{-# LANGUAGE CPP, MagicHash #-} ----------------------------------------------------------------------------- -- -- Pretty-printing assembly language -- -- (c) The University of Glasgow 1993-2005 -- ----------------------------------------------------------------------------- module GHC.CmmToAsm.Ppr ( doubleToBytes, pprASCII, pprString, pprFileEmbed, pprSectionHeader ) where import GHC.Prelude import GHC.Utils.Asm import GHC.Cmm.CLabel import GHC.Cmm import GHC.CmmToAsm.Config import GHC.Data.FastString import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Platform import qualified Data.Array.Unsafe as U ( castSTUArray ) import Data.Array.ST import Control.Monad.ST import Data.Word import Data.ByteString (ByteString) import qualified Data.ByteString as BS import GHC.Exts import GHC.Word #if !MIN_VERSION_base(4,16,0) word8ToWord# :: Word# -> Word# word8ToWord# w = w {-# INLINE word8ToWord# #-} #endif -- ----------------------------------------------------------------------------- -- Converting floating-point literals to integrals for printing -- ToDo: this code is currently shared between SPARC and LLVM. -- Similar functions for (single precision) floats are -- present in the SPARC backend only. We need to fix both -- LLVM and SPARC. castDoubleToWord8Array :: STUArray s Int Double -> ST s (STUArray s Int Word8) castDoubleToWord8Array = U.castSTUArray -- floatToBytes and doubleToBytes convert to the host's byte -- order. Providing that we're not cross-compiling for a -- target with the opposite endianness, this should work ok -- on all targets. -- ToDo: this stuff is very similar to the shenanigans in PprAbs, -- could they be merged? doubleToBytes :: Double -> [Int] doubleToBytes d = runST (do arr <- newArray_ ((0::Int),7) writeArray arr 0 d arr <- castDoubleToWord8Array arr i0 <- readArray arr 0 i1 <- readArray arr 1 i2 <- readArray arr 2 i3 <- readArray arr 3 i4 <- readArray arr 4 i5 <- readArray arr 5 i6 <- readArray arr 6 i7 <- readArray arr 7 return (map fromIntegral [i0,i1,i2,i3,i4,i5,i6,i7]) ) -- --------------------------------------------------------------------------- -- Printing ASCII strings. -- -- Print as a string and escape non-printable characters. -- This is similar to charToC in GHC.Utils.Misc pprASCII :: ByteString -> SDoc pprASCII str -- Transform this given literal bytestring to escaped string and construct -- the literal SDoc directly. -- See #14741 -- and Note [Pretty print ASCII when AsmCodeGen] = text $ BS.foldr (\w s -> do1 w ++ s) "" str where do1 :: Word8 -> String do1 w | 0x09 == w = "\\t" | 0x0A == w = "\\n" | 0x22 == w = "\\\"" | 0x5C == w = "\\\\" -- ASCII printable characters range | w >= 0x20 && w <= 0x7E = [chr' w] | otherwise = '\\' : octal w -- we know that the Chars we create are in the ASCII range -- so we bypass the check in "chr" chr' :: Word8 -> Char chr' (W8# w#) = C# (chr# (word2Int# (word8ToWord# w#))) octal :: Word8 -> String octal w = [ chr' (ord0 + (w `unsafeShiftR` 6) .&. 0x07) , chr' (ord0 + (w `unsafeShiftR` 3) .&. 0x07) , chr' (ord0 + w .&. 0x07) ] ord0 = 0x30 -- = ord '0' -- | Emit a ".string" directive pprString :: ByteString -> SDoc pprString bs = text "\t.string " <> doubleQuotes (pprASCII bs) -- | Emit a ".incbin" directive -- -- A NULL byte is added after the binary data. pprFileEmbed :: FilePath -> SDoc pprFileEmbed path = text "\t.incbin " <> pprFilePathString path -- proper escape (see #16389) <> text "\n\t.byte 0" {- Note [Embedding large binary blobs] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To embed a blob of binary data (e.g. an UTF-8 encoded string) into the generated code object, we have several options: 1. Generate a ".byte" directive for each byte. This is what was done in the past (see Note [Pretty print ASCII when AsmCodeGen]). 2. Generate a single ".string"/".asciz" directive for the whole sequence of bytes. Bytes in the ASCII printable range are rendered as characters and other values are escaped (e.g., "\t", "\077", etc.). 3. Create a temporary file into which we dump the binary data and generate a single ".incbin" directive. The assembler will include the binary file for us in the generated output object. Now the code generator uses either (2) or (3), depending on the binary blob size. Using (3) for small blobs adds too much overhead (see benchmark results in #16190), so we only do it when the size is above a threshold (500K at the time of writing). The threshold is configurable via the `-fbinary-blob-threshold` flag. -} {- Note [Pretty print ASCII when AsmCodeGen] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Previously, when generating assembly code, we created SDoc with `(ptext . sLit)` for every bytes in literal bytestring, then combine them using `hcat`. When handling literal bytestrings with millions of bytes, millions of SDoc would be created and to combine, leading to high memory usage. Now we escape the given bytestring to string directly and construct SDoc only once. This improvement could dramatically decrease the memory allocation from 4.7GB to 1.3GB when embedding a 3MB literal string in source code. See #14741 for profiling results. -} -- ---------------------------------------------------------------------------- -- Printing section headers. -- -- If -split-section was specified, include the suffix label, otherwise just -- print the section type. For Darwin, where subsections-for-symbols are -- used instead, only print section type. -- -- For string literals, additional flags are specified to enable merging of -- identical strings in the linker. With -split-sections each string also gets -- a unique section to allow strings from unused code to be GC'd. pprSectionHeader :: NCGConfig -> Section -> SDoc pprSectionHeader config (Section t suffix) = case platformOS (ncgPlatform config) of OSAIX -> pprXcoffSectionHeader t OSDarwin -> pprDarwinSectionHeader t OSMinGW32 -> pprGNUSectionHeader config (char '$') t suffix _ -> pprGNUSectionHeader config (char '.') t suffix pprGNUSectionHeader :: NCGConfig -> SDoc -> SectionType -> CLabel -> SDoc pprGNUSectionHeader config sep t suffix = text ".section " <> ptext header <> subsection <> flags where platform = ncgPlatform config splitSections = ncgSplitSections config subsection | splitSections = sep <> pdoc platform suffix | otherwise = empty header = case t of Text -> sLit ".text" Data -> sLit ".data" ReadOnlyData | OSMinGW32 <- platformOS platform -> sLit ".rdata" | otherwise -> sLit ".rodata" RelocatableReadOnlyData | OSMinGW32 <- platformOS platform -- Concept does not exist on Windows, -- So map these to R/O data. -> sLit ".rdata$rel.ro" | otherwise -> sLit ".data.rel.ro" UninitialisedData -> sLit ".bss" ReadOnlyData16 | OSMinGW32 <- platformOS platform -> sLit ".rdata$cst16" | otherwise -> sLit ".rodata.cst16" CString | OSMinGW32 <- platformOS platform -> sLit ".rdata" | otherwise -> sLit ".rodata.str" OtherSection _ -> panic "PprBase.pprGNUSectionHeader: unknown section type" flags = case t of CString | OSMinGW32 <- platformOS platform -> empty | otherwise -> text ",\"aMS\"," <> sectionType platform "progbits" <> text ",1" _ -> empty -- XCOFF doesn't support relocating label-differences, so we place all -- RO sections into .text[PR] sections pprXcoffSectionHeader :: SectionType -> SDoc pprXcoffSectionHeader t = text $ case t of Text -> ".csect .text[PR]" Data -> ".csect .data[RW]" ReadOnlyData -> ".csect .text[PR] # ReadOnlyData" RelocatableReadOnlyData -> ".csect .text[PR] # RelocatableReadOnlyData" ReadOnlyData16 -> ".csect .text[PR] # ReadOnlyData16" CString -> ".csect .text[PR] # CString" UninitialisedData -> ".csect .data[BS]" OtherSection _ -> panic "PprBase.pprXcoffSectionHeader: unknown section type" pprDarwinSectionHeader :: SectionType -> SDoc pprDarwinSectionHeader t = ptext $ case t of Text -> sLit ".text" Data -> sLit ".data" ReadOnlyData -> sLit ".const" RelocatableReadOnlyData -> sLit ".const_data" UninitialisedData -> sLit ".data" ReadOnlyData16 -> sLit ".const" CString -> sLit ".section\t__TEXT,__cstring,cstring_literals" OtherSection _ -> panic "PprBase.pprDarwinSectionHeader: unknown section type"