{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE ScopedTypeVariables #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1993-1998 A ``lint'' pass to check for Core correctness. See Note [Core Lint guarantee]. -} module GHC.Core.Lint ( lintCoreBindings, lintUnfolding, lintPassResult, lintInteractiveExpr, lintExpr, lintAnnots, lintAxioms, interactiveInScope, -- ** Debug output endPass, endPassIO, displayLintResults, dumpPassResult, dumpIfSet, ) where #include "HsVersions.h" import GHC.Prelude import GHC.Driver.Session import GHC.Driver.Ppr import GHC.Driver.Env import GHC.Core import GHC.Core.FVs import GHC.Core.Utils import GHC.Core.Stats ( coreBindsStats ) import GHC.Core.Opt.Monad import GHC.Data.Bag import GHC.Types.Literal import GHC.Core.DataCon import GHC.Builtin.Types.Prim import GHC.Builtin.Types ( multiplicityTy ) import GHC.Tc.Utils.TcType ( isFloatingTy, isTyFamFree ) import GHC.Types.Var as Var import GHC.Types.Var.Env import GHC.Types.Var.Set import GHC.Types.Unique.Set( nonDetEltsUniqSet ) import GHC.Types.Name import GHC.Types.Name.Env import GHC.Types.Id import GHC.Types.Id.Info import GHC.Core.Ppr import GHC.Core.Coercion import GHC.Types.SrcLoc import GHC.Types.Tickish import GHC.Core.Type as Type import GHC.Core.Multiplicity import GHC.Core.UsageEnv import GHC.Types.RepType import GHC.Core.TyCo.Rep -- checks validity of types/coercions import GHC.Core.TyCo.Subst import GHC.Core.TyCo.FVs import GHC.Core.TyCo.Ppr ( pprTyVar, pprTyVars ) import GHC.Core.TyCon as TyCon import GHC.Core.Coercion.Axiom import GHC.Core.Unify import GHC.Types.Basic import GHC.Utils.Error import qualified GHC.Utils.Error as Err import GHC.Utils.Logger (Logger, putLogMsg, putDumpMsg, DumpFormat (..), getLogger) import qualified GHC.Utils.Logger as Logger import GHC.Data.List.SetOps import GHC.Builtin.Names import GHC.Utils.Outputable as Outputable import GHC.Utils.Panic import GHC.Data.FastString import GHC.Utils.Misc import GHC.Core.InstEnv ( instanceDFunId ) import GHC.Core.Coercion.Opt ( checkAxInstCo ) import GHC.Core.Opt.Arity ( typeArity ) import GHC.Types.Demand ( splitStrictSig, isDeadEndDiv ) import GHC.Types.TypeEnv import GHC.Unit.Module.ModGuts import GHC.Runtime.Context import Control.Monad import GHC.Utils.Monad import Data.Foldable ( toList ) import Data.List.NonEmpty ( NonEmpty(..), groupWith ) import Data.List ( partition ) import Data.Maybe import GHC.Data.Pair import qualified GHC.LanguageExtensions as LangExt {- Note [Core Lint guarantee] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Core Lint is the type-checker for Core. Using it, we get the following guarantee: If all of: 1. Core Lint passes, 2. there are no unsafe coercions (i.e. unsafeEqualityProof), 3. all plugin-supplied coercions (i.e. PluginProv) are valid, and 4. all case-matches are complete then running the compiled program will not seg-fault, assuming no bugs downstream (e.g. in the code generator). This guarantee is quite powerful, in that it allows us to decouple the safety of the resulting program from the type inference algorithm. However, do note point (4) above. Core Lint does not check for incomplete case-matches; see Note [Case expression invariants] in GHC.Core, invariant (4). As explained there, an incomplete case-match might slip by Core Lint and cause trouble at runtime. Note [GHC Formalism] ~~~~~~~~~~~~~~~~~~~~ This file implements the type-checking algorithm for System FC, the "official" name of the Core language. Type safety of FC is heart of the claim that executables produced by GHC do not have segmentation faults. Thus, it is useful to be able to reason about System FC independently of reading the code. To this purpose, there is a document core-spec.pdf built in docs/core-spec that contains a formalism of the types and functions dealt with here. If you change just about anything in this file or you change other types/functions throughout the Core language (all signposted to this note), you should update that formalism. See docs/core-spec/README for more info about how to do so. Note [check vs lint] ~~~~~~~~~~~~~~~~~~~~ This file implements both a type checking algorithm and also general sanity checking. For example, the "sanity checking" checks for TyConApp on the left of an AppTy, which should never happen. These sanity checks don't really affect any notion of type soundness. Yet, it is convenient to do the sanity checks at the same time as the type checks. So, we use the following naming convention: - Functions that begin with 'lint'... are involved in type checking. These functions might also do some sanity checking. - Functions that begin with 'check'... are *not* involved in type checking. They exist only for sanity checking. Issues surrounding variable naming, shadowing, and such are considered *not* to be part of type checking, as the formalism omits these details. Summary of checks ~~~~~~~~~~~~~~~~~ Checks that a set of core bindings is well-formed. The PprStyle and String just control what we print in the event of an error. The Bool value indicates whether we have done any specialisation yet (in which case we do some extra checks). We check for (a) type errors (b) Out-of-scope type variables (c) Out-of-scope local variables (d) Ill-kinded types (e) Incorrect unsafe coercions If we have done specialisation the we check that there are (a) No top-level bindings of primitive (unboxed type) Outstanding issues: -- Things are *not* OK if: -- -- * Unsaturated type app before specialisation has been done; -- -- * Oversaturated type app after specialisation (eta reduction -- may well be happening...); Note [Linting function types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As described in Note [Representation of function types], all saturated applications of funTyCon are represented with the FunTy constructor. We check this invariant in lintType. Note [Linting type lets] ~~~~~~~~~~~~~~~~~~~~~~~~ In the desugarer, it's very very convenient to be able to say (in effect) let a = Type Bool in let x::a = True in That is, use a type let. See Note [Core type and coercion invariant] in "GHC.Core". One place it is used is in mkWwArgs; see Note [Join points and beta-redexes] in GHC.Core.Opt.WorkWrap.Utils. (Maybe there are other "clients" of this feature; I'm not sure). * Hence when linting we need to remember that a=Int, else we might reject a correct program. So we carry a type substitution (in this example [a -> Bool]) and apply this substitution before comparing types. In effect, in Lint, type equality is always equality-modulo-le-subst. This is in the le_subst field of LintEnv. But nota bene: (SI1) The le_subst substitution is applied to types and coercions only (SI2) The result of that substitution is used only to check for type equality, to check well-typed-ness, /but is then discarded/. The result of substittion does not outlive the CoreLint pass. (SI3) The InScopeSet of le_subst includes only TyVar and CoVar binders. * The function lintInTy :: Type -> LintM (Type, Kind) returns a substituted type. * When we encounter a binder (like x::a) we must apply the substitution to the type of the binding variable. lintBinders does this. * Clearly we need to clone tyvar binders as we go. * But take care (#17590)! We must also clone CoVar binders: let a = TYPE (ty |> cv) in \cv -> blah blindly substituting for `a` might capture `cv`. * Alas, when cloning a coercion variable we might choose a unique that happens to clash with an inner Id, thus \cv_66 -> let wild_X7 = blah in blah We decide to clone `cv_66` because it's already in scope. Fine, choose a new unique. Aha, X7 looks good. So we check the lambda body with le_subst of [cv_66 :-> cv_X7] This is all fine, even though we use the same unique as wild_X7. As (SI2) says, we do /not/ return a new lambda (\cv_X7 -> let wild_X7 = blah in ...) We simply use the le_subst substitution in types/coercions only, when checking for equality. * We still need to check that Id occurrences are bound by some enclosing binding. We do /not/ use the InScopeSet for the le_subst for this purpose -- it contains only TyCoVars. Instead we have a separate le_ids for the in-scope Id binders. Sigh. We might want to explore getting rid of type-let! Note [Bad unsafe coercion] ~~~~~~~~~~~~~~~~~~~~~~~~~~ For discussion see https://gitlab.haskell.org/ghc/ghc/wikis/bad-unsafe-coercions Linter introduces additional rules that checks improper coercion between different types, called bad coercions. Following coercions are forbidden: (a) coercions between boxed and unboxed values; (b) coercions between unlifted values of the different sizes, here active size is checked, i.e. size of the actual value but not the space allocated for value; (c) coercions between floating and integral boxed values, this check is not yet supported for unboxed tuples, as no semantics were specified for that; (d) coercions from / to vector type (e) If types are unboxed tuples then tuple (# A_1,..,A_n #) can be coerced to (# B_1,..,B_m #) if n=m and for each pair A_i, B_i rules (a-e) holds. Note [Join points] ~~~~~~~~~~~~~~~~~~ We check the rules listed in Note [Invariants on join points] in GHC.Core. The only one that causes any difficulty is the first: All occurrences must be tail calls. To this end, along with the in-scope set, we remember in le_joins the subset of in-scope Ids that are valid join ids. For example: join j x = ... in case e of A -> jump j y -- good B -> case (jump j z) of -- BAD C -> join h = jump j w in ... -- good D -> let x = jump j v in ... -- BAD A join point remains valid in case branches, so when checking the A branch, j is still valid. When we check the scrutinee of the inner case, however, we set le_joins to empty, and catch the error. Similarly, join points can occur free in RHSes of other join points but not the RHSes of value bindings (thunks and functions). ************************************************************************ * * Beginning and ending passes * * ************************************************************************ These functions are not CoreM monad stuff, but they probably ought to be, and it makes a convenient place for them. They print out stuff before and after core passes, and do Core Lint when necessary. -} endPass :: CoreToDo -> CoreProgram -> [CoreRule] -> CoreM () endPass pass binds rules = do { hsc_env <- getHscEnv ; print_unqual <- getPrintUnqualified ; liftIO $ endPassIO hsc_env print_unqual pass binds rules } endPassIO :: HscEnv -> PrintUnqualified -> CoreToDo -> CoreProgram -> [CoreRule] -> IO () -- Used by the IO-is CorePrep too endPassIO hsc_env print_unqual pass binds rules = do { dumpPassResult logger dflags print_unqual mb_flag (ppr pass) (pprPassDetails pass) binds rules ; lintPassResult hsc_env pass binds } where logger = hsc_logger hsc_env dflags = hsc_dflags hsc_env mb_flag = case coreDumpFlag pass of Just flag | dopt flag dflags -> Just flag | dopt Opt_D_verbose_core2core dflags -> Just flag _ -> Nothing dumpIfSet :: Logger -> DynFlags -> Bool -> CoreToDo -> SDoc -> SDoc -> IO () dumpIfSet logger dflags dump_me pass extra_info doc = Logger.dumpIfSet logger dflags dump_me (showSDoc dflags (ppr pass <+> extra_info)) doc dumpPassResult :: Logger -> DynFlags -> PrintUnqualified -> Maybe DumpFlag -- Just df => show details in a file whose -- name is specified by df -> SDoc -- Header -> SDoc -- Extra info to appear after header -> CoreProgram -> [CoreRule] -> IO () dumpPassResult logger dflags unqual mb_flag hdr extra_info binds rules = do { forM_ mb_flag $ \flag -> do let sty = mkDumpStyle unqual putDumpMsg logger dflags sty flag (showSDoc dflags hdr) FormatCore dump_doc -- Report result size -- This has the side effect of forcing the intermediate to be evaluated -- if it's not already forced by a -ddump flag. ; Err.debugTraceMsg logger dflags 2 size_doc } where size_doc = sep [text "Result size of" <+> hdr, nest 2 (equals <+> ppr (coreBindsStats binds))] dump_doc = vcat [ nest 2 extra_info , size_doc , blankLine , pprCoreBindingsWithSize binds , ppUnless (null rules) pp_rules ] pp_rules = vcat [ blankLine , text "------ Local rules for imported ids --------" , pprRules rules ] coreDumpFlag :: CoreToDo -> Maybe DumpFlag coreDumpFlag (CoreDoSimplify {}) = Just Opt_D_verbose_core2core coreDumpFlag (CoreDoPluginPass {}) = Just Opt_D_verbose_core2core coreDumpFlag CoreDoFloatInwards = Just Opt_D_verbose_core2core coreDumpFlag (CoreDoFloatOutwards {}) = Just Opt_D_verbose_core2core coreDumpFlag CoreLiberateCase = Just Opt_D_verbose_core2core coreDumpFlag CoreDoStaticArgs = Just Opt_D_verbose_core2core coreDumpFlag CoreDoCallArity = Just Opt_D_dump_call_arity coreDumpFlag CoreDoExitify = Just Opt_D_dump_exitify coreDumpFlag CoreDoDemand = Just Opt_D_dump_stranal coreDumpFlag CoreDoCpr = Just Opt_D_dump_cpranal coreDumpFlag CoreDoWorkerWrapper = Just Opt_D_dump_worker_wrapper coreDumpFlag CoreDoSpecialising = Just Opt_D_dump_spec coreDumpFlag CoreDoSpecConstr = Just Opt_D_dump_spec coreDumpFlag CoreCSE = Just Opt_D_dump_cse coreDumpFlag CoreDesugar = Just Opt_D_dump_ds_preopt coreDumpFlag CoreDesugarOpt = Just Opt_D_dump_ds coreDumpFlag CoreTidy = Just Opt_D_dump_simpl coreDumpFlag CorePrep = Just Opt_D_dump_prep coreDumpFlag CoreOccurAnal = Just Opt_D_dump_occur_anal coreDumpFlag CoreAddCallerCcs = Nothing coreDumpFlag CoreDoPrintCore = Nothing coreDumpFlag (CoreDoRuleCheck {}) = Nothing coreDumpFlag CoreDoNothing = Nothing coreDumpFlag (CoreDoPasses {}) = Nothing {- ************************************************************************ * * Top-level interfaces * * ************************************************************************ -} lintPassResult :: HscEnv -> CoreToDo -> CoreProgram -> IO () lintPassResult hsc_env pass binds | not (gopt Opt_DoCoreLinting dflags) = return () | otherwise = do { let warns_and_errs = lintCoreBindings dflags pass (interactiveInScope $ hsc_IC hsc_env) binds ; Err.showPass logger dflags ("Core Linted result of " ++ showPpr dflags pass) ; displayLintResults logger dflags (showLintWarnings pass) (ppr pass) (pprCoreBindings binds) warns_and_errs } where dflags = hsc_dflags hsc_env logger = hsc_logger hsc_env displayLintResults :: Logger -> DynFlags -> Bool -- ^ If 'True', display linter warnings. -- If 'False', ignore linter warnings. -> SDoc -- ^ The source of the linted program -> SDoc -- ^ The linted program, pretty-printed -> WarnsAndErrs -> IO () displayLintResults logger dflags display_warnings pp_what pp_pgm (warns, errs) | not (isEmptyBag errs) = do { putLogMsg logger dflags NoReason Err.SevDump noSrcSpan $ withPprStyle defaultDumpStyle (vcat [ lint_banner "errors" pp_what, Err.pprMessageBag errs , text "*** Offending Program ***" , pp_pgm , text "*** End of Offense ***" ]) ; Err.ghcExit logger dflags 1 } | not (isEmptyBag warns) , not (hasNoDebugOutput dflags) , display_warnings -- If the Core linter encounters an error, output to stderr instead of -- stdout (#13342) = putLogMsg logger dflags NoReason Err.SevInfo noSrcSpan $ withPprStyle defaultDumpStyle (lint_banner "warnings" pp_what $$ Err.pprMessageBag (mapBag ($$ blankLine) warns)) | otherwise = return () lint_banner :: String -> SDoc -> SDoc lint_banner string pass = text "*** Core Lint" <+> text string <+> text ": in result of" <+> pass <+> text "***" showLintWarnings :: CoreToDo -> Bool -- Disable Lint warnings on the first simplifier pass, because -- there may be some INLINE knots still tied, which is tiresomely noisy showLintWarnings (CoreDoSimplify _ (SimplMode { sm_phase = InitialPhase })) = False showLintWarnings _ = True lintInteractiveExpr :: SDoc -- ^ The source of the linted expression -> HscEnv -> CoreExpr -> IO () lintInteractiveExpr what hsc_env expr | not (gopt Opt_DoCoreLinting dflags) = return () | Just err <- lintExpr dflags (interactiveInScope $ hsc_IC hsc_env) expr = displayLintResults logger dflags False what (pprCoreExpr expr) (emptyBag, err) | otherwise = return () where dflags = hsc_dflags hsc_env logger = hsc_logger hsc_env interactiveInScope :: InteractiveContext -> [Var] -- In GHCi we may lint expressions, or bindings arising from 'deriving' -- clauses, that mention variables bound in the interactive context. -- These are Local things (see Note [Interactively-bound Ids in GHCi] in GHC.Runtime.Context). -- So we have to tell Lint about them, lest it reports them as out of scope. -- -- We do this by find local-named things that may appear free in interactive -- context. This function is pretty revolting and quite possibly not quite right. -- When we are not in GHCi, the interactive context (hsc_IC hsc_env) is empty -- so this is a (cheap) no-op. -- -- See #8215 for an example interactiveInScope ictxt = tyvars ++ ids where -- C.f. GHC.Tc.Module.setInteractiveContext, Desugar.deSugarExpr (cls_insts, _fam_insts) = ic_instances ictxt te1 = mkTypeEnvWithImplicits (ic_tythings ictxt) te = extendTypeEnvWithIds te1 (map instanceDFunId cls_insts) ids = typeEnvIds te tyvars = tyCoVarsOfTypesList $ map idType ids -- Why the type variables? How can the top level envt have free tyvars? -- I think it's because of the GHCi debugger, which can bind variables -- f :: [t] -> [t] -- where t is a RuntimeUnk (see TcType) -- | Type-check a 'CoreProgram'. See Note [Core Lint guarantee]. lintCoreBindings :: DynFlags -> CoreToDo -> [Var] -> CoreProgram -> WarnsAndErrs -- Returns (warnings, errors) -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoreBindings dflags pass local_in_scope binds = initL dflags flags local_in_scope $ addLoc TopLevelBindings $ do { checkL (null dups) (dupVars dups) ; checkL (null ext_dups) (dupExtVars ext_dups) ; lintRecBindings TopLevel all_pairs $ \_ -> return () } where all_pairs = flattenBinds binds -- Put all the top-level binders in scope at the start -- This is because rewrite rules can bring something -- into use 'unexpectedly'; see Note [Glomming] in "GHC.Core.Opt.OccurAnal" binders = map fst all_pairs flags = (defaultLintFlags dflags) { lf_check_global_ids = check_globals , lf_check_inline_loop_breakers = check_lbs , lf_check_static_ptrs = check_static_ptrs , lf_check_linearity = check_linearity } -- See Note [Checking for global Ids] check_globals = case pass of CoreTidy -> False CorePrep -> False _ -> True -- See Note [Checking for INLINE loop breakers] check_lbs = case pass of CoreDesugar -> False CoreDesugarOpt -> False _ -> True -- See Note [Checking StaticPtrs] check_static_ptrs | not (xopt LangExt.StaticPointers dflags) = AllowAnywhere | otherwise = case pass of CoreDoFloatOutwards _ -> AllowAtTopLevel CoreTidy -> RejectEverywhere CorePrep -> AllowAtTopLevel _ -> AllowAnywhere -- See Note [Linting linearity] check_linearity = gopt Opt_DoLinearCoreLinting dflags || ( case pass of CoreDesugar -> True _ -> False) (_, dups) = removeDups compare binders -- dups_ext checks for names with different uniques -- but the same External name M.n. We don't -- allow this at top level: -- M.n{r3} = ... -- M.n{r29} = ... -- because they both get the same linker symbol ext_dups = snd (removeDups ord_ext (map Var.varName binders)) ord_ext n1 n2 | Just m1 <- nameModule_maybe n1 , Just m2 <- nameModule_maybe n2 = compare (m1, nameOccName n1) (m2, nameOccName n2) | otherwise = LT {- ************************************************************************ * * \subsection[lintUnfolding]{lintUnfolding} * * ************************************************************************ Note [Linting Unfoldings from Interfaces] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use this to check all top-level unfoldings that come in from interfaces (it is very painful to catch errors otherwise). We do not need to call lintUnfolding on unfoldings that are nested within top-level unfoldings; they are linted when we lint the top-level unfolding; hence the `TopLevelFlag` on `tcPragExpr` in GHC.IfaceToCore. -} lintUnfolding :: Bool -- True <=> is a compulsory unfolding -> DynFlags -> SrcLoc -> VarSet -- Treat these as in scope -> CoreExpr -> Maybe (Bag SDoc) -- Nothing => OK lintUnfolding is_compulsory dflags locn var_set expr | isEmptyBag errs = Nothing | otherwise = Just errs where vars = nonDetEltsUniqSet var_set (_warns, errs) = initL dflags (defaultLintFlags dflags) vars $ if is_compulsory -- See Note [Checking for levity polymorphism] then noLPChecks linter else linter linter = addLoc (ImportedUnfolding locn) $ lintCoreExpr expr lintExpr :: DynFlags -> [Var] -- Treat these as in scope -> CoreExpr -> Maybe (Bag SDoc) -- Nothing => OK lintExpr dflags vars expr | isEmptyBag errs = Nothing | otherwise = Just errs where (_warns, errs) = initL dflags (defaultLintFlags dflags) vars linter linter = addLoc TopLevelBindings $ lintCoreExpr expr {- ************************************************************************ * * \subsection[lintCoreBinding]{lintCoreBinding} * * ************************************************************************ Check a core binding, returning the list of variables bound. -} -- Returns a UsageEnv because this function is called in lintCoreExpr for -- Let lintRecBindings :: TopLevelFlag -> [(Id, CoreExpr)] -> ([LintedId] -> LintM a) -> LintM (a, [UsageEnv]) lintRecBindings top_lvl pairs thing_inside = lintIdBndrs top_lvl bndrs $ \ bndrs' -> do { ues <- zipWithM lint_pair bndrs' rhss ; a <- thing_inside bndrs' ; return (a, ues) } where (bndrs, rhss) = unzip pairs lint_pair bndr' rhs = addLoc (RhsOf bndr') $ do { (rhs_ty, ue) <- lintRhs bndr' rhs -- Check the rhs ; lintLetBind top_lvl Recursive bndr' rhs rhs_ty ; return ue } lintLetBody :: [LintedId] -> CoreExpr -> LintM (LintedType, UsageEnv) lintLetBody bndrs body = do { (body_ty, body_ue) <- addLoc (BodyOfLetRec bndrs) (lintCoreExpr body) ; mapM_ (lintJoinBndrType body_ty) bndrs ; return (body_ty, body_ue) } lintLetBind :: TopLevelFlag -> RecFlag -> LintedId -> CoreExpr -> LintedType -> LintM () -- Binder's type, and the RHS, have already been linted -- This function checks other invariants lintLetBind top_lvl rec_flag binder rhs rhs_ty = do { let binder_ty = idType binder ; ensureEqTys binder_ty rhs_ty (mkRhsMsg binder (text "RHS") rhs_ty) -- If the binding is for a CoVar, the RHS should be (Coercion co) -- See Note [Core type and coercion invariant] in GHC.Core ; checkL (not (isCoVar binder) || isCoArg rhs) (mkLetErr binder rhs) -- Check the let/app invariant -- See Note [Core let/app invariant] in GHC.Core ; checkL ( isJoinId binder || not (isUnliftedType binder_ty) || (isNonRec rec_flag && exprOkForSpeculation rhs) || isDataConWorkId binder || isDataConWrapId binder -- until #17521 is fixed || exprIsTickedString rhs) (badBndrTyMsg binder (text "unlifted")) -- Check that if the binder is at the top level and has type Addr#, -- that it is a string literal, see -- Note [Core top-level string literals]. ; checkL (not (isTopLevel top_lvl && binder_ty `eqType` addrPrimTy) || exprIsTickedString rhs) (mkTopNonLitStrMsg binder) ; flags <- getLintFlags -- Check that a join-point binder has a valid type -- NB: lintIdBinder has checked that it is not top-level bound ; case isJoinId_maybe binder of Nothing -> return () Just arity -> checkL (isValidJoinPointType arity binder_ty) (mkInvalidJoinPointMsg binder binder_ty) ; when (lf_check_inline_loop_breakers flags && isStableUnfolding (realIdUnfolding binder) && isStrongLoopBreaker (idOccInfo binder) && isInlinePragma (idInlinePragma binder)) (addWarnL (text "INLINE binder is (non-rule) loop breaker:" <+> ppr binder)) -- Only non-rule loop breakers inhibit inlining -- We used to check that the dmdTypeDepth of a demand signature never -- exceeds idArity, but that is an unnecessary complication, see -- Note [idArity varies independently of dmdTypeDepth] in GHC.Core.Opt.DmdAnal -- Check that the binder's arity is within the bounds imposed by -- the type and the strictness signature. See Note [exprArity invariant] -- and Note [Trimming arity] ; checkL (typeArity (idType binder) `lengthAtLeast` idArity binder) (text "idArity" <+> ppr (idArity binder) <+> text "exceeds typeArity" <+> ppr (length (typeArity (idType binder))) <> colon <+> ppr binder) ; case splitStrictSig (idStrictness binder) of (demands, result_info) | isDeadEndDiv result_info -> checkL (demands `lengthAtLeast` idArity binder) (text "idArity" <+> ppr (idArity binder) <+> text "exceeds arity imposed by the strictness signature" <+> ppr (idStrictness binder) <> colon <+> ppr binder) _ -> return () ; addLoc (RuleOf binder) $ mapM_ (lintCoreRule binder binder_ty) (idCoreRules binder) ; addLoc (UnfoldingOf binder) $ lintIdUnfolding binder binder_ty (idUnfolding binder) ; return () } -- We should check the unfolding, if any, but this is tricky because -- the unfolding is a SimplifiableCoreExpr. Give up for now. -- | Checks the RHS of bindings. It only differs from 'lintCoreExpr' -- in that it doesn't reject occurrences of the function 'makeStatic' when they -- appear at the top level and @lf_check_static_ptrs == AllowAtTopLevel@, and -- for join points, it skips the outer lambdas that take arguments to the -- join point. -- -- See Note [Checking StaticPtrs]. lintRhs :: Id -> CoreExpr -> LintM (LintedType, UsageEnv) -- NB: the Id can be Linted or not -- it's only used for -- its OccInfo and join-pointer-hood lintRhs bndr rhs | Just arity <- isJoinId_maybe bndr = lintJoinLams arity (Just bndr) rhs | AlwaysTailCalled arity <- tailCallInfo (idOccInfo bndr) = lintJoinLams arity Nothing rhs -- Allow applications of the data constructor @StaticPtr@ at the top -- but produce errors otherwise. lintRhs _bndr rhs = fmap lf_check_static_ptrs getLintFlags >>= go where -- Allow occurrences of 'makeStatic' at the top-level but produce errors -- otherwise. go :: StaticPtrCheck -> LintM (OutType, UsageEnv) go AllowAtTopLevel | (binders0, rhs') <- collectTyBinders rhs , Just (fun, t, info, e) <- collectMakeStaticArgs rhs' = markAllJoinsBad $ foldr -- imitate @lintCoreExpr (Lam ...)@ lintLambda -- imitate @lintCoreExpr (App ...)@ (do fun_ty_ue <- lintCoreExpr fun lintCoreArgs fun_ty_ue [Type t, info, e] ) binders0 go _ = markAllJoinsBad $ lintCoreExpr rhs -- | Lint the RHS of a join point with expected join arity of @n@ (see Note -- [Join points] in "GHC.Core"). lintJoinLams :: JoinArity -> Maybe Id -> CoreExpr -> LintM (LintedType, UsageEnv) lintJoinLams join_arity enforce rhs = go join_arity rhs where go 0 expr = lintCoreExpr expr go n (Lam var body) = lintLambda var $ go (n-1) body go n expr | Just bndr <- enforce -- Join point with too few RHS lambdas = failWithL $ mkBadJoinArityMsg bndr join_arity n rhs | otherwise -- Future join point, not yet eta-expanded = markAllJoinsBad $ lintCoreExpr expr -- Body of lambda is not a tail position lintIdUnfolding :: Id -> Type -> Unfolding -> LintM () lintIdUnfolding bndr bndr_ty uf | isStableUnfolding uf , Just rhs <- maybeUnfoldingTemplate uf = do { ty <- fst <$> (if isCompulsoryUnfolding uf then noLPChecks $ lintRhs bndr rhs -- See Note [Checking for levity polymorphism] else lintRhs bndr rhs) ; ensureEqTys bndr_ty ty (mkRhsMsg bndr (text "unfolding") ty) } lintIdUnfolding _ _ _ = return () -- Do not Lint unstable unfoldings, because that leads -- to exponential behaviour; c.f. GHC.Core.FVs.idUnfoldingVars {- Note [Checking for INLINE loop breakers] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's very suspicious if a strong loop breaker is marked INLINE. However, the desugarer generates instance methods with INLINE pragmas that form a mutually recursive group. Only after a round of simplification are they unravelled. So we suppress the test for the desugarer. Note [Checking for levity polymorphism] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We ordinarily want to check for bad levity polymorphism. See Note [Levity polymorphism invariants] in GHC.Core. However, we do *not* want to do this in a compulsory unfolding. Compulsory unfoldings arise only internally, for things like newtype wrappers, dictionaries, and (notably) unsafeCoerce#. These might legitimately be levity-polymorphic; indeed levity-polyorphic unfoldings are a primary reason for the very existence of compulsory unfoldings (we can't compile code for the original, levity-poly, binding). It is vitally important that we do levity-polymorphism checks *after* performing the unfolding, but not beforehand. This is all safe because we will check any unfolding after it has been unfolded; checking the unfolding beforehand is merely an optimization, and one that actively hurts us here. Note [Linting of runRW#] ~~~~~~~~~~~~~~~~~~~~~~~~ runRW# has some very special behavior (see Note [runRW magic] in GHC.CoreToStg.Prep) which CoreLint must accommodate, by allowing join points in its argument. For example, this is fine: join j x = ... in runRW# (\s. case v of A -> j 3 B -> j 4) Usually those calls to the join point 'j' would not be valid tail calls, because they occur in a function argument. But in the case of runRW# they are fine, because runRW# (\s.e) behaves operationally just like e. (runRW# is ultimately inlined in GHC.CoreToStg.Prep.) In the case that the continuation is /not/ a lambda we simply disable this special behaviour. For example, this is /not/ fine: join j = ... in runRW# @r @ty (jump j) ************************************************************************ * * \subsection[lintCoreExpr]{lintCoreExpr} * * ************************************************************************ -} -- Linted things: substitution applied, and type is linted type LintedType = Type type LintedKind = Kind type LintedCoercion = Coercion type LintedTyCoVar = TyCoVar type LintedId = Id -- | Lint an expression cast through the given coercion, returning the type -- resulting from the cast. lintCastExpr :: CoreExpr -> LintedType -> Coercion -> LintM LintedType lintCastExpr expr expr_ty co = do { co' <- lintCoercion co ; let (Pair from_ty to_ty, role) = coercionKindRole co' ; checkValueType to_ty $ text "target of cast" <+> quotes (ppr co') ; lintRole co' Representational role ; ensureEqTys from_ty expr_ty (mkCastErr expr co' from_ty expr_ty) ; return to_ty } lintCoreExpr :: CoreExpr -> LintM (LintedType, UsageEnv) -- The returned type has the substitution from the monad -- already applied to it: -- lintCoreExpr e subst = exprType (subst e) -- -- The returned "type" can be a kind, if the expression is (Type ty) -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoreExpr (Var var) = lintIdOcc var 0 lintCoreExpr (Lit lit) = return (literalType lit, zeroUE) lintCoreExpr (Cast expr co) = do (expr_ty, ue) <- markAllJoinsBad $ lintCoreExpr expr to_ty <- lintCastExpr expr expr_ty co return (to_ty, ue) lintCoreExpr (Tick tickish expr) = do case tickish of Breakpoint _ _ ids -> forM_ ids $ \id -> do checkDeadIdOcc id lookupIdInScope id _ -> return () markAllJoinsBadIf block_joins $ lintCoreExpr expr where block_joins = not (tickish `tickishScopesLike` SoftScope) -- TODO Consider whether this is the correct rule. It is consistent with -- the simplifier's behaviour - cost-centre-scoped ticks become part of -- the continuation, and thus they behave like part of an evaluation -- context, but soft-scoped and non-scoped ticks simply wrap the result -- (see Simplify.simplTick). lintCoreExpr (Let (NonRec tv (Type ty)) body) | isTyVar tv = -- See Note [Linting type lets] do { ty' <- lintType ty ; lintTyBndr tv $ \ tv' -> do { addLoc (RhsOf tv) $ lintTyKind tv' ty' -- Now extend the substitution so we -- take advantage of it in the body ; extendTvSubstL tv ty' $ addLoc (BodyOfLetRec [tv]) $ lintCoreExpr body } } lintCoreExpr (Let (NonRec bndr rhs) body) | isId bndr = do { -- First Lint the RHS, before bringing the binder into scope (rhs_ty, let_ue) <- lintRhs bndr rhs -- See Note [Multiplicity of let binders] in Var -- Now lint the binder ; lintBinder LetBind bndr $ \bndr' -> do { lintLetBind NotTopLevel NonRecursive bndr' rhs rhs_ty ; addAliasUE bndr let_ue (lintLetBody [bndr'] body) } } | otherwise = failWithL (mkLetErr bndr rhs) -- Not quite accurate lintCoreExpr e@(Let (Rec pairs) body) = do { -- Check that the list of pairs is non-empty checkL (not (null pairs)) (emptyRec e) -- Check that there are no duplicated binders ; let (_, dups) = removeDups compare bndrs ; checkL (null dups) (dupVars dups) -- Check that either all the binders are joins, or none ; checkL (all isJoinId bndrs || all (not . isJoinId) bndrs) $ mkInconsistentRecMsg bndrs -- See Note [Multiplicity of let binders] in Var ; ((body_type, body_ue), ues) <- lintRecBindings NotTopLevel pairs $ \ bndrs' -> lintLetBody bndrs' body ; return (body_type, body_ue `addUE` scaleUE Many (foldr1 addUE ues)) } where bndrs = map fst pairs lintCoreExpr e@(App _ _) | Var fun <- fun , fun `hasKey` runRWKey -- N.B. we may have an over-saturated application of the form: -- runRW (\s -> \x -> ...) y , arg_ty1 : arg_ty2 : arg3 : rest <- args = do { fun_pair1 <- lintCoreArg (idType fun, zeroUE) arg_ty1 ; (fun_ty2, ue2) <- lintCoreArg fun_pair1 arg_ty2 -- See Note [Linting of runRW#] ; let lintRunRWCont :: CoreArg -> LintM (LintedType, UsageEnv) lintRunRWCont expr@(Lam _ _) = lintJoinLams 1 (Just fun) expr lintRunRWCont other = markAllJoinsBad $ lintCoreExpr other -- TODO: Look through ticks? ; (arg3_ty, ue3) <- lintRunRWCont arg3 ; app_ty <- lintValApp arg3 fun_ty2 arg3_ty ue2 ue3 ; lintCoreArgs app_ty rest } | otherwise = do { pair <- lintCoreFun fun (length args) ; lintCoreArgs pair args } where (fun, args) = collectArgs e lintCoreExpr (Lam var expr) = markAllJoinsBad $ lintLambda var $ lintCoreExpr expr lintCoreExpr (Case scrut var alt_ty alts) = lintCaseExpr scrut var alt_ty alts -- This case can't happen; linting types in expressions gets routed through -- lintCoreArgs lintCoreExpr (Type ty) = failWithL (text "Type found as expression" <+> ppr ty) lintCoreExpr (Coercion co) = do { co' <- addLoc (InCo co) $ lintCoercion co ; return (coercionType co', zeroUE) } ---------------------- lintIdOcc :: Var -> Int -- Number of arguments (type or value) being passed -> LintM (LintedType, UsageEnv) -- returns type of the *variable* lintIdOcc var nargs = addLoc (OccOf var) $ do { checkL (isNonCoVarId var) (text "Non term variable" <+> ppr var) -- See GHC.Core Note [Variable occurrences in Core] -- Check that the type of the occurrence is the same -- as the type of the binding site. The inScopeIds are -- /un-substituted/, so this checks that the occurrence type -- is identical to the binder type. -- This makes things much easier for things like: -- /\a. \(x::Maybe a). /\a. ...(x::Maybe a)... -- The "::Maybe a" on the occurrence is referring to the /outer/ a. -- If we compared /substituted/ types we'd risk comparing -- (Maybe a) from the binding site with bogus (Maybe a1) from -- the occurrence site. Comparing un-substituted types finesses -- this altogether ; (bndr, linted_bndr_ty) <- lookupIdInScope var ; let occ_ty = idType var bndr_ty = idType bndr ; ensureEqTys occ_ty bndr_ty $ mkBndrOccTypeMismatchMsg bndr var bndr_ty occ_ty -- Check for a nested occurrence of the StaticPtr constructor. -- See Note [Checking StaticPtrs]. ; lf <- getLintFlags ; when (nargs /= 0 && lf_check_static_ptrs lf /= AllowAnywhere) $ checkL (idName var /= makeStaticName) $ text "Found makeStatic nested in an expression" ; checkDeadIdOcc var ; checkJoinOcc var nargs ; usage <- varCallSiteUsage var ; return (linted_bndr_ty, usage) } lintCoreFun :: CoreExpr -> Int -- Number of arguments (type or val) being passed -> LintM (LintedType, UsageEnv) -- Returns type of the *function* lintCoreFun (Var var) nargs = lintIdOcc var nargs lintCoreFun (Lam var body) nargs -- Act like lintCoreExpr of Lam, but *don't* call markAllJoinsBad; see -- Note [Beta redexes] | nargs /= 0 = lintLambda var $ lintCoreFun body (nargs - 1) lintCoreFun expr nargs = markAllJoinsBadIf (nargs /= 0) $ -- See Note [Join points are less general than the paper] lintCoreExpr expr ------------------ lintLambda :: Var -> LintM (Type, UsageEnv) -> LintM (Type, UsageEnv) lintLambda var lintBody = addLoc (LambdaBodyOf var) $ lintBinder LambdaBind var $ \ var' -> do { (body_ty, ue) <- lintBody ; ue' <- checkLinearity ue var' ; return (mkLamType var' body_ty, ue') } ------------------ checkDeadIdOcc :: Id -> LintM () -- Occurrences of an Id should never be dead.... -- except when we are checking a case pattern checkDeadIdOcc id | isDeadOcc (idOccInfo id) = do { in_case <- inCasePat ; checkL in_case (text "Occurrence of a dead Id" <+> ppr id) } | otherwise = return () ------------------ lintJoinBndrType :: LintedType -- Type of the body -> LintedId -- Possibly a join Id -> LintM () -- Checks that the return type of a join Id matches the body -- E.g. join j x = rhs in body -- The type of 'rhs' must be the same as the type of 'body' lintJoinBndrType body_ty bndr | Just arity <- isJoinId_maybe bndr , let bndr_ty = idType bndr , (bndrs, res) <- splitPiTys bndr_ty = checkL (length bndrs >= arity && body_ty `eqType` mkPiTys (drop arity bndrs) res) $ hang (text "Join point returns different type than body") 2 (vcat [ text "Join bndr:" <+> ppr bndr <+> dcolon <+> ppr (idType bndr) , text "Join arity:" <+> ppr arity , text "Body type:" <+> ppr body_ty ]) | otherwise = return () checkJoinOcc :: Id -> JoinArity -> LintM () -- Check that if the occurrence is a JoinId, then so is the -- binding site, and it's a valid join Id checkJoinOcc var n_args | Just join_arity_occ <- isJoinId_maybe var = do { mb_join_arity_bndr <- lookupJoinId var ; case mb_join_arity_bndr of { Nothing -> -- Binder is not a join point do { join_set <- getValidJoins ; addErrL (text "join set " <+> ppr join_set $$ invalidJoinOcc var) } ; Just join_arity_bndr -> do { checkL (join_arity_bndr == join_arity_occ) $ -- Arity differs at binding site and occurrence mkJoinBndrOccMismatchMsg var join_arity_bndr join_arity_occ ; checkL (n_args == join_arity_occ) $ -- Arity doesn't match #args mkBadJumpMsg var join_arity_occ n_args } } } | otherwise = return () -- Check that the usage of var is consistent with var itself, and pop the var -- from the usage environment (this is important because of shadowing). checkLinearity :: UsageEnv -> Var -> LintM UsageEnv checkLinearity body_ue lam_var = case varMultMaybe lam_var of Just mult -> do ensureSubUsage lhs mult (err_msg mult) return $ deleteUE body_ue lam_var Nothing -> return body_ue -- A type variable where lhs = lookupUE body_ue lam_var err_msg mult = text "Linearity failure in lambda:" <+> ppr lam_var $$ ppr lhs <+> text "⊈" <+> ppr mult {- Note [No alternatives lint check] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Case expressions with no alternatives are odd beasts, and it would seem like they would worth be looking at in the linter (cf #10180). We used to check two things: * exprIsHNF is false: it would *seem* to be terribly wrong if the scrutinee was already in head normal form. * exprIsDeadEnd is true: we should be able to see why GHC believes the scrutinee is diverging for sure. It was already known that the second test was not entirely reliable. Unfortunately (#13990), the first test turned out not to be reliable either. Getting the checks right turns out to be somewhat complicated. For example, suppose we have (comment 8) data T a where TInt :: T Int absurdTBool :: T Bool -> a absurdTBool v = case v of data Foo = Foo !(T Bool) absurdFoo :: Foo -> a absurdFoo (Foo x) = absurdTBool x GHC initially accepts the empty case because of the GADT conditions. But then we inline absurdTBool, getting absurdFoo (Foo x) = case x of x is in normal form (because the Foo constructor is strict) but the case is empty. To avoid this problem, GHC would have to recognize that matching on Foo x is already absurd, which is not so easy. More generally, we don't really know all the ways that GHC can lose track of why an expression is bottom, so we shouldn't make too much fuss when that happens. Note [Beta redexes] ~~~~~~~~~~~~~~~~~~~ Consider: join j @x y z = ... in (\@x y z -> jump j @x y z) @t e1 e2 This is clearly ill-typed, since the jump is inside both an application and a lambda, either of which is enough to disqualify it as a tail call (see Note [Invariants on join points] in GHC.Core). However, strictly from a lambda-calculus perspective, the term doesn't go wrong---after the two beta reductions, the jump *is* a tail call and everything is fine. Why would we want to allow this when we have let? One reason is that a compound beta redex (that is, one with more than one argument) has different scoping rules: naively reducing the above example using lets will capture any free occurrence of y in e2. More fundamentally, type lets are tricky; many passes, such as Float Out, tacitly assume that the incoming program's type lets have all been dealt with by the simplifier. Thus we don't want to let-bind any types in, say, GHC.Core.Subst.simpleOptPgm, which in some circumstances can run immediately before Float Out. All that said, currently GHC.Core.Subst.simpleOptPgm is the only thing using this loophole, doing so to avoid re-traversing large functions (beta-reducing a type lambda without introducing a type let requires a substitution). TODO: Improve simpleOptPgm so that we can forget all this ever happened. ************************************************************************ * * \subsection[lintCoreArgs]{lintCoreArgs} * * ************************************************************************ The basic version of these functions checks that the argument is a subtype of the required type, as one would expect. -} lintCoreArgs :: (LintedType, UsageEnv) -> [CoreArg] -> LintM (LintedType, UsageEnv) lintCoreArgs (fun_ty, fun_ue) args = foldM lintCoreArg (fun_ty, fun_ue) args lintCoreArg :: (LintedType, UsageEnv) -> CoreArg -> LintM (LintedType, UsageEnv) lintCoreArg (fun_ty, ue) (Type arg_ty) = do { checkL (not (isCoercionTy arg_ty)) (text "Unnecessary coercion-to-type injection:" <+> ppr arg_ty) ; arg_ty' <- lintType arg_ty ; res <- lintTyApp fun_ty arg_ty' ; return (res, ue) } lintCoreArg (fun_ty, fun_ue) arg = do { (arg_ty, arg_ue) <- markAllJoinsBad $ lintCoreExpr arg -- See Note [Levity polymorphism invariants] in GHC.Core ; flags <- getLintFlags ; lintL (not (lf_check_levity_poly flags) || not (isTypeLevPoly arg_ty)) (text "Levity-polymorphic argument:" <+> (ppr arg <+> dcolon <+> parens (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty)))) -- check for levity polymorphism first, because otherwise isUnliftedType panics ; checkL (not (isUnliftedType arg_ty) || exprOkForSpeculation arg) (mkLetAppMsg arg) ; lintValApp arg fun_ty arg_ty fun_ue arg_ue } ----------------- lintAltBinders :: UsageEnv -> Var -- Case binder -> LintedType -- Scrutinee type -> LintedType -- Constructor type -> [(Mult, OutVar)] -- Binders -> LintM UsageEnv -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintAltBinders rhs_ue _case_bndr scrut_ty con_ty [] = do { ensureEqTys con_ty scrut_ty (mkBadPatMsg con_ty scrut_ty) ; return rhs_ue } lintAltBinders rhs_ue case_bndr scrut_ty con_ty ((var_w, bndr):bndrs) | isTyVar bndr = do { con_ty' <- lintTyApp con_ty (mkTyVarTy bndr) ; lintAltBinders rhs_ue case_bndr scrut_ty con_ty' bndrs } | otherwise = do { (con_ty', _) <- lintValApp (Var bndr) con_ty (idType bndr) zeroUE zeroUE -- We can pass zeroUE to lintValApp because we ignore its usage -- calculation and compute it in the call for checkCaseLinearity below. ; rhs_ue' <- checkCaseLinearity rhs_ue case_bndr var_w bndr ; lintAltBinders rhs_ue' case_bndr scrut_ty con_ty' bndrs } -- | Implements the case rules for linearity checkCaseLinearity :: UsageEnv -> Var -> Mult -> Var -> LintM UsageEnv checkCaseLinearity ue case_bndr var_w bndr = do ensureSubUsage lhs rhs err_msg lintLinearBinder (ppr bndr) (case_bndr_w `mkMultMul` var_w) (varMult bndr) return $ deleteUE ue bndr where lhs = bndr_usage `addUsage` (var_w `scaleUsage` case_bndr_usage) rhs = case_bndr_w `mkMultMul` var_w err_msg = (text "Linearity failure in variable:" <+> ppr bndr $$ ppr lhs <+> text "⊈" <+> ppr rhs $$ text "Computed by:" <+> text "LHS:" <+> lhs_formula <+> text "RHS:" <+> rhs_formula) lhs_formula = ppr bndr_usage <+> text "+" <+> parens (ppr case_bndr_usage <+> text "*" <+> ppr var_w) rhs_formula = ppr case_bndr_w <+> text "*" <+> ppr var_w case_bndr_w = varMult case_bndr case_bndr_usage = lookupUE ue case_bndr bndr_usage = lookupUE ue bndr ----------------- lintTyApp :: LintedType -> LintedType -> LintM LintedType lintTyApp fun_ty arg_ty | Just (tv,body_ty) <- splitForAllTyCoVar_maybe fun_ty = do { lintTyKind tv arg_ty ; in_scope <- getInScope -- substTy needs the set of tyvars in scope to avoid generating -- uniques that are already in scope. -- See Note [The substitution invariant] in GHC.Core.TyCo.Subst ; return (substTyWithInScope in_scope [tv] [arg_ty] body_ty) } | otherwise = failWithL (mkTyAppMsg fun_ty arg_ty) ----------------- -- | @lintValApp arg fun_ty arg_ty@ lints an application of @fun arg@ -- where @fun :: fun_ty@ and @arg :: arg_ty@, returning the type of the -- application. lintValApp :: CoreExpr -> LintedType -> LintedType -> UsageEnv -> UsageEnv -> LintM (LintedType, UsageEnv) lintValApp arg fun_ty arg_ty fun_ue arg_ue | Just (w, arg_ty', res_ty') <- splitFunTy_maybe fun_ty = do { ensureEqTys arg_ty' arg_ty err1 ; let app_ue = addUE fun_ue (scaleUE w arg_ue) ; return (res_ty', app_ue) } | otherwise = failWithL err2 where err1 = mkAppMsg fun_ty arg_ty arg err2 = mkNonFunAppMsg fun_ty arg_ty arg lintTyKind :: OutTyVar -> LintedType -> LintM () -- Both args have had substitution applied -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintTyKind tyvar arg_ty = unless (arg_kind `eqType` tyvar_kind) $ addErrL (mkKindErrMsg tyvar arg_ty $$ (text "Linted Arg kind:" <+> ppr arg_kind)) where tyvar_kind = tyVarKind tyvar arg_kind = typeKind arg_ty {- ************************************************************************ * * \subsection[lintCoreAlts]{lintCoreAlts} * * ************************************************************************ -} lintCaseExpr :: CoreExpr -> Id -> Type -> [CoreAlt] -> LintM (LintedType, UsageEnv) lintCaseExpr scrut var alt_ty alts = do { let e = Case scrut var alt_ty alts -- Just for error messages -- Check the scrutinee ; (scrut_ty, scrut_ue) <- markAllJoinsBad $ lintCoreExpr scrut -- See Note [Join points are less general than the paper] -- in GHC.Core ; let scrut_mult = varMult var ; alt_ty <- addLoc (CaseTy scrut) $ lintValueType alt_ty ; var_ty <- addLoc (IdTy var) $ lintValueType (idType var) -- We used to try to check whether a case expression with no -- alternatives was legitimate, but this didn't work. -- See Note [No alternatives lint check] for details. -- Check that the scrutinee is not a floating-point type -- if there are any literal alternatives -- See GHC.Core Note [Case expression invariants] item (5) -- See Note [Rules for floating-point comparisons] in GHC.Core.Opt.ConstantFold ; let isLitPat (Alt (LitAlt _) _ _) = True isLitPat _ = False ; checkL (not $ isFloatingTy scrut_ty && any isLitPat alts) (ptext (sLit $ "Lint warning: Scrutinising floating-point " ++ "expression with literal pattern in case " ++ "analysis (see #9238).") $$ text "scrut" <+> ppr scrut) ; case tyConAppTyCon_maybe (idType var) of Just tycon | debugIsOn , isAlgTyCon tycon , not (isAbstractTyCon tycon) , null (tyConDataCons tycon) , not (exprIsDeadEnd scrut) -> pprTrace "Lint warning: case binder's type has no constructors" (ppr var <+> ppr (idType var)) -- This can legitimately happen for type families $ return () _otherwise -> return () -- Don't use lintIdBndr on var, because unboxed tuple is legitimate ; subst <- getTCvSubst ; ensureEqTys var_ty scrut_ty (mkScrutMsg var var_ty scrut_ty subst) -- See GHC.Core Note [Case expression invariants] item (7) ; lintBinder CaseBind var $ \_ -> do { -- Check the alternatives ; alt_ues <- mapM (lintCoreAlt var scrut_ty scrut_mult alt_ty) alts ; let case_ue = (scaleUE scrut_mult scrut_ue) `addUE` supUEs alt_ues ; checkCaseAlts e scrut_ty alts ; return (alt_ty, case_ue) } } checkCaseAlts :: CoreExpr -> LintedType -> [CoreAlt] -> LintM () -- a) Check that the alts are non-empty -- b1) Check that the DEFAULT comes first, if it exists -- b2) Check that the others are in increasing order -- c) Check that there's a default for infinite types -- NB: Algebraic cases are not necessarily exhaustive, because -- the simplifier correctly eliminates case that can't -- possibly match. checkCaseAlts e ty alts = do { checkL (all non_deflt con_alts) (mkNonDefltMsg e) -- See GHC.Core Note [Case expression invariants] item (2) ; checkL (increasing_tag con_alts) (mkNonIncreasingAltsMsg e) -- See GHC.Core Note [Case expression invariants] item (3) -- For types Int#, Word# with an infinite (well, large!) number of -- possible values, there should usually be a DEFAULT case -- But (see Note [Empty case alternatives] in GHC.Core) it's ok to -- have *no* case alternatives. -- In effect, this is a kind of partial test. I suppose it's possible -- that we might *know* that 'x' was 1 or 2, in which case -- case x of { 1 -> e1; 2 -> e2 } -- would be fine. ; checkL (isJust maybe_deflt || not is_infinite_ty || null alts) (nonExhaustiveAltsMsg e) } where (con_alts, maybe_deflt) = findDefault alts -- Check that successive alternatives have strictly increasing tags increasing_tag (alt1 : rest@( alt2 : _)) = alt1 `ltAlt` alt2 && increasing_tag rest increasing_tag _ = True non_deflt (Alt DEFAULT _ _) = False non_deflt _ = True is_infinite_ty = case tyConAppTyCon_maybe ty of Nothing -> False Just tycon -> isPrimTyCon tycon lintAltExpr :: CoreExpr -> LintedType -> LintM UsageEnv lintAltExpr expr ann_ty = do { (actual_ty, ue) <- lintCoreExpr expr ; ensureEqTys actual_ty ann_ty (mkCaseAltMsg expr actual_ty ann_ty) ; return ue } -- See GHC.Core Note [Case expression invariants] item (6) lintCoreAlt :: Var -- Case binder -> LintedType -- Type of scrutinee -> Mult -- Multiplicity of scrutinee -> LintedType -- Type of the alternative -> CoreAlt -> LintM UsageEnv -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoreAlt _ _ _ alt_ty (Alt DEFAULT args rhs) = do { lintL (null args) (mkDefaultArgsMsg args) ; lintAltExpr rhs alt_ty } lintCoreAlt _case_bndr scrut_ty _ alt_ty (Alt (LitAlt lit) args rhs) | litIsLifted lit = failWithL integerScrutinisedMsg | otherwise = do { lintL (null args) (mkDefaultArgsMsg args) ; ensureEqTys lit_ty scrut_ty (mkBadPatMsg lit_ty scrut_ty) ; lintAltExpr rhs alt_ty } where lit_ty = literalType lit lintCoreAlt case_bndr scrut_ty _scrut_mult alt_ty alt@(Alt (DataAlt con) args rhs) | isNewTyCon (dataConTyCon con) = zeroUE <$ addErrL (mkNewTyDataConAltMsg scrut_ty alt) | Just (tycon, tycon_arg_tys) <- splitTyConApp_maybe scrut_ty = addLoc (CaseAlt alt) $ do { -- First instantiate the universally quantified -- type variables of the data constructor -- We've already check lintL (tycon == dataConTyCon con) (mkBadConMsg tycon con) ; let { con_payload_ty = piResultTys (dataConRepType con) tycon_arg_tys ; binderMult (Named _) = Many ; binderMult (Anon _ st) = scaledMult st -- See Note [Validating multiplicities in a case] ; multiplicities = map binderMult $ fst $ splitPiTys con_payload_ty } -- And now bring the new binders into scope ; lintBinders CasePatBind args $ \ args' -> do { rhs_ue <- lintAltExpr rhs alt_ty ; rhs_ue' <- addLoc (CasePat alt) (lintAltBinders rhs_ue case_bndr scrut_ty con_payload_ty (zipEqual "lintCoreAlt" multiplicities args')) ; return $ deleteUE rhs_ue' case_bndr } } | otherwise -- Scrut-ty is wrong shape = zeroUE <$ addErrL (mkBadAltMsg scrut_ty alt) {- Note [Validating multiplicities in a case] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose 'MkT :: a %m -> T m a'. If we are validating 'case (x :: T Many a) of MkT y -> ...', we have to substitute m := Many in the type of MkT - in particular, y can be used Many times and that expression would still be linear in x. We do this by looking at con_payload_ty, which is the type of the datacon applied to the surrounding arguments. Testcase: linear/should_compile/MultConstructor Data constructors containing existential tyvars will then have Named binders, which are always multiplicity Many. Testcase: indexed-types/should_compile/GADT1 -} lintLinearBinder :: SDoc -> Mult -> Mult -> LintM () lintLinearBinder doc actual_usage described_usage = ensureSubMult actual_usage described_usage err_msg where err_msg = (text "Multiplicity of variable does not agree with its context" $$ doc $$ ppr actual_usage $$ text "Annotation:" <+> ppr described_usage) {- ************************************************************************ * * \subsection[lint-types]{Types} * * ************************************************************************ -} -- When we lint binders, we (one at a time and in order): -- 1. Lint var types or kinds (possibly substituting) -- 2. Add the binder to the in scope set, and if its a coercion var, -- we may extend the substitution to reflect its (possibly) new kind lintBinders :: BindingSite -> [Var] -> ([Var] -> LintM a) -> LintM a lintBinders _ [] linterF = linterF [] lintBinders site (var:vars) linterF = lintBinder site var $ \var' -> lintBinders site vars $ \ vars' -> linterF (var':vars') -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintBinder :: BindingSite -> Var -> (Var -> LintM a) -> LintM a lintBinder site var linterF | isTyCoVar var = lintTyCoBndr var linterF | otherwise = lintIdBndr NotTopLevel site var linterF lintTyBndr :: TyVar -> (LintedTyCoVar -> LintM a) -> LintM a lintTyBndr = lintTyCoBndr -- We could specialise it, I guess -- lintCoBndr :: CoVar -> (LintedTyCoVar -> LintM a) -> LintM a -- lintCoBndr = lintTyCoBndr -- We could specialise it, I guess lintTyCoBndr :: TyCoVar -> (LintedTyCoVar -> LintM a) -> LintM a lintTyCoBndr tcv thing_inside = do { subst <- getTCvSubst ; kind' <- lintType (varType tcv) ; let tcv' = uniqAway (getTCvInScope subst) $ setVarType tcv kind' subst' = extendTCvSubstWithClone subst tcv tcv' ; when (isCoVar tcv) $ lintL (isCoVarType kind') (text "CoVar with non-coercion type:" <+> pprTyVar tcv) ; updateTCvSubst subst' (thing_inside tcv') } lintIdBndrs :: forall a. TopLevelFlag -> [Id] -> ([LintedId] -> LintM a) -> LintM a lintIdBndrs top_lvl ids thing_inside = go ids thing_inside where go :: [Id] -> ([Id] -> LintM a) -> LintM a go [] thing_inside = thing_inside [] go (id:ids) thing_inside = lintIdBndr top_lvl LetBind id $ \id' -> go ids $ \ids' -> thing_inside (id' : ids') lintIdBndr :: TopLevelFlag -> BindingSite -> InVar -> (OutVar -> LintM a) -> LintM a -- Do substitution on the type of a binder and add the var with this -- new type to the in-scope set of the second argument -- ToDo: lint its rules lintIdBndr top_lvl bind_site id thing_inside = ASSERT2( isId id, ppr id ) do { flags <- getLintFlags ; checkL (not (lf_check_global_ids flags) || isLocalId id) (text "Non-local Id binder" <+> ppr id) -- See Note [Checking for global Ids] -- Check that if the binder is nested, it is not marked as exported ; checkL (not (isExportedId id) || is_top_lvl) (mkNonTopExportedMsg id) -- Check that if the binder is nested, it does not have an external name ; checkL (not (isExternalName (Var.varName id)) || is_top_lvl) (mkNonTopExternalNameMsg id) -- See Note [Levity polymorphism invariants] in GHC.Core ; lintL (isJoinId id || not (lf_check_levity_poly flags) || not (isTypeLevPoly id_ty)) $ text "Levity-polymorphic binder:" <+> ppr id <+> dcolon <+> parens (ppr id_ty <+> dcolon <+> ppr (typeKind id_ty)) -- Check that a join-id is a not-top-level let-binding ; when (isJoinId id) $ checkL (not is_top_lvl && is_let_bind) $ mkBadJoinBindMsg id -- Check that the Id does not have type (t1 ~# t2) or (t1 ~R# t2); -- if so, it should be a CoVar, and checked by lintCoVarBndr ; lintL (not (isCoVarType id_ty)) (text "Non-CoVar has coercion type" <+> ppr id <+> dcolon <+> ppr id_ty) ; linted_ty <- addLoc (IdTy id) (lintValueType id_ty) ; addInScopeId id linted_ty $ thing_inside (setIdType id linted_ty) } where id_ty = idType id is_top_lvl = isTopLevel top_lvl is_let_bind = case bind_site of LetBind -> True _ -> False {- %************************************************************************ %* * Types %* * %************************************************************************ -} lintValueType :: Type -> LintM LintedType -- Types only, not kinds -- Check the type, and apply the substitution to it -- See Note [Linting type lets] lintValueType ty = addLoc (InType ty) $ do { ty' <- lintType ty ; let sk = typeKind ty' ; lintL (classifiesTypeWithValues sk) $ hang (text "Ill-kinded type:" <+> ppr ty) 2 (text "has kind:" <+> ppr sk) ; return ty' } checkTyCon :: TyCon -> LintM () checkTyCon tc = checkL (not (isTcTyCon tc)) (text "Found TcTyCon:" <+> ppr tc) ------------------- lintType :: Type -> LintM LintedType -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintType (TyVarTy tv) | not (isTyVar tv) = failWithL (mkBadTyVarMsg tv) | otherwise = do { subst <- getTCvSubst ; case lookupTyVar subst tv of Just linted_ty -> return linted_ty -- In GHCi we may lint an expression with a free -- type variable. Then it won't be in the -- substitution, but it should be in scope Nothing | tv `isInScope` subst -> return (TyVarTy tv) | otherwise -> failWithL $ hang (text "The type variable" <+> pprBndr LetBind tv) 2 (text "is out of scope") } lintType ty@(AppTy t1 t2) | TyConApp {} <- t1 = failWithL $ text "TyConApp to the left of AppTy:" <+> ppr ty | otherwise = do { t1' <- lintType t1 ; t2' <- lintType t2 ; lint_ty_app ty (typeKind t1') [t2'] ; return (AppTy t1' t2') } lintType ty@(TyConApp tc tys) | isTypeSynonymTyCon tc || isTypeFamilyTyCon tc = do { report_unsat <- lf_report_unsat_syns <$> getLintFlags ; lintTySynFamApp report_unsat ty tc tys } | isFunTyCon tc , tys `lengthIs` 5 -- We should never see a saturated application of funTyCon; such -- applications should be represented with the FunTy constructor. -- See Note [Linting function types] and -- Note [Representation of function types]. = failWithL (hang (text "Saturated application of (->)") 2 (ppr ty)) | otherwise -- Data types, data families, primitive types = do { checkTyCon tc ; tys' <- mapM lintType tys ; lint_ty_app ty (tyConKind tc) tys' ; return (TyConApp tc tys') } -- arrows can related *unlifted* kinds, so this has to be separate from -- a dependent forall. lintType ty@(FunTy af tw t1 t2) = do { t1' <- lintType t1 ; t2' <- lintType t2 ; tw' <- lintType tw ; lintArrow (text "type or kind" <+> quotes (ppr ty)) t1' t2' tw' ; return (FunTy af tw' t1' t2') } lintType ty@(ForAllTy (Bndr tcv vis) body_ty) | not (isTyCoVar tcv) = failWithL (text "Non-Tyvar or Non-Covar bound in type:" <+> ppr ty) | otherwise = lintTyCoBndr tcv $ \tcv' -> do { body_ty' <- lintType body_ty ; lintForAllBody tcv' body_ty' ; when (isCoVar tcv) $ lintL (tcv `elemVarSet` tyCoVarsOfType body_ty) $ text "Covar does not occur in the body:" <+> (ppr tcv $$ ppr body_ty) -- See GHC.Core.TyCo.Rep Note [Unused coercion variable in ForAllTy] -- and cf GHC.Core.Coercion Note [Unused coercion variable in ForAllCo] ; return (ForAllTy (Bndr tcv' vis) body_ty') } lintType ty@(LitTy l) = do { lintTyLit l; return ty } lintType (CastTy ty co) = do { ty' <- lintType ty ; co' <- lintStarCoercion co ; let tyk = typeKind ty' cok = coercionLKind co' ; ensureEqTys tyk cok (mkCastTyErr ty co tyk cok) ; return (CastTy ty' co') } lintType (CoercionTy co) = do { co' <- lintCoercion co ; return (CoercionTy co') } ----------------- lintForAllBody :: LintedTyCoVar -> LintedType -> LintM () -- Do the checks for the body of a forall-type lintForAllBody tcv body_ty = do { checkValueType body_ty (text "the body of forall:" <+> ppr body_ty) -- For type variables, check for skolem escape -- See Note [Phantom type variables in kinds] in GHC.Core.Type -- The kind of (forall cv. th) is liftedTypeKind, so no -- need to check for skolem-escape in the CoVar case ; let body_kind = typeKind body_ty ; when (isTyVar tcv) $ case occCheckExpand [tcv] body_kind of Just {} -> return () Nothing -> failWithL $ hang (text "Variable escape in forall:") 2 (vcat [ text "tyvar:" <+> ppr tcv , text "type:" <+> ppr body_ty , text "kind:" <+> ppr body_kind ]) } ----------------- lintTySynFamApp :: Bool -> InType -> TyCon -> [InType] -> LintM LintedType -- The TyCon is a type synonym or a type family (not a data family) -- See Note [Linting type synonym applications] -- c.f. GHC.Tc.Validity.check_syn_tc_app lintTySynFamApp report_unsat ty tc tys | report_unsat -- Report unsaturated only if report_unsat is on , tys `lengthLessThan` tyConArity tc = failWithL (hang (text "Un-saturated type application") 2 (ppr ty)) -- Deal with type synonyms | Just (tenv, rhs, tys') <- expandSynTyCon_maybe tc tys , let expanded_ty = mkAppTys (substTy (mkTvSubstPrs tenv) rhs) tys' = do { -- Kind-check the argument types, but without reporting -- un-saturated type families/synonyms tys' <- setReportUnsat False (mapM lintType tys) ; when report_unsat $ do { _ <- lintType expanded_ty ; return () } ; lint_ty_app ty (tyConKind tc) tys' ; return (TyConApp tc tys') } -- Otherwise this must be a type family | otherwise = do { tys' <- mapM lintType tys ; lint_ty_app ty (tyConKind tc) tys' ; return (TyConApp tc tys') } ----------------- -- Confirms that a type is really *, #, Constraint etc checkValueType :: LintedType -> SDoc -> LintM () checkValueType ty doc = lintL (classifiesTypeWithValues kind) (text "Non-*-like kind when *-like expected:" <+> ppr kind $$ text "when checking" <+> doc) where kind = typeKind ty ----------------- lintArrow :: SDoc -> LintedType -> LintedType -> LintedType -> LintM () -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintArrow what t1 t2 tw -- Eg lintArrow "type or kind `blah'" k1 k2 kw -- or lintArrow "coercion `blah'" k1 k2 kw = do { unless (classifiesTypeWithValues k1) (addErrL (msg (text "argument") k1)) ; unless (classifiesTypeWithValues k2) (addErrL (msg (text "result") k2)) ; unless (isMultiplicityTy kw) (addErrL (msg (text "multiplicity") kw)) } where k1 = typeKind t1 k2 = typeKind t2 kw = typeKind tw msg ar k = vcat [ hang (text "Ill-kinded" <+> ar) 2 (text "in" <+> what) , what <+> text "kind:" <+> ppr k ] ----------------- lint_ty_app :: Type -> LintedKind -> [LintedType] -> LintM () lint_ty_app ty k tys = lint_app (text "type" <+> quotes (ppr ty)) k tys ---------------- lint_co_app :: Coercion -> LintedKind -> [LintedType] -> LintM () lint_co_app ty k tys = lint_app (text "coercion" <+> quotes (ppr ty)) k tys ---------------- lintTyLit :: TyLit -> LintM () lintTyLit (NumTyLit n) | n >= 0 = return () | otherwise = failWithL msg where msg = text "Negative type literal:" <+> integer n lintTyLit (StrTyLit _) = return () lintTyLit (CharTyLit _) = return () lint_app :: SDoc -> LintedKind -> [LintedType] -> LintM () -- (lint_app d fun_kind arg_tys) -- We have an application (f arg_ty1 .. arg_tyn), -- where f :: fun_kind -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lint_app doc kfn arg_tys = do { in_scope <- getInScope -- We need the in_scope set to satisfy the invariant in -- Note [The substitution invariant] in GHC.Core.TyCo.Subst ; _ <- foldlM (go_app in_scope) kfn arg_tys ; return () } where fail_msg extra = vcat [ hang (text "Kind application error in") 2 doc , nest 2 (text "Function kind =" <+> ppr kfn) , nest 2 (text "Arg types =" <+> ppr arg_tys) , extra ] go_app in_scope kfn ta | Just kfn' <- coreView kfn = go_app in_scope kfn' ta go_app _ fun_kind@(FunTy _ _ kfa kfb) ta = do { let ka = typeKind ta ; unless (ka `eqType` kfa) $ addErrL (fail_msg (text "Fun:" <+> (ppr fun_kind $$ ppr ta <+> dcolon <+> ppr ka))) ; return kfb } go_app in_scope (ForAllTy (Bndr kv _vis) kfn) ta = do { let kv_kind = varType kv ka = typeKind ta ; unless (ka `eqType` kv_kind) $ addErrL (fail_msg (text "Forall:" <+> (ppr kv $$ ppr kv_kind $$ ppr ta <+> dcolon <+> ppr ka))) ; return $ substTy (extendTCvSubst (mkEmptyTCvSubst in_scope) kv ta) kfn } go_app _ kfn ta = failWithL (fail_msg (text "Not a fun:" <+> (ppr kfn $$ ppr ta))) {- ********************************************************************* * * Linting rules * * ********************************************************************* -} lintCoreRule :: OutVar -> LintedType -> CoreRule -> LintM () lintCoreRule _ _ (BuiltinRule {}) = return () -- Don't bother lintCoreRule fun fun_ty rule@(Rule { ru_name = name, ru_bndrs = bndrs , ru_args = args, ru_rhs = rhs }) = lintBinders LambdaBind bndrs $ \ _ -> do { (lhs_ty, _) <- lintCoreArgs (fun_ty, zeroUE) args ; (rhs_ty, _) <- case isJoinId_maybe fun of Just join_arity -> do { checkL (args `lengthIs` join_arity) $ mkBadJoinPointRuleMsg fun join_arity rule -- See Note [Rules for join points] ; lintCoreExpr rhs } _ -> markAllJoinsBad $ lintCoreExpr rhs ; ensureEqTys lhs_ty rhs_ty $ (rule_doc <+> vcat [ text "lhs type:" <+> ppr lhs_ty , text "rhs type:" <+> ppr rhs_ty , text "fun_ty:" <+> ppr fun_ty ]) ; let bad_bndrs = filter is_bad_bndr bndrs ; checkL (null bad_bndrs) (rule_doc <+> text "unbound" <+> ppr bad_bndrs) -- See Note [Linting rules] } where rule_doc = text "Rule" <+> doubleQuotes (ftext name) <> colon lhs_fvs = exprsFreeVars args rhs_fvs = exprFreeVars rhs is_bad_bndr :: Var -> Bool -- See Note [Unbound RULE binders] in GHC.Core.Rules is_bad_bndr bndr = not (bndr `elemVarSet` lhs_fvs) && bndr `elemVarSet` rhs_fvs && isNothing (isReflCoVar_maybe bndr) {- Note [Linting rules] ~~~~~~~~~~~~~~~~~~~~~~~ It's very bad if simplifying a rule means that one of the template variables (ru_bndrs) that /is/ mentioned on the RHS becomes not-mentioned in the LHS (ru_args). How can that happen? Well, in #10602, SpecConstr stupidly constructed a rule like forall x,c1,c2. f (x |> c1 |> c2) = .... But simplExpr collapses those coercions into one. (Indeed in #10602, it collapsed to the identity and was removed altogether.) We don't have a great story for what to do here, but at least this check will nail it. NB (#11643): it's possible that a variable listed in the binders becomes not-mentioned on both LHS and RHS. Here's a silly example: RULE forall x y. f (g x y) = g (x+1) (y-1) And suppose worker/wrapper decides that 'x' is Absent. Then we'll end up with RULE forall x y. f ($gw y) = $gw (x+1) This seems sufficiently obscure that there isn't enough payoff to try to trim the forall'd binder list. Note [Rules for join points] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A join point cannot be partially applied. However, the left-hand side of a rule for a join point is effectively a *pattern*, not a piece of code, so there's an argument to be made for allowing a situation like this: join $sj :: Int -> Int -> String $sj n m = ... j :: forall a. Eq a => a -> a -> String {-# RULES "SPEC j" jump j @ Int $dEq = jump $sj #-} j @a $dEq x y = ... Applying this rule can't turn a well-typed program into an ill-typed one, so conceivably we could allow it. But we can always eta-expand such an "undersaturated" rule (see 'GHC.Core.Opt.Arity.etaExpandToJoinPointRule'), and in fact the simplifier would have to in order to deal with the RHS. So we take a conservative view and don't allow undersaturated rules for join points. See Note [Rules and join points] in "GHC.Core.Opt.OccurAnal" for further discussion. -} {- ************************************************************************ * * Linting coercions * * ************************************************************************ -} {- Note [Asymptotic efficiency] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When linting coercions (and types actually) we return a linted (substituted) coercion. Then we often have to take the coercionKind of that returned coercion. If we get long chains, that can be asymptotically inefficient, notably in * TransCo * InstCo * NthCo (cf #9233) * LRCo But the code is simple. And this is only Lint. Let's wait to see if the bad perf bites us in practice. A solution would be to return the kind and role of the coercion, as well as the linted coercion. Or perhaps even *only* the kind and role, which is what used to happen. But that proved tricky and error prone (#17923), so now we return the coercion. -} -- lints a coercion, confirming that its lh kind and its rh kind are both * -- also ensures that the role is Nominal lintStarCoercion :: InCoercion -> LintM LintedCoercion lintStarCoercion g = do { g' <- lintCoercion g ; let Pair t1 t2 = coercionKind g' ; checkValueType t1 (text "the kind of the left type in" <+> ppr g) ; checkValueType t2 (text "the kind of the right type in" <+> ppr g) ; lintRole g Nominal (coercionRole g) ; return g' } lintCoercion :: InCoercion -> LintM LintedCoercion -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoercion (CoVarCo cv) | not (isCoVar cv) = failWithL (hang (text "Bad CoVarCo:" <+> ppr cv) 2 (text "With offending type:" <+> ppr (varType cv))) | otherwise = do { subst <- getTCvSubst ; case lookupCoVar subst cv of Just linted_co -> return linted_co ; Nothing | cv `isInScope` subst -> return (CoVarCo cv) | otherwise -> -- lintCoBndr always extends the substitition failWithL $ hang (text "The coercion variable" <+> pprBndr LetBind cv) 2 (text "is out of scope") } lintCoercion (Refl ty) = do { ty' <- lintType ty ; return (Refl ty') } lintCoercion (GRefl r ty MRefl) = do { ty' <- lintType ty ; return (GRefl r ty' MRefl) } lintCoercion (GRefl r ty (MCo co)) = do { ty' <- lintType ty ; co' <- lintCoercion co ; let tk = typeKind ty' tl = coercionLKind co' ; ensureEqTys tk tl $ hang (text "GRefl coercion kind mis-match:" <+> ppr co) 2 (vcat [ppr ty', ppr tk, ppr tl]) ; lintRole co' Nominal (coercionRole co') ; return (GRefl r ty' (MCo co')) } lintCoercion co@(TyConAppCo r tc cos) | tc `hasKey` funTyConKey , [_w, _rep1,_rep2,_co1,_co2] <- cos = failWithL (text "Saturated TyConAppCo (->):" <+> ppr co) -- All saturated TyConAppCos should be FunCos | Just {} <- synTyConDefn_maybe tc = failWithL (text "Synonym in TyConAppCo:" <+> ppr co) | otherwise = do { checkTyCon tc ; cos' <- mapM lintCoercion cos ; let (co_kinds, co_roles) = unzip (map coercionKindRole cos') ; lint_co_app co (tyConKind tc) (map pFst co_kinds) ; lint_co_app co (tyConKind tc) (map pSnd co_kinds) ; zipWithM_ (lintRole co) (tyConRolesX r tc) co_roles ; return (TyConAppCo r tc cos') } lintCoercion co@(AppCo co1 co2) | TyConAppCo {} <- co1 = failWithL (text "TyConAppCo to the left of AppCo:" <+> ppr co) | Just (TyConApp {}, _) <- isReflCo_maybe co1 = failWithL (text "Refl (TyConApp ...) to the left of AppCo:" <+> ppr co) | otherwise = do { co1' <- lintCoercion co1 ; co2' <- lintCoercion co2 ; let (Pair lk1 rk1, r1) = coercionKindRole co1' (Pair lk2 rk2, r2) = coercionKindRole co2' ; lint_co_app co (typeKind lk1) [lk2] ; lint_co_app co (typeKind rk1) [rk2] ; if r1 == Phantom then lintL (r2 == Phantom || r2 == Nominal) (text "Second argument in AppCo cannot be R:" $$ ppr co) else lintRole co Nominal r2 ; return (AppCo co1' co2') } ---------- lintCoercion co@(ForAllCo tcv kind_co body_co) | not (isTyCoVar tcv) = failWithL (text "Non tyco binder in ForAllCo:" <+> ppr co) | otherwise = do { kind_co' <- lintStarCoercion kind_co ; lintTyCoBndr tcv $ \tcv' -> do { body_co' <- lintCoercion body_co ; ensureEqTys (varType tcv') (coercionLKind kind_co') $ text "Kind mis-match in ForallCo" <+> ppr co -- Assuming kind_co :: k1 ~ k2 -- Need to check that -- (forall (tcv:k1). lty) and -- (forall (tcv:k2). rty[(tcv:k2) |> sym kind_co/tcv]) -- are both well formed. Easiest way is to call lintForAllBody -- for each; there is actually no need to do the funky substitution ; let Pair lty rty = coercionKind body_co' ; lintForAllBody tcv' lty ; lintForAllBody tcv' rty ; when (isCoVar tcv) $ lintL (almostDevoidCoVarOfCo tcv body_co) $ text "Covar can only appear in Refl and GRefl: " <+> ppr co -- See "last wrinkle" in GHC.Core.Coercion -- Note [Unused coercion variable in ForAllCo] -- and c.f. GHC.Core.TyCo.Rep Note [Unused coercion variable in ForAllTy] ; return (ForAllCo tcv' kind_co' body_co') } } lintCoercion co@(FunCo r cow co1 co2) = do { co1' <- lintCoercion co1 ; co2' <- lintCoercion co2 ; cow' <- lintCoercion cow ; let Pair lt1 rt1 = coercionKind co1 Pair lt2 rt2 = coercionKind co2 Pair ltw rtw = coercionKind cow ; lintArrow (text "coercion" <+> quotes (ppr co)) lt1 lt2 ltw ; lintArrow (text "coercion" <+> quotes (ppr co)) rt1 rt2 rtw ; lintRole co1 r (coercionRole co1) ; lintRole co2 r (coercionRole co2) ; ensureEqTys (typeKind ltw) multiplicityTy (text "coercion" <> quotes (ppr co)) ; ensureEqTys (typeKind rtw) multiplicityTy (text "coercion" <> quotes (ppr co)) ; let expected_mult_role = case r of Phantom -> Phantom _ -> Nominal ; lintRole cow expected_mult_role (coercionRole cow) ; return (FunCo r cow' co1' co2') } -- See Note [Bad unsafe coercion] lintCoercion co@(UnivCo prov r ty1 ty2) = do { ty1' <- lintType ty1 ; ty2' <- lintType ty2 ; let k1 = typeKind ty1' k2 = typeKind ty2' ; prov' <- lint_prov k1 k2 prov ; when (r /= Phantom && classifiesTypeWithValues k1 && classifiesTypeWithValues k2) (checkTypes ty1 ty2) ; return (UnivCo prov' r ty1' ty2') } where report s = hang (text $ "Unsafe coercion: " ++ s) 2 (vcat [ text "From:" <+> ppr ty1 , text " To:" <+> ppr ty2]) isUnBoxed :: PrimRep -> Bool isUnBoxed = not . isGcPtrRep -- see #9122 for discussion of these checks checkTypes t1 t2 = do { checkWarnL (not lev_poly1) (report "left-hand type is levity-polymorphic") ; checkWarnL (not lev_poly2) (report "right-hand type is levity-polymorphic") ; when (not (lev_poly1 || lev_poly2)) $ do { checkWarnL (reps1 `equalLength` reps2 || is_core_prep_prov prov) (report "between values with different # of reps") ; zipWithM_ validateCoercion reps1 reps2 }} where lev_poly1 = isTypeLevPoly t1 lev_poly2 = isTypeLevPoly t2 -- don't look at these unless lev_poly1/2 are False -- Otherwise, we get #13458 reps1 = typePrimRep t1 reps2 = typePrimRep t2 -- CorePrep deliberately makes ill-kinded casts -- e.g (case error @Int "blah" of {}) :: Int# -- ==> (error @Int "blah") |> Unsafe Int Int# -- See Note [Unsafe coercions] in GHC.Core.CoreToStg.Prep is_core_prep_prov CorePrepProv = True is_core_prep_prov _ = False validateCoercion :: PrimRep -> PrimRep -> LintM () validateCoercion rep1 rep2 = do { platform <- targetPlatform <$> getDynFlags ; checkWarnL (isUnBoxed rep1 == isUnBoxed rep2) (report "between unboxed and boxed value") ; checkWarnL (TyCon.primRepSizeB platform rep1 == TyCon.primRepSizeB platform rep2) (report "between unboxed values of different size") ; let fl = liftM2 (==) (TyCon.primRepIsFloat rep1) (TyCon.primRepIsFloat rep2) ; case fl of Nothing -> addWarnL (report "between vector types") Just False -> addWarnL (report "between float and integral values") _ -> return () } lint_prov k1 k2 (PhantomProv kco) = do { kco' <- lintStarCoercion kco ; lintRole co Phantom r ; check_kinds kco' k1 k2 ; return (PhantomProv kco') } lint_prov k1 k2 (ProofIrrelProv kco) = do { lintL (isCoercionTy ty1) (mkBadProofIrrelMsg ty1 co) ; lintL (isCoercionTy ty2) (mkBadProofIrrelMsg ty2 co) ; kco' <- lintStarCoercion kco ; check_kinds kco k1 k2 ; return (ProofIrrelProv kco') } lint_prov _ _ prov@(PluginProv _) = return prov lint_prov _ _ prov@CorePrepProv = return prov check_kinds kco k1 k2 = do { let Pair k1' k2' = coercionKind kco ; ensureEqTys k1 k1' (mkBadUnivCoMsg CLeft co) ; ensureEqTys k2 k2' (mkBadUnivCoMsg CRight co) } lintCoercion (SymCo co) = do { co' <- lintCoercion co ; return (SymCo co') } lintCoercion co@(TransCo co1 co2) = do { co1' <- lintCoercion co1 ; co2' <- lintCoercion co2 ; let ty1b = coercionRKind co1' ty2a = coercionLKind co2' ; ensureEqTys ty1b ty2a (hang (text "Trans coercion mis-match:" <+> ppr co) 2 (vcat [ppr (coercionKind co1'), ppr (coercionKind co2')])) ; lintRole co (coercionRole co1) (coercionRole co2) ; return (TransCo co1' co2') } lintCoercion the_co@(NthCo r0 n co) = do { co' <- lintCoercion co ; let (Pair s t, r) = coercionKindRole co' ; case (splitForAllTyCoVar_maybe s, splitForAllTyCoVar_maybe t) of { (Just _, Just _) -- works for both tyvar and covar | n == 0 , (isForAllTy_ty s && isForAllTy_ty t) || (isForAllTy_co s && isForAllTy_co t) -> do { lintRole the_co Nominal r0 ; return (NthCo r0 n co') } ; _ -> case (splitTyConApp_maybe s, splitTyConApp_maybe t) of { (Just (tc_s, tys_s), Just (tc_t, tys_t)) | tc_s == tc_t , isInjectiveTyCon tc_s r -- see Note [NthCo and newtypes] in GHC.Core.TyCo.Rep , tys_s `equalLength` tys_t , tys_s `lengthExceeds` n -> do { lintRole the_co tr r0 ; return (NthCo r0 n co') } where tr = nthRole r tc_s n ; _ -> failWithL (hang (text "Bad getNth:") 2 (ppr the_co $$ ppr s $$ ppr t)) }}} lintCoercion the_co@(LRCo lr co) = do { co' <- lintCoercion co ; let Pair s t = coercionKind co' r = coercionRole co' ; lintRole co Nominal r ; case (splitAppTy_maybe s, splitAppTy_maybe t) of (Just _, Just _) -> return (LRCo lr co') _ -> failWithL (hang (text "Bad LRCo:") 2 (ppr the_co $$ ppr s $$ ppr t)) } lintCoercion (InstCo co arg) = do { co' <- lintCoercion co ; arg' <- lintCoercion arg ; let Pair t1 t2 = coercionKind co' Pair s1 s2 = coercionKind arg' ; lintRole arg Nominal (coercionRole arg') ; case (splitForAllTyVar_maybe t1, splitForAllTyVar_maybe t2) of -- forall over tvar { (Just (tv1,_), Just (tv2,_)) | typeKind s1 `eqType` tyVarKind tv1 , typeKind s2 `eqType` tyVarKind tv2 -> return (InstCo co' arg') | otherwise -> failWithL (text "Kind mis-match in inst coercion1" <+> ppr co) ; _ -> case (splitForAllCoVar_maybe t1, splitForAllCoVar_maybe t2) of -- forall over covar { (Just (cv1, _), Just (cv2, _)) | typeKind s1 `eqType` varType cv1 , typeKind s2 `eqType` varType cv2 , CoercionTy _ <- s1 , CoercionTy _ <- s2 -> return (InstCo co' arg') | otherwise -> failWithL (text "Kind mis-match in inst coercion2" <+> ppr co) ; _ -> failWithL (text "Bad argument of inst") }}} lintCoercion co@(AxiomInstCo con ind cos) = do { unless (0 <= ind && ind < numBranches (coAxiomBranches con)) (bad_ax (text "index out of range")) ; let CoAxBranch { cab_tvs = ktvs , cab_cvs = cvs , cab_roles = roles } = coAxiomNthBranch con ind ; unless (cos `equalLength` (ktvs ++ cvs)) $ bad_ax (text "lengths") ; cos' <- mapM lintCoercion cos ; subst <- getTCvSubst ; let empty_subst = zapTCvSubst subst ; _ <- foldlM check_ki (empty_subst, empty_subst) (zip3 (ktvs ++ cvs) roles cos') ; let fam_tc = coAxiomTyCon con ; case checkAxInstCo co of Just bad_branch -> bad_ax $ text "inconsistent with" <+> pprCoAxBranch fam_tc bad_branch Nothing -> return () ; return (AxiomInstCo con ind cos') } where bad_ax what = addErrL (hang (text "Bad axiom application" <+> parens what) 2 (ppr co)) check_ki (subst_l, subst_r) (ktv, role, arg') = do { let Pair s' t' = coercionKind arg' sk' = typeKind s' tk' = typeKind t' ; lintRole arg' role (coercionRole arg') ; let ktv_kind_l = substTy subst_l (tyVarKind ktv) ktv_kind_r = substTy subst_r (tyVarKind ktv) ; unless (sk' `eqType` ktv_kind_l) (bad_ax (text "check_ki1" <+> vcat [ ppr co, ppr sk', ppr ktv, ppr ktv_kind_l ] )) ; unless (tk' `eqType` ktv_kind_r) (bad_ax (text "check_ki2" <+> vcat [ ppr co, ppr tk', ppr ktv, ppr ktv_kind_r ] )) ; return (extendTCvSubst subst_l ktv s', extendTCvSubst subst_r ktv t') } lintCoercion (KindCo co) = do { co' <- lintCoercion co ; return (KindCo co') } lintCoercion (SubCo co') = do { co' <- lintCoercion co' ; lintRole co' Nominal (coercionRole co') ; return (SubCo co') } lintCoercion this@(AxiomRuleCo ax cos) = do { cos' <- mapM lintCoercion cos ; lint_roles 0 (coaxrAsmpRoles ax) cos' ; case coaxrProves ax (map coercionKind cos') of Nothing -> err "Malformed use of AxiomRuleCo" [ ppr this ] Just _ -> return (AxiomRuleCo ax cos') } where err :: forall a. String -> [SDoc] -> LintM a err m xs = failWithL $ hang (text m) 2 $ vcat (text "Rule:" <+> ppr (coaxrName ax) : xs) lint_roles n (e : es) (co : cos) | e == coercionRole co = lint_roles (n+1) es cos | otherwise = err "Argument roles mismatch" [ text "In argument:" <+> int (n+1) , text "Expected:" <+> ppr e , text "Found:" <+> ppr (coercionRole co) ] lint_roles _ [] [] = return () lint_roles n [] rs = err "Too many coercion arguments" [ text "Expected:" <+> int n , text "Provided:" <+> int (n + length rs) ] lint_roles n es [] = err "Not enough coercion arguments" [ text "Expected:" <+> int (n + length es) , text "Provided:" <+> int n ] lintCoercion (HoleCo h) = do { addErrL $ text "Unfilled coercion hole:" <+> ppr h ; lintCoercion (CoVarCo (coHoleCoVar h)) } {- ************************************************************************ * * Axioms * * ************************************************************************ -} lintAxioms :: Logger -> DynFlags -> SDoc -- ^ The source of the linted axioms -> [CoAxiom Branched] -> IO () lintAxioms logger dflags what axioms = displayLintResults logger dflags True what (vcat $ map pprCoAxiom axioms) $ initL dflags (defaultLintFlags dflags) [] $ do { mapM_ lint_axiom axioms ; let axiom_groups = groupWith coAxiomTyCon axioms ; mapM_ lint_axiom_group axiom_groups } lint_axiom :: CoAxiom Branched -> LintM () lint_axiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches , co_ax_role = ax_role }) = addLoc (InAxiom ax) $ do { mapM_ (lint_branch tc) branch_list ; extra_checks } where branch_list = fromBranches branches extra_checks | isNewTyCon tc = do { CoAxBranch { cab_tvs = tvs , cab_eta_tvs = eta_tvs , cab_cvs = cvs , cab_roles = roles , cab_lhs = lhs_tys } <- case branch_list of [branch] -> return branch _ -> failWithL (text "multi-branch axiom with newtype") ; let ax_lhs = mkInfForAllTys tvs $ mkTyConApp tc lhs_tys nt_tvs = takeList tvs (tyConTyVars tc) -- axiom may be eta-reduced: Note [Newtype eta] in GHC.Core.TyCon nt_lhs = mkInfForAllTys nt_tvs $ mkTyConApp tc (mkTyVarTys nt_tvs) -- See Note [Newtype eta] in GHC.Core.TyCon ; lintL (ax_lhs `eqType` nt_lhs) (text "Newtype axiom LHS does not match newtype definition") ; lintL (null cvs) (text "Newtype axiom binds coercion variables") ; lintL (null eta_tvs) -- See Note [Eta reduction for data families] -- which is not about newtype axioms (text "Newtype axiom has eta-tvs") ; lintL (ax_role == Representational) (text "Newtype axiom role not representational") ; lintL (roles `equalLength` tvs) (text "Newtype axiom roles list is the wrong length." $$ text "roles:" <+> sep (map ppr roles)) ; lintL (roles == takeList roles (tyConRoles tc)) (vcat [ text "Newtype axiom roles do not match newtype tycon's." , text "axiom roles:" <+> sep (map ppr roles) , text "tycon roles:" <+> sep (map ppr (tyConRoles tc)) ]) } | isFamilyTyCon tc = do { if | isTypeFamilyTyCon tc -> lintL (ax_role == Nominal) (text "type family axiom is not nominal") | isDataFamilyTyCon tc -> lintL (ax_role == Representational) (text "data family axiom is not representational") | otherwise -> addErrL (text "A family TyCon is neither a type family nor a data family:" <+> ppr tc) ; mapM_ (lint_family_branch tc) branch_list } | otherwise = addErrL (text "Axiom tycon is neither a newtype nor a family.") lint_branch :: TyCon -> CoAxBranch -> LintM () lint_branch ax_tc (CoAxBranch { cab_tvs = tvs, cab_cvs = cvs , cab_lhs = lhs_args, cab_rhs = rhs }) = lintBinders LambdaBind (tvs ++ cvs) $ \_ -> do { let lhs = mkTyConApp ax_tc lhs_args ; lhs' <- lintType lhs ; rhs' <- lintType rhs ; let lhs_kind = typeKind lhs' rhs_kind = typeKind rhs' ; lintL (lhs_kind `eqType` rhs_kind) $ hang (text "Inhomogeneous axiom") 2 (text "lhs:" <+> ppr lhs <+> dcolon <+> ppr lhs_kind $$ text "rhs:" <+> ppr rhs <+> dcolon <+> ppr rhs_kind) } -- these checks do not apply to newtype axioms lint_family_branch :: TyCon -> CoAxBranch -> LintM () lint_family_branch fam_tc br@(CoAxBranch { cab_tvs = tvs , cab_eta_tvs = eta_tvs , cab_cvs = cvs , cab_roles = roles , cab_lhs = lhs , cab_incomps = incomps }) = do { lintL (isDataFamilyTyCon fam_tc || null eta_tvs) (text "Type family axiom has eta-tvs") ; lintL (all (`elemVarSet` tyCoVarsOfTypes lhs) tvs) (text "Quantified variable in family axiom unused in LHS") ; lintL (all isTyFamFree lhs) (text "Type family application on LHS of family axiom") ; lintL (all (== Nominal) roles) (text "Non-nominal role in family axiom" $$ text "roles:" <+> sep (map ppr roles)) ; lintL (null cvs) (text "Coercion variables bound in family axiom") ; forM_ incomps $ \ br' -> lintL (not (compatible_branches br br')) $ text "Incorrect incompatible branch:" <+> ppr br' } lint_axiom_group :: NonEmpty (CoAxiom Branched) -> LintM () lint_axiom_group (_ :| []) = return () lint_axiom_group (ax :| axs) = do { lintL (isOpenFamilyTyCon tc) (text "Non-open-family with multiple axioms") ; let all_pairs = [ (ax1, ax2) | ax1 <- all_axs , ax2 <- all_axs ] ; mapM_ (lint_axiom_pair tc) all_pairs } where all_axs = ax : axs tc = coAxiomTyCon ax lint_axiom_pair :: TyCon -> (CoAxiom Branched, CoAxiom Branched) -> LintM () lint_axiom_pair tc (ax1, ax2) | Just br1@(CoAxBranch { cab_tvs = tvs1 , cab_lhs = lhs1 , cab_rhs = rhs1 }) <- coAxiomSingleBranch_maybe ax1 , Just br2@(CoAxBranch { cab_tvs = tvs2 , cab_lhs = lhs2 , cab_rhs = rhs2 }) <- coAxiomSingleBranch_maybe ax2 = lintL (compatible_branches br1 br2) $ vcat [ hsep [ text "Axioms", ppr ax1, text "and", ppr ax2 , text "are incompatible" ] , text "tvs1 =" <+> pprTyVars tvs1 , text "lhs1 =" <+> ppr (mkTyConApp tc lhs1) , text "rhs1 =" <+> ppr rhs1 , text "tvs2 =" <+> pprTyVars tvs2 , text "lhs2 =" <+> ppr (mkTyConApp tc lhs2) , text "rhs2 =" <+> ppr rhs2 ] | otherwise = addErrL (text "Open type family axiom has more than one branch: either" <+> ppr ax1 <+> text "or" <+> ppr ax2) compatible_branches :: CoAxBranch -> CoAxBranch -> Bool -- True <=> branches are compatible. See Note [Compatibility] in GHC.Core.FamInstEnv. compatible_branches (CoAxBranch { cab_tvs = tvs1 , cab_lhs = lhs1 , cab_rhs = rhs1 }) (CoAxBranch { cab_tvs = tvs2 , cab_lhs = lhs2 , cab_rhs = rhs2 }) = -- we need to freshen ax2 w.r.t. ax1 -- do this by pretending tvs1 are in scope when processing tvs2 let in_scope = mkInScopeSet (mkVarSet tvs1) subst0 = mkEmptyTCvSubst in_scope (subst, _) = substTyVarBndrs subst0 tvs2 lhs2' = substTys subst lhs2 rhs2' = substTy subst rhs2 in case tcUnifyTys alwaysBindFun lhs1 lhs2' of Just unifying_subst -> substTy unifying_subst rhs1 `eqType` substTy unifying_subst rhs2' Nothing -> True {- ************************************************************************ * * \subsection[lint-monad]{The Lint monad} * * ************************************************************************ -} -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] data LintEnv = LE { le_flags :: LintFlags -- Linting the result of this pass , le_loc :: [LintLocInfo] -- Locations , le_subst :: TCvSubst -- Current TyCo substitution -- See Note [Linting type lets] -- /Only/ substitutes for type variables; -- but might clone CoVars -- We also use le_subst to keep track of -- in-scope TyVars and CoVars (but not Ids) -- Range of the TCvSubst is LintedType/LintedCo , le_ids :: VarEnv (Id, LintedType) -- In-scope Ids -- Used to check that occurrences have an enclosing binder. -- The Id is /pre-substitution/, used to check that -- the occurrence has an identical type to the binder -- The LintedType is used to return the type of the occurrence, -- without having to lint it again. , le_joins :: IdSet -- Join points in scope that are valid -- A subset of the InScopeSet in le_subst -- See Note [Join points] , le_dynflags :: DynFlags -- DynamicFlags , le_ue_aliases :: NameEnv UsageEnv -- Assigns usage environments to the -- alias-like binders, as found in -- non-recursive lets. } data LintFlags = LF { lf_check_global_ids :: Bool -- See Note [Checking for global Ids] , lf_check_inline_loop_breakers :: Bool -- See Note [Checking for INLINE loop breakers] , lf_check_static_ptrs :: StaticPtrCheck -- ^ See Note [Checking StaticPtrs] , lf_report_unsat_syns :: Bool -- ^ See Note [Linting type synonym applications] , lf_check_linearity :: Bool -- ^ See Note [Linting linearity] , lf_check_levity_poly :: Bool -- See Note [Checking for levity polymorphism] } -- See Note [Checking StaticPtrs] data StaticPtrCheck = AllowAnywhere -- ^ Allow 'makeStatic' to occur anywhere. | AllowAtTopLevel -- ^ Allow 'makeStatic' calls at the top-level only. | RejectEverywhere -- ^ Reject any 'makeStatic' occurrence. deriving Eq defaultLintFlags :: DynFlags -> LintFlags defaultLintFlags dflags = LF { lf_check_global_ids = False , lf_check_inline_loop_breakers = True , lf_check_static_ptrs = AllowAnywhere , lf_check_linearity = gopt Opt_DoLinearCoreLinting dflags , lf_report_unsat_syns = True , lf_check_levity_poly = True } newtype LintM a = LintM { unLintM :: LintEnv -> WarnsAndErrs -> -- Warning and error messages so far (Maybe a, WarnsAndErrs) } -- Result and messages (if any) deriving (Functor) type WarnsAndErrs = (Bag SDoc, Bag SDoc) {- Note [Checking for global Ids] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Before CoreTidy, all locally-bound Ids must be LocalIds, even top-level ones. See Note [Exported LocalIds] and #9857. Note [Checking StaticPtrs] ~~~~~~~~~~~~~~~~~~~~~~~~~~ See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview. Every occurrence of the function 'makeStatic' should be moved to the top level by the FloatOut pass. It's vital that we don't have nested 'makeStatic' occurrences after CorePrep, because we populate the Static Pointer Table from the top-level bindings. See SimplCore Note [Grand plan for static forms]. The linter checks that no occurrence is left behind, nested within an expression. The check is enabled only after the FloatOut, CorePrep, and CoreTidy passes and only if the module uses the StaticPointers language extension. Checking more often doesn't help since the condition doesn't hold until after the first FloatOut pass. Note [Type substitution] ~~~~~~~~~~~~~~~~~~~~~~~~ Why do we need a type substitution? Consider /\(a:*). \(x:a). /\(a:*). id a x This is ill typed, because (renaming variables) it is really /\(a:*). \(x:a). /\(b:*). id b x Hence, when checking an application, we can't naively compare x's type (at its binding site) with its expected type (at a use site). So we rename type binders as we go, maintaining a substitution. The same substitution also supports let-type, current expressed as (/\(a:*). body) ty Here we substitute 'ty' for 'a' in 'body', on the fly. Note [Linting type synonym applications] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When linting a type-synonym, or type-family, application S ty1 .. tyn we behave as follows (#15057, #T15664): * If lf_report_unsat_syns = True, and S has arity < n, complain about an unsaturated type synonym or type family * Switch off lf_report_unsat_syns, and lint ty1 .. tyn. Reason: catch out of scope variables or other ill-kinded gubbins, even if S discards that argument entirely. E.g. (#15012): type FakeOut a = Int type family TF a type instance TF Int = FakeOut a Here 'a' is out of scope; but if we expand FakeOut, we conceal that out-of-scope error. Reason for switching off lf_report_unsat_syns: with LiberalTypeSynonyms, GHC allows unsaturated synonyms provided they are saturated when the type is expanded. Example type T f = f Int type S a = a -> a type Z = T S In Z's RHS, S appears unsaturated, but it is saturated when T is expanded. * If lf_report_unsat_syns is on, expand the synonym application and lint the result. Reason: want to check that synonyms are saturated when the type is expanded. Note [Linting linearity] ~~~~~~~~~~~~~~~~~~~~~~~~ There are two known optimisations that have not yet been updated to work with Linear Lint: * Lambda-bound variables with unfoldings (see Note [Case binders and join points] and ticket #17530) * Optimisations can create a letrec which uses a variable linearly, e.g. letrec f True = f False f False = x in f True uses 'x' linearly, but this is not seen by the linter. Plan: make let-bound variables remember the usage environment. See ticket #18694. We plan to fix both of the issues in the very near future. For now, -dcore-lint enables only linting output of the desugarer, and full Linear Lint has to be enabled separately with -dlinear-core-lint. Ticket #19165 concerns enabling Linear Lint with -dcore-lint. -} instance Applicative LintM where pure x = LintM $ \ _ errs -> (Just x, errs) (<*>) = ap instance Monad LintM where m >>= k = LintM (\ env errs -> let (res, errs') = unLintM m env errs in case res of Just r -> unLintM (k r) env errs' Nothing -> (Nothing, errs')) instance MonadFail LintM where fail err = failWithL (text err) instance HasDynFlags LintM where getDynFlags = LintM (\ e errs -> (Just (le_dynflags e), errs)) data LintLocInfo = RhsOf Id -- The variable bound | OccOf Id -- Occurrence of id | LambdaBodyOf Id -- The lambda-binder | RuleOf Id -- Rules attached to a binder | UnfoldingOf Id -- Unfolding of a binder | BodyOfLetRec [Id] -- One of the binders | CaseAlt CoreAlt -- Case alternative | CasePat CoreAlt -- The *pattern* of the case alternative | CaseTy CoreExpr -- The type field of a case expression -- with this scrutinee | IdTy Id -- The type field of an Id binder | AnExpr CoreExpr -- Some expression | ImportedUnfolding SrcLoc -- Some imported unfolding (ToDo: say which) | TopLevelBindings | InType Type -- Inside a type | InCo Coercion -- Inside a coercion | InAxiom (CoAxiom Branched) -- Inside a CoAxiom initL :: DynFlags -> LintFlags -> [Var] -> LintM a -> WarnsAndErrs -- Warnings and errors initL dflags flags vars m = case unLintM m env (emptyBag, emptyBag) of (Just _, errs) -> errs (Nothing, errs@(_, e)) | not (isEmptyBag e) -> errs | otherwise -> pprPanic ("Bug in Lint: a failure occurred " ++ "without reporting an error message") empty where (tcvs, ids) = partition isTyCoVar vars env = LE { le_flags = flags , le_subst = mkEmptyTCvSubst (mkInScopeSet (mkVarSet tcvs)) , le_ids = mkVarEnv [(id, (id,idType id)) | id <- ids] , le_joins = emptyVarSet , le_loc = [] , le_dynflags = dflags , le_ue_aliases = emptyNameEnv } setReportUnsat :: Bool -> LintM a -> LintM a -- Switch off lf_report_unsat_syns setReportUnsat ru thing_inside = LintM $ \ env errs -> let env' = env { le_flags = (le_flags env) { lf_report_unsat_syns = ru } } in unLintM thing_inside env' errs -- See Note [Checking for levity polymorphism] noLPChecks :: LintM a -> LintM a noLPChecks thing_inside = LintM $ \env errs -> let env' = env { le_flags = (le_flags env) { lf_check_levity_poly = False } } in unLintM thing_inside env' errs getLintFlags :: LintM LintFlags getLintFlags = LintM $ \ env errs -> (Just (le_flags env), errs) checkL :: Bool -> SDoc -> LintM () checkL True _ = return () checkL False msg = failWithL msg -- like checkL, but relevant to type checking lintL :: Bool -> SDoc -> LintM () lintL = checkL checkWarnL :: Bool -> SDoc -> LintM () checkWarnL True _ = return () checkWarnL False msg = addWarnL msg failWithL :: SDoc -> LintM a failWithL msg = LintM $ \ env (warns,errs) -> (Nothing, (warns, addMsg True env errs msg)) addErrL :: SDoc -> LintM () addErrL msg = LintM $ \ env (warns,errs) -> (Just (), (warns, addMsg True env errs msg)) addWarnL :: SDoc -> LintM () addWarnL msg = LintM $ \ env (warns,errs) -> (Just (), (addMsg False env warns msg, errs)) addMsg :: Bool -> LintEnv -> Bag SDoc -> SDoc -> Bag SDoc addMsg is_error env msgs msg = ASSERT2( notNull loc_msgs, msg ) msgs `snocBag` mk_msg msg where loc_msgs :: [(SrcLoc, SDoc)] -- Innermost first loc_msgs = map dumpLoc (le_loc env) cxt_doc = vcat [ vcat $ reverse $ map snd loc_msgs , text "Substitution:" <+> ppr (le_subst env) ] context | is_error = cxt_doc | otherwise = whenPprDebug cxt_doc -- Print voluminous info for Lint errors -- but not for warnings msg_span = case [ span | (loc,_) <- loc_msgs , let span = srcLocSpan loc , isGoodSrcSpan span ] of [] -> noSrcSpan (s:_) -> s mk_msg msg = mkLocMessage SevWarning msg_span (msg $$ context) addLoc :: LintLocInfo -> LintM a -> LintM a addLoc extra_loc m = LintM $ \ env errs -> unLintM m (env { le_loc = extra_loc : le_loc env }) errs inCasePat :: LintM Bool -- A slight hack; see the unique call site inCasePat = LintM $ \ env errs -> (Just (is_case_pat env), errs) where is_case_pat (LE { le_loc = CasePat {} : _ }) = True is_case_pat _other = False addInScopeId :: Id -> LintedType -> LintM a -> LintM a addInScopeId id linted_ty m = LintM $ \ env@(LE { le_ids = id_set, le_joins = join_set }) errs -> unLintM m (env { le_ids = extendVarEnv id_set id (id, linted_ty) , le_joins = add_joins join_set }) errs where add_joins join_set | isJoinId id = extendVarSet join_set id -- Overwrite with new arity | otherwise = delVarSet join_set id -- Remove any existing binding getInScopeIds :: LintM (VarEnv (Id,LintedType)) getInScopeIds = LintM (\env errs -> (Just (le_ids env), errs)) extendTvSubstL :: TyVar -> Type -> LintM a -> LintM a extendTvSubstL tv ty m = LintM $ \ env errs -> unLintM m (env { le_subst = Type.extendTvSubst (le_subst env) tv ty }) errs updateTCvSubst :: TCvSubst -> LintM a -> LintM a updateTCvSubst subst' m = LintM $ \ env errs -> unLintM m (env { le_subst = subst' }) errs markAllJoinsBad :: LintM a -> LintM a markAllJoinsBad m = LintM $ \ env errs -> unLintM m (env { le_joins = emptyVarSet }) errs markAllJoinsBadIf :: Bool -> LintM a -> LintM a markAllJoinsBadIf True m = markAllJoinsBad m markAllJoinsBadIf False m = m getValidJoins :: LintM IdSet getValidJoins = LintM (\ env errs -> (Just (le_joins env), errs)) getTCvSubst :: LintM TCvSubst getTCvSubst = LintM (\ env errs -> (Just (le_subst env), errs)) getUEAliases :: LintM (NameEnv UsageEnv) getUEAliases = LintM (\ env errs -> (Just (le_ue_aliases env), errs)) getInScope :: LintM InScopeSet getInScope = LintM (\ env errs -> (Just (getTCvInScope $ le_subst env), errs)) lookupIdInScope :: Id -> LintM (Id, LintedType) lookupIdInScope id_occ = do { in_scope_ids <- getInScopeIds ; case lookupVarEnv in_scope_ids id_occ of Just (id_bndr, linted_ty) -> do { checkL (not (bad_global id_bndr)) global_in_scope ; return (id_bndr, linted_ty) } Nothing -> do { checkL (not is_local) local_out_of_scope ; return (id_occ, idType id_occ) } } -- We don't bother to lint the type -- of global (i.e. imported) Ids where is_local = mustHaveLocalBinding id_occ local_out_of_scope = text "Out of scope:" <+> pprBndr LetBind id_occ global_in_scope = hang (text "Occurrence is GlobalId, but binding is LocalId") 2 (pprBndr LetBind id_occ) bad_global id_bnd = isGlobalId id_occ && isLocalId id_bnd && not (isWiredIn id_occ) -- 'bad_global' checks for the case where an /occurrence/ is -- a GlobalId, but there is an enclosing binding fora a LocalId. -- NB: the in-scope variables are mostly LocalIds, checked by lintIdBndr, -- but GHCi adds GlobalIds from the interactive context. These -- are fine; hence the test (isLocalId id == isLocalId v) -- NB: when compiling Control.Exception.Base, things like absentError -- are defined locally, but appear in expressions as (global) -- wired-in Ids after worker/wrapper -- So we simply disable the test in this case lookupJoinId :: Id -> LintM (Maybe JoinArity) -- Look up an Id which should be a join point, valid here -- If so, return its arity, if not return Nothing lookupJoinId id = do { join_set <- getValidJoins ; case lookupVarSet join_set id of Just id' -> return (isJoinId_maybe id') Nothing -> return Nothing } addAliasUE :: Id -> UsageEnv -> LintM a -> LintM a addAliasUE id ue thing_inside = LintM $ \ env errs -> let new_ue_aliases = extendNameEnv (le_ue_aliases env) (getName id) ue in unLintM thing_inside (env { le_ue_aliases = new_ue_aliases }) errs varCallSiteUsage :: Id -> LintM UsageEnv varCallSiteUsage id = do m <- getUEAliases return $ case lookupNameEnv m (getName id) of Nothing -> unitUE id One Just id_ue -> id_ue ensureEqTys :: LintedType -> LintedType -> SDoc -> LintM () -- check ty2 is subtype of ty1 (ie, has same structure but usage -- annotations need only be consistent, not equal) -- Assumes ty1,ty2 are have already had the substitution applied ensureEqTys ty1 ty2 msg = lintL (ty1 `eqType` ty2) msg ensureSubUsage :: Usage -> Mult -> SDoc -> LintM () ensureSubUsage Bottom _ _ = return () ensureSubUsage Zero described_mult err_msg = ensureSubMult Many described_mult err_msg ensureSubUsage (MUsage m) described_mult err_msg = ensureSubMult m described_mult err_msg ensureSubMult :: Mult -> Mult -> SDoc -> LintM () ensureSubMult actual_usage described_usage err_msg = do flags <- getLintFlags when (lf_check_linearity flags) $ case actual_usage' `submult` described_usage' of Submult -> return () Unknown -> case isMultMul actual_usage' of Just (m1, m2) -> ensureSubMult m1 described_usage' err_msg >> ensureSubMult m2 described_usage' err_msg Nothing -> when (not (actual_usage' `eqType` described_usage')) (addErrL err_msg) where actual_usage' = normalize actual_usage described_usage' = normalize described_usage normalize :: Mult -> Mult normalize m = case isMultMul m of Just (m1, m2) -> mkMultMul (normalize m1) (normalize m2) Nothing -> m lintRole :: Outputable thing => thing -- where the role appeared -> Role -- expected -> Role -- actual -> LintM () lintRole co r1 r2 = lintL (r1 == r2) (text "Role incompatibility: expected" <+> ppr r1 <> comma <+> text "got" <+> ppr r2 $$ text "in" <+> ppr co) {- ************************************************************************ * * \subsection{Error messages} * * ************************************************************************ -} dumpLoc :: LintLocInfo -> (SrcLoc, SDoc) dumpLoc (RhsOf v) = (getSrcLoc v, text "In the RHS of" <+> pp_binders [v]) dumpLoc (OccOf v) = (getSrcLoc v, text "In an occurrence of" <+> pp_binder v) dumpLoc (LambdaBodyOf b) = (getSrcLoc b, text "In the body of lambda with binder" <+> pp_binder b) dumpLoc (RuleOf b) = (getSrcLoc b, text "In a rule attached to" <+> pp_binder b) dumpLoc (UnfoldingOf b) = (getSrcLoc b, text "In the unfolding of" <+> pp_binder b) dumpLoc (BodyOfLetRec []) = (noSrcLoc, text "In body of a letrec with no binders") dumpLoc (BodyOfLetRec bs@(_:_)) = ( getSrcLoc (head bs), text "In the body of letrec with binders" <+> pp_binders bs) dumpLoc (AnExpr e) = (noSrcLoc, text "In the expression:" <+> ppr e) dumpLoc (CaseAlt (Alt con args _)) = (noSrcLoc, text "In a case alternative:" <+> parens (ppr con <+> pp_binders args)) dumpLoc (CasePat (Alt con args _)) = (noSrcLoc, text "In the pattern of a case alternative:" <+> parens (ppr con <+> pp_binders args)) dumpLoc (CaseTy scrut) = (noSrcLoc, hang (text "In the result-type of a case with scrutinee:") 2 (ppr scrut)) dumpLoc (IdTy b) = (getSrcLoc b, text "In the type of a binder:" <+> ppr b) dumpLoc (ImportedUnfolding locn) = (locn, text "In an imported unfolding") dumpLoc TopLevelBindings = (noSrcLoc, Outputable.empty) dumpLoc (InType ty) = (noSrcLoc, text "In the type" <+> quotes (ppr ty)) dumpLoc (InCo co) = (noSrcLoc, text "In the coercion" <+> quotes (ppr co)) dumpLoc (InAxiom ax) = (getSrcLoc ax_name, text "In the coercion axiom" <+> ppr ax_name <+> dcolon <+> pp_ax) where CoAxiom { co_ax_name = ax_name , co_ax_tc = tc , co_ax_role = ax_role , co_ax_branches = branches } = ax branch_list = fromBranches branches pp_ax | [branch] <- branch_list = pp_branch branch | otherwise = braces $ vcat (map pp_branch branch_list) pp_branch (CoAxBranch { cab_tvs = tvs , cab_cvs = cvs , cab_lhs = lhs_tys , cab_rhs = rhs_ty }) = sep [ brackets (pprWithCommas pprTyVar (tvs ++ cvs)) <> dot , ppr (mkTyConApp tc lhs_tys) , text "~_" <> pp_role ax_role , ppr rhs_ty ] pp_role Nominal = text "N" pp_role Representational = text "R" pp_role Phantom = text "P" pp_binders :: [Var] -> SDoc pp_binders bs = sep (punctuate comma (map pp_binder bs)) pp_binder :: Var -> SDoc pp_binder b | isId b = hsep [ppr b, dcolon, ppr (idType b)] | otherwise = hsep [ppr b, dcolon, ppr (tyVarKind b)] ------------------------------------------------------ -- Messages for case expressions mkDefaultArgsMsg :: [Var] -> SDoc mkDefaultArgsMsg args = hang (text "DEFAULT case with binders") 4 (ppr args) mkCaseAltMsg :: CoreExpr -> Type -> Type -> SDoc mkCaseAltMsg e ty1 ty2 = hang (text "Type of case alternatives not the same as the annotation on case:") 4 (vcat [ text "Actual type:" <+> ppr ty1, text "Annotation on case:" <+> ppr ty2, text "Alt Rhs:" <+> ppr e ]) mkScrutMsg :: Id -> Type -> Type -> TCvSubst -> SDoc mkScrutMsg var var_ty scrut_ty subst = vcat [text "Result binder in case doesn't match scrutinee:" <+> ppr var, text "Result binder type:" <+> ppr var_ty,--(idType var), text "Scrutinee type:" <+> ppr scrut_ty, hsep [text "Current TCv subst", ppr subst]] mkNonDefltMsg, mkNonIncreasingAltsMsg :: CoreExpr -> SDoc mkNonDefltMsg e = hang (text "Case expression with DEFAULT not at the beginning") 4 (ppr e) mkNonIncreasingAltsMsg e = hang (text "Case expression with badly-ordered alternatives") 4 (ppr e) nonExhaustiveAltsMsg :: CoreExpr -> SDoc nonExhaustiveAltsMsg e = hang (text "Case expression with non-exhaustive alternatives") 4 (ppr e) mkBadConMsg :: TyCon -> DataCon -> SDoc mkBadConMsg tycon datacon = vcat [ text "In a case alternative, data constructor isn't in scrutinee type:", text "Scrutinee type constructor:" <+> ppr tycon, text "Data con:" <+> ppr datacon ] mkBadPatMsg :: Type -> Type -> SDoc mkBadPatMsg con_result_ty scrut_ty = vcat [ text "In a case alternative, pattern result type doesn't match scrutinee type:", text "Pattern result type:" <+> ppr con_result_ty, text "Scrutinee type:" <+> ppr scrut_ty ] integerScrutinisedMsg :: SDoc integerScrutinisedMsg = text "In a LitAlt, the literal is lifted (probably Integer)" mkBadAltMsg :: Type -> CoreAlt -> SDoc mkBadAltMsg scrut_ty alt = vcat [ text "Data alternative when scrutinee is not a tycon application", text "Scrutinee type:" <+> ppr scrut_ty, text "Alternative:" <+> pprCoreAlt alt ] mkNewTyDataConAltMsg :: Type -> CoreAlt -> SDoc mkNewTyDataConAltMsg scrut_ty alt = vcat [ text "Data alternative for newtype datacon", text "Scrutinee type:" <+> ppr scrut_ty, text "Alternative:" <+> pprCoreAlt alt ] ------------------------------------------------------ -- Other error messages mkAppMsg :: Type -> Type -> CoreExpr -> SDoc mkAppMsg fun_ty arg_ty arg = vcat [text "Argument value doesn't match argument type:", hang (text "Fun type:") 4 (ppr fun_ty), hang (text "Arg type:") 4 (ppr arg_ty), hang (text "Arg:") 4 (ppr arg)] mkNonFunAppMsg :: Type -> Type -> CoreExpr -> SDoc mkNonFunAppMsg fun_ty arg_ty arg = vcat [text "Non-function type in function position", hang (text "Fun type:") 4 (ppr fun_ty), hang (text "Arg type:") 4 (ppr arg_ty), hang (text "Arg:") 4 (ppr arg)] mkLetErr :: TyVar -> CoreExpr -> SDoc mkLetErr bndr rhs = vcat [text "Bad `let' binding:", hang (text "Variable:") 4 (ppr bndr <+> dcolon <+> ppr (varType bndr)), hang (text "Rhs:") 4 (ppr rhs)] mkTyAppMsg :: Type -> Type -> SDoc mkTyAppMsg ty arg_ty = vcat [text "Illegal type application:", hang (text "Exp type:") 4 (ppr ty <+> dcolon <+> ppr (typeKind ty)), hang (text "Arg type:") 4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))] emptyRec :: CoreExpr -> SDoc emptyRec e = hang (text "Empty Rec binding:") 2 (ppr e) mkRhsMsg :: Id -> SDoc -> Type -> SDoc mkRhsMsg binder what ty = vcat [hsep [text "The type of this binder doesn't match the type of its" <+> what <> colon, ppr binder], hsep [text "Binder's type:", ppr (idType binder)], hsep [text "Rhs type:", ppr ty]] mkLetAppMsg :: CoreExpr -> SDoc mkLetAppMsg e = hang (text "This argument does not satisfy the let/app invariant:") 2 (ppr e) badBndrTyMsg :: Id -> SDoc -> SDoc badBndrTyMsg binder what = vcat [ text "The type of this binder is" <+> what <> colon <+> ppr binder , text "Binder's type:" <+> ppr (idType binder) ] mkNonTopExportedMsg :: Id -> SDoc mkNonTopExportedMsg binder = hsep [text "Non-top-level binder is marked as exported:", ppr binder] mkNonTopExternalNameMsg :: Id -> SDoc mkNonTopExternalNameMsg binder = hsep [text "Non-top-level binder has an external name:", ppr binder] mkTopNonLitStrMsg :: Id -> SDoc mkTopNonLitStrMsg binder = hsep [text "Top-level Addr# binder has a non-literal rhs:", ppr binder] mkKindErrMsg :: TyVar -> Type -> SDoc mkKindErrMsg tyvar arg_ty = vcat [text "Kinds don't match in type application:", hang (text "Type variable:") 4 (ppr tyvar <+> dcolon <+> ppr (tyVarKind tyvar)), hang (text "Arg type:") 4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))] mkCastErr :: CoreExpr -> Coercion -> Type -> Type -> SDoc mkCastErr expr = mk_cast_err "expression" "type" (ppr expr) mkCastTyErr :: Type -> Coercion -> Kind -> Kind -> SDoc mkCastTyErr ty = mk_cast_err "type" "kind" (ppr ty) mk_cast_err :: String -- ^ What sort of casted thing this is -- (\"expression\" or \"type\"). -> String -- ^ What sort of coercion is being used -- (\"type\" or \"kind\"). -> SDoc -- ^ The thing being casted. -> Coercion -> Type -> Type -> SDoc mk_cast_err thing_str co_str pp_thing co from_ty thing_ty = vcat [from_msg <+> text "of Cast differs from" <+> co_msg <+> text "of" <+> enclosed_msg, from_msg <> colon <+> ppr from_ty, text (capitalise co_str) <+> text "of" <+> enclosed_msg <> colon <+> ppr thing_ty, text "Actual" <+> enclosed_msg <> colon <+> pp_thing, text "Coercion used in cast:" <+> ppr co ] where co_msg, from_msg, enclosed_msg :: SDoc co_msg = text co_str from_msg = text "From-" <> co_msg enclosed_msg = text "enclosed" <+> text thing_str mkBadUnivCoMsg :: LeftOrRight -> Coercion -> SDoc mkBadUnivCoMsg lr co = text "Kind mismatch on the" <+> pprLeftOrRight lr <+> text "side of a UnivCo:" <+> ppr co mkBadProofIrrelMsg :: Type -> Coercion -> SDoc mkBadProofIrrelMsg ty co = hang (text "Found a non-coercion in a proof-irrelevance UnivCo:") 2 (vcat [ text "type:" <+> ppr ty , text "co:" <+> ppr co ]) mkBadTyVarMsg :: Var -> SDoc mkBadTyVarMsg tv = text "Non-tyvar used in TyVarTy:" <+> ppr tv <+> dcolon <+> ppr (varType tv) mkBadJoinBindMsg :: Var -> SDoc mkBadJoinBindMsg var = vcat [ text "Bad join point binding:" <+> ppr var , text "Join points can be bound only by a non-top-level let" ] mkInvalidJoinPointMsg :: Var -> Type -> SDoc mkInvalidJoinPointMsg var ty = hang (text "Join point has invalid type:") 2 (ppr var <+> dcolon <+> ppr ty) mkBadJoinArityMsg :: Var -> Int -> Int -> CoreExpr -> SDoc mkBadJoinArityMsg var ar n rhs = vcat [ text "Join point has too few lambdas", text "Join var:" <+> ppr var, text "Join arity:" <+> ppr ar, text "Number of lambdas:" <+> ppr (ar - n), text "Rhs = " <+> ppr rhs ] invalidJoinOcc :: Var -> SDoc invalidJoinOcc var = vcat [ text "Invalid occurrence of a join variable:" <+> ppr var , text "The binder is either not a join point, or not valid here" ] mkBadJumpMsg :: Var -> Int -> Int -> SDoc mkBadJumpMsg var ar nargs = vcat [ text "Join point invoked with wrong number of arguments", text "Join var:" <+> ppr var, text "Join arity:" <+> ppr ar, text "Number of arguments:" <+> int nargs ] mkInconsistentRecMsg :: [Var] -> SDoc mkInconsistentRecMsg bndrs = vcat [ text "Recursive let binders mix values and join points", text "Binders:" <+> hsep (map ppr_with_details bndrs) ] where ppr_with_details bndr = ppr bndr <> ppr (idDetails bndr) mkJoinBndrOccMismatchMsg :: Var -> JoinArity -> JoinArity -> SDoc mkJoinBndrOccMismatchMsg bndr join_arity_bndr join_arity_occ = vcat [ text "Mismatch in join point arity between binder and occurrence" , text "Var:" <+> ppr bndr , text "Arity at binding site:" <+> ppr join_arity_bndr , text "Arity at occurrence: " <+> ppr join_arity_occ ] mkBndrOccTypeMismatchMsg :: Var -> Var -> LintedType -> LintedType -> SDoc mkBndrOccTypeMismatchMsg bndr var bndr_ty var_ty = vcat [ text "Mismatch in type between binder and occurrence" , text "Binder:" <+> ppr bndr <+> dcolon <+> ppr bndr_ty , text "Occurrence:" <+> ppr var <+> dcolon <+> ppr var_ty , text " Before subst:" <+> ppr (idType var) ] mkBadJoinPointRuleMsg :: JoinId -> JoinArity -> CoreRule -> SDoc mkBadJoinPointRuleMsg bndr join_arity rule = vcat [ text "Join point has rule with wrong number of arguments" , text "Var:" <+> ppr bndr , text "Join arity:" <+> ppr join_arity , text "Rule:" <+> ppr rule ] pprLeftOrRight :: LeftOrRight -> SDoc pprLeftOrRight CLeft = text "left" pprLeftOrRight CRight = text "right" dupVars :: [NonEmpty Var] -> SDoc dupVars vars = hang (text "Duplicate variables brought into scope") 2 (ppr (map toList vars)) dupExtVars :: [NonEmpty Name] -> SDoc dupExtVars vars = hang (text "Duplicate top-level variables with the same qualified name") 2 (ppr (map toList vars)) {- ************************************************************************ * * \subsection{Annotation Linting} * * ************************************************************************ -} -- | This checks whether a pass correctly looks through debug -- annotations (@SourceNote@). This works a bit different from other -- consistency checks: We check this by running the given task twice, -- noting all differences between the results. lintAnnots :: SDoc -> (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts lintAnnots pname pass guts = do -- Run the pass as we normally would dflags <- getDynFlags logger <- getLogger when (gopt Opt_DoAnnotationLinting dflags) $ liftIO $ Err.showPass logger dflags "Annotation linting - first run" nguts <- pass guts -- If appropriate re-run it without debug annotations to make sure -- that they made no difference. when (gopt Opt_DoAnnotationLinting dflags) $ do liftIO $ Err.showPass logger dflags "Annotation linting - second run" nguts' <- withoutAnnots pass guts -- Finally compare the resulting bindings liftIO $ Err.showPass logger dflags "Annotation linting - comparison" let binds = flattenBinds $ mg_binds nguts binds' = flattenBinds $ mg_binds nguts' (diffs,_) = diffBinds True (mkRnEnv2 emptyInScopeSet) binds binds' when (not (null diffs)) $ GHC.Core.Opt.Monad.putMsg $ vcat [ lint_banner "warning" pname , text "Core changes with annotations:" , withPprStyle defaultDumpStyle $ nest 2 $ vcat diffs ] -- Return actual new guts return nguts -- | Run the given pass without annotations. This means that we both -- set the debugLevel setting to 0 in the environment as well as all -- annotations from incoming modules. withoutAnnots :: (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts withoutAnnots pass guts = do -- Remove debug flag from environment. dflags <- getDynFlags let removeFlag env = env{ hsc_dflags = dflags{ debugLevel = 0} } withoutFlag corem = -- TODO: supply tag here as well ? liftIO =<< runCoreM <$> fmap removeFlag getHscEnv <*> getRuleBase <*> getUniqMask <*> getModule <*> getVisibleOrphanMods <*> getPrintUnqualified <*> getSrcSpanM <*> pure corem -- Nuke existing ticks in module. -- TODO: Ticks in unfoldings. Maybe change unfolding so it removes -- them in absence of debugLevel > 0. let nukeTicks = stripTicksE (not . tickishIsCode) nukeAnnotsBind :: CoreBind -> CoreBind nukeAnnotsBind bind = case bind of Rec bs -> Rec $ map (\(b,e) -> (b, nukeTicks e)) bs NonRec b e -> NonRec b $ nukeTicks e nukeAnnotsMod mg@ModGuts{mg_binds=binds} = mg{mg_binds = map nukeAnnotsBind binds} -- Perform pass with all changes applied fmap fst $ withoutFlag $ pass (nukeAnnotsMod guts)