraint (PRED2) --------------------- t1 => t2 : Constraint ty : TYPE rep `a` is not free in rep (FORALL1) ----------------------- forall a. ty : TYPE rep ty : Constraint (FORALL2) ------------------------- forall a. ty : Constraint Note that: * The only way we distinguish '->' from '=>' is by the fact that the argument is a PredTy. Both are FunTys Note [Phantom type variables in kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider type K (r :: RuntimeRep) = Type -- Note 'r' is unused data T r :: K r -- T :: forall r -> K r foo :: forall r. T r The body of the forall in foo's type has kind (K r), and normally it would make no sense to have forall r. (ty :: K r) because the kind of the forall would escape the binding of 'r'. But in this case it's fine because (K r) exapands to Type, so we explicitly /permit/ the type forall r. T r To accommodate such a type, in typeKind (forall a.ty) we use occCheckExpand to expand any type synonyms in the kind of 'ty' to eliminate 'a'. See kinding rule (FORALL) in Note [Kinding rules for types] See also * GHC.Core.Type.occCheckExpand * GHC.Core.Utils.coreAltsType * GHC.Tc.Validity.checkEscapingKind all of which grapple with the same problem. See #14939. -} ----------------------------- typeKind :: HasDebugCallStack => Type -> Kind -- No need to expand synonyms typeKind (TyConApp tc tys) = piResultTys (tyConKind tc) tys typeKind (LitTy l) = typeLiteralKind l typeKind (FunTy {}) = liftedTypeKind typeKind (TyVarTy tyvar) = tyVarKind tyvar typeKind (CastTy _ty co) = coercionRKind co typeKind (CoercionTy co) = coercionType co typeKind (AppTy fun arg) = go fun [arg] where -- Accumulate the type arguments, so we can call piResultTys, -- rather than a succession of calls to piResultTy (which is -- asymptotically costly as the number of arguments increases) go (AppTy fun arg) args = go fun (arg:args) go fun args = piResultTys (typeKind fun) args typeKind ty@(ForAllTy {}) = case occCheckExpand tvs body_kind of -- We must make sure tv does not occur in kind -- As it is already out of scope! -- See Note [Phantom type variables in kinds] Just k' -> k' Nothing -> pprPanic "typeKind" (ppr ty $$ ppr tvs $$ ppr body <+> dcolon <+> ppr body_kind) where (tvs, body) = splitForAllTyVars ty body_kind = typeKind body --------------------------------------------- -- Utilities to be used in GHC.Core.Unify, -- which uses "tc" functions --------------------------------------------- tcTypeKind :: HasDebugCallStack => Type -> Kind -- No need to expand synonyms tcTypeKind (TyConApp tc tys) = piResultTys (tyConKind tc) tys tcTypeKind (LitTy l) = typeLiteralKind l tcTypeKind (TyVarTy tyvar) = tyVarKind tyvar tcTypeKind (CastTy _ty co) = coercionRKind co tcTypeKind (CoercionTy co) = coercionType co tcTypeKind (FunTy { ft_af = af, ft_res = res }) | InvisArg <- af , tcIsConstraintKind (tcTypeKind res) = constraintKind -- Eq a => Ord a :: Constraint | otherwise -- Eq a => a -> a :: TYPE LiftedRep = liftedTypeKind -- Eq a => Array# Int :: Type LiftedRep (not TYPE PtrRep) tcTypeKind (AppTy fun arg) = go fun [arg] where -- Accumulate the type arguments, so we can call piResultTys, -- rather than a succession of calls to piResultTy (which is -- asymptotically costly as the number of arguments increases) go (AppTy fun arg) args = go fun (arg:args) go fun args = piResultTys (tcTypeKind fun) args tcTypeKind ty@(ForAllTy {}) | tcIsConstraintKind body_kind = constraintKind | otherwise = case occCheckExpand tvs body_kind of -- We must make sure tv does not occur in kind -- As it is already out of scope! -- See Note [Phantom type variables in kinds] Just k' -> k' Nothing -> pprPanic "tcTypeKind" (ppr ty $$ ppr tvs $$ ppr body <+> dcolon <+> ppr body_kind) where (tvs, body) = splitForAllTyVars ty body_kind = tcTypeKind body isPredTy :: HasDebugCallStack => Type -> Bool -- See Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep isPredTy ty = tcIsConstraintKind (tcTypeKind ty) -- tcIsConstraintKind stuff only makes sense in the typechecker -- After that Constraint = Type -- See Note [coreView vs tcView] -- Defined here because it is used in isPredTy and tcRepSplitAppTy_maybe (sigh) tcIsConstraintKind :: Kind -> Bool tcIsConstraintKind ty | Just (tc, args) <- tcSplitTyConApp_maybe ty -- Note: tcSplit here , isConstraintKindCon tc = ASSERT2( null args, ppr ty ) True | otherwise = False -- | Like 'kindRep_maybe', but considers 'Constraint' to be distinct -- from 'Type'. For a version that treats them as the same type, see -- 'kindRep_maybe'. tcKindRep_maybe :: HasDebugCallStack => Kind -> Maybe Type tcKindRep_maybe kind | Just (tc, [arg]) <- tcSplitTyConApp_maybe kind -- Note: tcSplit here , tc `hasKey` tYPETyConKey = Just arg | otherwise = Nothing -- | Is this kind equivalent to 'Type'? -- -- This considers 'Constraint' to be distinct from 'Type'. For a version that -- treats them as the same type, see 'isLiftedTypeKind'. tcIsLiftedTypeKind :: Kind -> Bool tcIsLiftedTypeKind kind = case tcKindRep_maybe kind of Just rep -> isLiftedRuntimeRep rep Nothing -> False -- | Is this kind equivalent to @TYPE (BoxedRep l)@ for some @l :: Levity@? -- -- This considers 'Constraint' to be distinct from 'Type'. For a version that -- treats them as the same type, see 'isLiftedTypeKind'. tcIsBoxedTypeKind :: Kind -> Bool tcIsBoxedTypeKind kind = case tcKindRep_maybe kind of Just rep -> isBoxedRuntimeRep rep Nothing -> False -- | Is this kind equivalent to @TYPE r@ (for some unknown r)? -- -- This considers 'Constraint' to be distinct from @*@. tcIsRuntimeTypeKind :: Kind -> Bool tcIsRuntimeTypeKind kind = isJust (tcKindRep_maybe kind) tcReturnsConstraintKind :: Kind -> Bool -- True <=> the Kind ultimately returns a Constraint -- E.g. * -> Constraint -- forall k. k -> Constraint tcReturnsConstraintKind kind | Just kind' <- tcView kind = tcReturnsConstraintKind kind' tcReturnsConstraintKind (ForAllTy _ ty) = tcReturnsConstraintKind ty tcReturnsConstraintKind (FunTy { ft_res = ty }) = tcReturnsConstraintKind ty tcReturnsConstraintKind (TyConApp tc _) = isConstraintKindCon tc tcReturnsConstraintKind _ = False -------------------------- typeLiteralKind :: TyLit -> Kind typeLiteralKind (NumTyLit {}) = naturalTy typeLiteralKind (StrTyLit {}) = typeSymbolKind typeLiteralKind (CharTyLit {}) = charTy -- | Returns True if a type is levity polymorphic. Should be the same -- as (isKindLevPoly . typeKind) but much faster. -- Precondition: The type has kind (TYPE blah) isTypeLevPoly :: Type -> Bool isTypeLevPoly = go where go ty@(TyVarTy {}) = check_kind ty go ty@(AppTy {}) = check_kind ty go ty@(TyConApp tc _) | not (isTcLevPoly tc) = False | otherwise = check_kind ty go (ForAllTy _ ty) = go ty go (FunTy {}) = False go (LitTy {}) = False go ty@(CastTy {}) = check_kind ty go ty@(CoercionTy {}) = pprPanic "isTypeLevPoly co" (ppr ty) check_kind = isKindLevPoly . typeKind -- | Looking past all pi-types, is the end result potentially levity polymorphic? -- Example: True for (forall r (a :: TYPE r). String -> a) -- Example: False for (forall r1 r2 (a :: TYPE r1) (b :: TYPE r2). a -> b -> Type) resultIsLevPoly :: Type -> Bool resultIsLevPoly = isTypeLevPoly . snd . splitPiTys {- ********************************************************************** * * Occurs check expansion %* * %********************************************************************* -} {- Note [Occurs check expansion] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (occurCheckExpand tv xi) expands synonyms in xi just enough to get rid of occurrences of tv outside type function arguments, if that is possible; otherwise, it returns Nothing. For example, suppose we have type F a b = [a] Then occCheckExpand b (F Int b) = Just [Int] but occCheckExpand a (F a Int) = Nothing We don't promise to do the absolute minimum amount of expanding necessary, but we try not to do expansions we don't need to. We prefer doing inner expansions first. For example, type F a b = (a, Int, a, [a]) type G b = Char We have occCheckExpand b (F (G b)) = Just (F Char) even though we could also expand F to get rid of b. Note [Occurrence checking: look inside kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we are considering unifying (alpha :: *) ~ Int -> (beta :: alpha -> alpha) This may be an error (what is that alpha doing inside beta's kind?), but we must not make the mistake of actually unifying or we'll build an infinite data structure. So when looking for occurrences of alpha in the rhs, we must look in the kinds of type variables that occur there. occCheckExpand tries to expand type synonyms to remove unnecessary occurrences of a variable, and thereby get past an occurs-check failure. This is good; but we can't do it in the /kind/ of a variable /occurrence/ For example #18451 built an infinite type: type Const a b = a data SameKind :: k -> k -> Type type T (k :: Const Type a) = forall (b :: k). SameKind a b We have b :: k k :: Const Type a a :: k (must be same as b) So if we aren't careful, a's kind mentions a, which is bad. And expanding an /occurrence/ of 'a' doesn't help, because the /binding site/ is the master copy and all the occurrences should match it. Here's a related example: f :: forall a b (c :: Const Type b). Proxy '[a, c] The list means that 'a' gets the same kind as 'c'; but that kind mentions 'b', so the binders are out of order. Bottom line: in occCheckExpand, do not expand inside the kinds of occurrences. See bad_var_occ in occCheckExpand. And see #18451 for more debate. -} occCheckExpand :: [Var] -> Type -> Maybe Type -- See Note [Occurs check expansion] -- We may have needed to do some type synonym unfolding in order to -- get rid of the variable (or forall), so we also return the unfolded -- version of the type, which is guaranteed to be syntactically free -- of the given type variable. If the type is already syntactically -- free of the variable, then the same type is returned. occCheckExpand vs_to_avoid ty | null vs_to_avoid -- Efficient shortcut = Just ty -- Can happen, eg. GHC.Core.Utils.mkSingleAltCase | otherwise = go (mkVarSet vs_to_avoid, emptyVarEnv) ty where go :: (VarSet, VarEnv TyCoVar) -> Type -> Maybe Type -- The VarSet is the set of variables we are trying to avoid -- The VarEnv carries mappings necessary -- because of kind expansion go (as, env) ty@(TyVarTy tv) | Just tv' <- lookupVarEnv env tv = return (mkTyVarTy tv') | bad_var_occ as tv = Nothing | otherwise = return ty go _ ty@(LitTy {}) = return ty go cxt (AppTy ty1 ty2) = do { ty1' <- go cxt ty1 ; ty2' <- go cxt ty2 ; return (mkAppTy ty1' ty2') } go cxt ty@(FunTy _ w ty1 ty2) = do { w' <- go cxt w ; ty1' <- go cxt ty1 ; ty2' <- go cxt ty2 ; return (ty { ft_mult = w', ft_arg = ty1', ft_res = ty2' }) } go cxt@(as, env) (ForAllTy (Bndr tv vis) body_ty) = do { ki' <- go cxt (varType tv) ; let tv' = setVarType tv ki' env' = extendVarEnv env tv tv' as' = as `delVarSet` tv ; body' <- go (as', env') body_ty ; return (ForAllTy (Bndr tv' vis) body') } -- For a type constructor application, first try expanding away the -- offending variable from the arguments. If that doesn't work, next -- see if the type constructor is a type synonym, and if so, expand -- it and try again. go cxt ty@(TyConApp tc tys) = case mapM (go cxt) tys of Just tys' -> return (mkTyConApp tc tys') Nothing | Just ty' <- tcView ty -> go cxt ty' | otherwise -> Nothing -- Failing that, try to expand a synonym go cxt (CastTy ty co) = do { ty' <- go cxt ty ; co' <- go_co cxt co ; return (mkCastTy ty' co') } go cxt (CoercionTy co) = do { co' <- go_co cxt co ; return (mkCoercionTy co') } ------------------ bad_var_occ :: VarSet -> Var -> Bool -- Works for TyVar and CoVar -- See Note [Occurrence checking: look inside kinds] bad_var_occ vs_to_avoid v = v `elemVarSet` vs_to_avoid || tyCoVarsOfType (varType v) `intersectsVarSet` vs_to_avoid ------------------ go_mco _ MRefl = return MRefl go_mco ctx (MCo co) = MCo <$> go_co ctx co ------------------ go_co cxt (Refl ty) = do { ty' <- go cxt ty ; return (mkNomReflCo ty') } go_co cxt (GRefl r ty mco) = do { mco' <- go_mco cxt mco ; ty' <- go cxt ty ; return (mkGReflCo r ty' mco') } -- Note: Coercions do not contain type synonyms go_co cxt (TyConAppCo r tc args) = do { args' <- mapM (go_co cxt) args ; return (mkTyConAppCo r tc args') } go_co cxt (AppCo co arg) = do { co' <- go_co cxt co ; arg' <- go_co cxt arg ; return (mkAppCo co' arg') } go_co cxt@(as, env) (ForAllCo tv kind_co body_co) = do { kind_co' <- go_co cxt kind_co ; let tv' = setVarType tv $ coercionLKind kind_co' env' = extendVarEnv env tv tv' as' = as `delVarSet` tv ; body' <- go_co (as', env') body_co ; return (ForAllCo tv' kind_co' body') } go_co cxt (FunCo r w co1 co2) = do { co1' <- go_co cxt co1 ; co2' <- go_co cxt co2 ; w' <- go_co cxt w ; return (mkFunCo r w' co1' co2') } go_co (as,env) co@(CoVarCo c) | Just c' <- lookupVarEnv env c = return (mkCoVarCo c') | bad_var_occ as c = Nothing | otherwise = return co go_co (as,_) co@(HoleCo h) | bad_var_occ as (ch_co_var h) = Nothing | otherwise = return co go_co cxt (AxiomInstCo ax ind args) = do { args' <- mapM (go_co cxt) args ; return (mkAxiomInstCo ax ind args') } go_co cxt (UnivCo p r ty1 ty2) = do { p' <- go_prov cxt p ; ty1' <- go cxt ty1 ; ty2' <- go cxt ty2 ; return (mkUnivCo p' r ty1' ty2') } go_co cxt (SymCo co) = do { co' <- go_co cxt co ; return (mkSymCo co') } go_co cxt (TransCo co1 co2) = do { co1' <- go_co cxt co1 ; co2' <- go_co cxt co2 ; return (mkTransCo co1' co2') } go_co cxt (NthCo r n co) = do { co' <- go_co cxt co ; return (mkNthCo r n co') } go_co cxt (LRCo lr co) = do { co' <- go_co cxt co ; return (mkLRCo lr co') } go_co cxt (InstCo co arg) = do { co' <- go_co cxt co ; arg' <- go_co cxt arg ; return (mkInstCo co' arg') } go_co cxt (KindCo co) = do { co' <- go_co cxt co ; return (mkKindCo co') } go_co cxt (SubCo co) = do { co' <- go_co cxt co ; return (mkSubCo co') } go_co cxt (AxiomRuleCo ax cs) = do { cs' <- mapM (go_co cxt) cs ; return (mkAxiomRuleCo ax cs') } ------------------ go_prov cxt (PhantomProv co) = PhantomProv <$> go_co cxt co go_prov cxt (ProofIrrelProv co) = ProofIrrelProv <$> go_co cxt co go_prov _ p@(PluginProv _) = return p go_prov _ p@CorePrepProv = return p {- %************************************************************************ %* * Miscellaneous functions %* * %************************************************************************ -} -- | All type constructors occurring in the type; looking through type -- synonyms, but not newtypes. -- When it finds a Class, it returns the class TyCon. tyConsOfType :: Type -> UniqSet TyCon tyConsOfType ty = go ty where go :: Type -> UniqSet TyCon -- The UniqSet does duplicate elim go ty | Just ty' <- coreView ty = go ty' go (TyVarTy {}) = emptyUniqSet go (LitTy {}) = emptyUniqSet go (TyConApp tc tys) = go_tc tc `unionUniqSets` go_s tys go (AppTy a b) = go a `unionUniqSets` go b go (FunTy _ w a b) = go w `unionUniqSets` go a `unionUniqSets` go b `unionUniqSets` go_tc funTyCon go (ForAllTy (Bndr tv _) ty) = go ty `unionUniqSets` go (varType tv) go (CastTy ty co) = go ty `unionUniqSets` go_co co go (CoercionTy co) = go_co co go_co (Refl ty) = go ty go_co (GRefl _ ty mco) = go ty `unionUniqSets` go_mco mco go_co (TyConAppCo _ tc args) = go_tc tc `unionUniqSets` go_cos args go_co (AppCo co arg) = go_co co `unionUniqSets` go_co arg go_co (ForAllCo _ kind_co co) = go_co kind_co `unionUniqSets` go_co co go_co (FunCo _ co_mult co1 co2) = go_co co_mult `unionUniqSets` go_co co1 `unionUniqSets` go_co co2 go_co (AxiomInstCo ax _ args) = go_ax ax `unionUniqSets` go_cos args go_co (UnivCo p _ t1 t2) = go_prov p `unionUniqSets` go t1 `unionUniqSets` go t2 go_co (CoVarCo {}) = emptyUniqSet go_co (HoleCo {}) = emptyUniqSet go_co (SymCo co) = go_co co go_co (TransCo co1 co2) = go_co co1 `unionUniqSets` go_co co2 go_co (NthCo _ _ co) = go_co co go_co (LRCo _ co) = go_co co go_co (InstCo co arg) = go_co co `unionUniqSets` go_co arg go_co (KindCo co) = go_co co go_co (SubCo co) = go_co co go_co (AxiomRuleCo _ cs) = go_cos cs go_mco MRefl = emptyUniqSet go_mco (MCo co) = go_co co go_prov (PhantomProv co) = go_co co go_prov (ProofIrrelProv co) = go_co co go_prov (PluginProv _) = emptyUniqSet go_prov CorePrepProv = emptyUniqSet -- this last case can happen from the tyConsOfType used from -- checkTauTvUpdate go_s tys = foldr (unionUniqSets . go) emptyUniqSet tys go_cos cos = foldr (unionUniqSets . go_co) emptyUniqSet cos go_tc tc = unitUniqSet tc go_ax ax = go_tc $ coAxiomTyCon ax -- | Retrieve the free variables in this type, splitting them based -- on whether they are used visibly or invisibly. Invisible ones come -- first. splitVisVarsOfType :: Type -> Pair TyCoVarSet splitVisVarsOfType orig_ty = Pair invis_vars vis_vars where Pair invis_vars1 vis_vars = go orig_ty invis_vars = invis_vars1 `minusVarSet` vis_vars go (TyVarTy tv) = Pair (tyCoVarsOfType $ tyVarKind tv) (unitVarSet tv) go (AppTy t1 t2) = go t1 `mappend` go t2 go (TyConApp tc tys) = go_tc tc tys go (FunTy _ w t1 t2) = go w `mappend` go t1 `mappend` go t2 go (ForAllTy (Bndr tv _) ty) = ((`delVarSet` tv) <$> go ty) `mappend` (invisible (tyCoVarsOfType $ varType tv)) go (LitTy {}) = mempty go (CastTy ty co) = go ty `mappend` invisible (tyCoVarsOfCo co) go (CoercionTy co) = invisible $ tyCoVarsOfCo co invisible vs = Pair vs emptyVarSet go_tc tc tys = let (invis, vis) = partitionInvisibleTypes tc tys in invisible (tyCoVarsOfTypes invis) `mappend` foldMap go vis splitVisVarsOfTypes :: [Type] -> Pair TyCoVarSet splitVisVarsOfTypes = foldMap splitVisVarsOfType {- ************************************************************************ * * Functions over Kinds * * ************************************************************************ Note [Kind Constraint and kind Type] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The kind Constraint is the kind of classes and other type constraints. The special thing about types of kind Constraint is that * They are displayed with double arrow: f :: Ord a => a -> a * They are implicitly instantiated at call sites; so the type inference engine inserts an extra argument of type (Ord a) at every call site to f. However, once type inference is over, there is *no* distinction between Constraint and Type. Indeed we can have coercions between the two. Consider class C a where op :: a -> a For this single-method class we may generate a newtype, which in turn generates an axiom witnessing C a ~ (a -> a) so on the left we have Constraint, and on the right we have Type. See #7451. Because we treat Constraint/Type differently during and after type inference, GHC has two notions of equality that differ in whether they equate Constraint/Type or not: * GHC.Tc.Utils.TcType.tcEqType implements typechecker equality (see Note [Typechecker equality vs definitional equality] in GHC.Tc.Utils.TcType), which treats Constraint and Type as distinct. This is used during type inference. See #11715 for issues that arise from this. * GHC.Core.TyCo.Rep.eqType implements definitional equality (see Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep), which treats Constraint and Type as equal. This is used after type inference. Bottom line: although 'Type' and 'Constraint' are distinct TyCons, with distinct uniques, they are treated as equal at all times except during type inference. -} -- | Tests whether the given kind (which should look like @TYPE x@) -- is something other than a constructor tree (that is, constructors at every node). -- E.g. True of TYPE k, TYPE (F Int) -- False of TYPE 'LiftedRep isKindLevPoly :: Kind -> Bool isKindLevPoly k = ASSERT2( isLiftedTypeKind k || _is_type, ppr k ) -- the isLiftedTypeKind check is necessary b/c of Constraint go k where go ty | Just ty' <- coreView ty = go ty' go TyVarTy{} = True go AppTy{} = True -- it can't be a TyConApp go (TyConApp tc tys) = isFamilyTyCon tc || any go tys go ForAllTy{} = True go (FunTy _ w t1 t2) = go w || go t1 || go t2 go LitTy{} = False go CastTy{} = True go CoercionTy{} = True _is_type = classifiesTypeWithValues k ----------------------------------------- -- Subkinding -- The tc variants are used during type-checking, where ConstraintKind -- is distinct from all other kinds -- After type-checking (in core), Constraint and liftedTypeKind are -- indistinguishable -- | Does this classify a type allowed to have values? Responds True to things -- like *, #, TYPE Lifted, TYPE v, Constraint. classifiesTypeWithValues :: Kind -> Bool -- ^ True of any sub-kind of OpenTypeKind classifiesTypeWithValues k = isJust (kindRep_maybe k) {- %************************************************************************ %* * Pretty-printing %* * %************************************************************************ Most pretty-printing is either in GHC.Core.TyCo.Rep or GHC.Iface.Type. -} -- | Does a 'TyCon' (that is applied to some number of arguments) need to be -- ascribed with an explicit kind signature to resolve ambiguity if rendered as -- a source-syntax type? -- (See @Note [When does a tycon application need an explicit kind signature?]@ -- for a full explanation of what this function checks for.) tyConAppNeedsKindSig :: Bool -- ^ Should specified binders count towards injective positions in -- the kind of the TyCon? (If you're using visible kind -- applications, then you want True here. -> TyCon -> Int -- ^ The number of args the 'TyCon' is applied to. -> Bool -- ^ Does @T t_1 ... t_n@ need a kind signature? (Where @n@ is the -- number of arguments) tyConAppNeedsKindSig spec_inj_pos tc n_args | LT <- listLengthCmp tc_binders n_args = False | otherwise = let (dropped_binders, remaining_binders) = splitAt n_args tc_binders result_kind = mkTyConKind remaining_binders tc_res_kind result_vars = tyCoVarsOfType result_kind dropped_vars = fvVarSet $ mapUnionFV injective_vars_of_binder dropped_binders in not (subVarSet result_vars dropped_vars) where tc_binders = tyConBinders tc tc_res_kind = tyConResKind tc -- Returns the variables that would be fixed by knowing a TyConBinder. See -- Note [When does a tycon application need an explicit kind signature?] -- for a more detailed explanation of what this function does. injective_vars_of_binder :: TyConBinder -> FV injective_vars_of_binder (Bndr tv vis) = case vis of AnonTCB VisArg -> injectiveVarsOfType False -- conservative choice (varType tv) NamedTCB argf | source_of_injectivity argf -> unitFV tv `unionFV` injectiveVarsOfType False (varType tv) _ -> emptyFV source_of_injectivity Required = True -- See Note [Explicit Case Statement for Specificity] source_of_injectivity (Invisible spec) = case spec of SpecifiedSpec -> spec_inj_pos InferredSpec -> False {- Note [Explicit Case Statement for Specificity] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When pattern matching against an `ArgFlag`, you should not pattern match against the pattern synonyms 'Specified' or 'Inferred', as this results in a non-exhaustive pattern match warning. Instead, pattern match against 'Invisible spec' and do another case analysis on this specificity argument. The issue has been fixed in GHC 8.10 (ticket #17876). This hack can thus be dropped once version 8.10 is used as the minimum version for building GHC. Note [When does a tycon application need an explicit kind signature?] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are a couple of places in GHC where we convert Core Types into forms that more closely resemble user-written syntax. These include: 1. Template Haskell Type reification (see, for instance, GHC.Tc.Gen.Splice.reify_tc_app) 2. Converting Types to LHsTypes (such as in Haddock.Convert in haddock) This conversion presents a challenge: how do we ensure that the resulting type has enough kind information so as not to be ambiguous? To better motivate this question, consider the following Core type: -- Foo :: Type -> Type type Foo = Proxy Type There is nothing ambiguous about the RHS of Foo in Core. But if we were to, say, reify it into a TH Type, then it's tempting to just drop the invisible Type argument and simply return `Proxy`. But now we've lost crucial kind information: we don't know if we're dealing with `Proxy Type` or `Proxy Bool` or `Proxy Int` or something else! We've inadvertently introduced ambiguity. Unlike in other situations in GHC, we can't just turn on -fprint-explicit-kinds, as we need to produce something which has the same structure as a source-syntax type. Moreover, we can't rely on visible kind application, since the first kind argument to Proxy is inferred, not specified. Our solution is to annotate certain tycons with their kinds whenever they appear in applied form in order to resolve the ambiguity. For instance, we would reify the RHS of Foo like so: type Foo = (Proxy :: Type -> Type) We need to devise an algorithm that determines precisely which tycons need these explicit kind signatures. We certainly don't want to annotate _every_ tycon with a kind signature, or else we might end up with horribly bloated types like the following: (Either :: Type -> Type -> Type) (Int :: Type) (Char :: Type) We only want to annotate tycons that absolutely require kind signatures in order to resolve some sort of ambiguity, and nothing more. Suppose we have a tycon application (T ty_1 ... ty_n). Why might this type require a kind signature? It might require it when we need to fill in any of T's omitted arguments. By "omitted argument", we mean one that is dropped when reifying ty_1 ... ty_n. Sometimes, the omitted arguments are inferred and specified arguments (e.g., TH reification in GHC.Tc.Gen.Splice), and sometimes the omitted arguments are only the inferred ones (e.g., in situations where specified arguments are reified through visible kind application). Regardless, the key idea is that _some_ arguments are going to be omitted after reification, and the only mechanism we have at our disposal for filling them in is through explicit kind signatures. What do we mean by "fill in"? Let's consider this small example: T :: forall {k}. Type -> (k -> Type) -> k Moreover, we have this application of T: T @{j} Int aty When we reify this type, we omit the inferred argument @{j}. Is it fixed by the other (non-inferred) arguments? Yes! If we know the kind of (aty :: blah), then we'll generate an equality constraint (kappa -> Type) and, assuming we can solve it, that will fix `kappa`. (Here, `kappa` is the unification variable that we instantiate `k` with.) Therefore, for any application of a tycon T to some arguments, the Question We Must Answer is: * Given the first n arguments of T, do the kinds of the non-omitted arguments fill in the omitted arguments? (This is still a bit hand-wavey, but we'll refine this question incrementally as we explain more of the machinery underlying this process.) Answering this question is precisely the role that the `injectiveVarsOfType` and `injective_vars_of_binder` functions exist to serve. If an omitted argument `a` appears in the set returned by `injectiveVarsOfType ty`, then knowing `ty` determines (i.e., fills in) `a`. (More on `injective_vars_of_binder` in a bit.) More formally, if `a` is in `injectiveVarsOfType ty` and S1(ty) ~ S2(ty), then S1(a) ~ S2(a), where S1 and S2 are arbitrary substitutions. For example, is `F` is a non-injective type family, then injectiveVarsOfType(Either c (Maybe (a, F b c))) = {a, c} Now that we know what this function does, here is a second attempt at the Question We Must Answer: * Given the first n arguments of T (ty_1 ... ty_n), consider the binders of T that are instantiated by non-omitted arguments. Do the injective variables of these binders fill in the remainder of T's kind? Alright, we're getting closer. Next, we need to clarify what the injective variables of a tycon binder are. This the role that the `injective_vars_of_binder` function serves. Here is what this function does for each form of tycon binder: * Anonymous binders are injective positions. For example, in the promoted data constructor '(:): '(:) :: forall a. a -> [a] -> [a] The second and third tyvar binders (of kinds `a` and `[a]`) are both anonymous, so if we had '(:) 'True '[], then the kinds of 'True and '[] would contribute to the kind of '(:) 'True '[]. Therefore, injective_vars_of_binder(_ :: a) = injectiveVarsOfType(a) = {a}. (Similarly, injective_vars_of_binder(_ :: [a]) = {a}.) * Named binders: - Inferred binders are never injective positions. For example, in this data type: data Proxy a Proxy :: forall {k}. k -> Type If we had Proxy 'True, then the kind of 'True would not contribute to the kind of Proxy 'True. Therefore, injective_vars_of_binder(forall {k}. ...) = {}. - Required binders are injective positions. For example, in this data type: data Wurble k (a :: k) :: k Wurble :: forall k -> k -> k The first tyvar binder (of kind `forall k`) has required visibility, so if we had Wurble (Maybe a) Nothing, then the kind of Maybe a would contribute to the kind of Wurble (Maybe a) Nothing. Hence, injective_vars_of_binder(forall a -> ...) = {a}. - Specified binders /might/ be injective positions, depending on how you approach things. Continuing the '(:) example: '(:) :: forall a. a -> [a] -> [a] Normally, the (forall a. ...) tyvar binder wouldn't contribute to the kind of '(:) 'True '[], since it's not explicitly instantiated by the user. But if visible kind application is enabled, then this is possible, since the user can write '(:) @Bool 'True '[]. (In that case, injective_vars_of_binder(forall a. ...) = {a}.) There are some situations where using visible kind application is appropriate and others where it is not (e.g., TH reification), so the `injective_vars_of_binder` function is parametrized by a Bool which decides if specified binders should be counted towards injective positions or not. Now that we've defined injective_vars_of_binder, we can refine the Question We Must Answer once more: * Given the first n arguments of T (ty_1 ... ty_n), consider the binders of T that are instantiated by non-omitted arguments. For each such binder b_i, take the union of all injective_vars_of_binder(b_i). Is this set a superset of the free variables of the remainder of T's kind? If the answer to this question is "no", then (T ty_1 ... ty_n) needs an explicit kind signature, since T's kind has kind variables leftover that aren't fixed by the non-omitted arguments. One last sticking point: what does "the remainder of T's kind" mean? You might be tempted to think that it corresponds to all of the arguments in the kind of T that would normally be instantiated by omitted arguments. But this isn't quite right, strictly speaking. Consider the following (silly) example: S :: forall {k}. Type -> Type And suppose we have this application of S: S Int Bool The Int argument would be omitted, and injective_vars_of_binder(_ :: Type) = {}. This is not a superset of {k}, which might suggest that (S Bool) needs an explicit kind signature. But (S Bool :: Type) doesn't actually fix `k`! This is because the kind signature only affects the /result/ of the application, not all of the individual arguments. So adding a kind signature here won't make a difference. Therefore, the fourth (and final) iteration of the Question We Must Answer is: * Given the first n arguments of T (ty_1 ... ty_n), consider the binders of T that are instantiated by non-omitted arguments. For each such binder b_i, take the union of all injective_vars_of_binder(b_i). Is this set a superset of the free variables of the kind of (T ty_1 ... ty_n)? Phew, that was a lot of work! How can be sure that this is correct? That is, how can we be sure that in the event that we leave off a kind annotation, that one could infer the kind of the tycon application from its arguments? It's essentially a proof by induction: if we can infer the kinds of every subtree of a type, then the whole tycon application will have an inferrable kind--unless, of course, the remainder of the tycon application's kind has uninstantiated kind variables. What happens if T is oversaturated? That is, if T's kind has fewer than n arguments, in the case that the concrete application instantiates a result kind variable with an arrow kind? If we run out of arguments, we do not attach a kind annotation. This should be a rare case, indeed. Here is an example: data T1 :: k1 -> k2 -> * data T2 :: k1 -> k2 -> * type family G (a :: k) :: k type instance G T1 = T2 type instance F Char = (G T1 Bool :: (* -> *) -> *) -- F from above Here G's kind is (forall k. k -> k), and the desugared RHS of that last instance of F is (G (* -> (* -> *) -> *) (T1 * (* -> *)) Bool). According to the algorithm above, there are 3 arguments to G so we should peel off 3 arguments in G's kind. But G's kind has only two arguments. This is the rare special case, and we choose not to annotate the application of G with a kind signature. After all, we needn't do this, since that instance would be reified as: type instance F Char = G (T1 :: * -> (* -> *) -> *) Bool So the kind of G isn't ambiguous anymore due to the explicit kind annotation on its argument. See #8953 and test th/T8953. -} {- ************************************************************************ * * Multiplicities * * ************************************************************************ These functions would prefer to be in GHC.Core.Multiplicity, but they some are used elsewhere in this module, and wanted to bring their friends here with them. -} unrestricted, linear, tymult :: a -> Scaled a -- | Scale a payload by Many unrestricted = Scaled Many -- | Scale a payload by One linear = Scaled One -- | Scale a payload by Many; used for type arguments in core tymult = Scaled Many irrelevantMult :: Scaled a -> a irrelevantMult = scaledThing mkScaled :: Mult -> a -> Scaled a mkScaled = Scaled scaledSet :: Scaled a -> b -> Scaled b scaledSet (Scaled m _) b = Scaled m b pattern One :: Mult pattern One <- (isOneDataConTy -> True) where One = oneDataConTy pattern Many :: Mult pattern Many <- (isManyDataConTy -> True) where Many = manyDataConTy isManyDataConTy :: Mult -> Bool isManyDataConTy ty | Just tc <- tyConAppTyCon_maybe ty = tc `hasKey` manyDataConKey isManyDataConTy _ = False isOneDataConTy :: Mult -> Bool isOneDataConTy ty | Just tc <- tyConAppTyCon_maybe ty = tc `hasKey` oneDataConKey isOneDataConTy _ = False isLinearType :: Type -> Bool -- ^ @isLinear t@ returns @True@ of a if @t@ is a type of (curried) function -- where at least one argument is linear (or otherwise non-unrestricted). We use -- this function to check whether it is safe to eta reduce an Id in CorePrep. It -- is always safe to return 'True', because 'True' deactivates the optimisation. isLinearType ty = case ty of FunTy _ Many _ res -> isLinearType res FunTy _ _ _ _ -> True ForAllTy _ res -> isLinearType res _ -> False