{-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ScopedTypeVariables #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} -- | Typecheck some @Matches@ module GHC.Tc.Gen.Match ( tcFunBindMatches , tcCaseMatches , tcLambdaMatches , tcGRHSList , tcGRHSsPat , TcStmtChecker , TcExprStmtChecker , TcCmdStmtChecker , tcStmts , tcStmtsAndThen , tcDoStmts , tcBody , tcDoStmt , tcGuardStmt , checkArgCounts ) where import GHC.Prelude import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcSyntaxOp, tcInferRho, tcInferRhoNC , tcMonoExprNC, tcExpr , tcCheckMonoExpr, tcCheckMonoExprNC , tcCheckPolyExpr, tcPolyLExpr ) import GHC.Rename.Utils ( bindLocalNames, isIrrefutableHsPat ) import GHC.Tc.Errors.Types import GHC.Tc.Utils.Monad import GHC.Tc.Utils.Env import GHC.Tc.Gen.Pat import GHC.Tc.Gen.Do import GHC.Tc.Gen.Head( tcCheckId ) import GHC.Tc.Utils.TcMType import GHC.Tc.Utils.TcType import GHC.Tc.Gen.Bind import GHC.Tc.Utils.Concrete ( hasFixedRuntimeRep_syntactic ) import GHC.Tc.Utils.Unify import GHC.Tc.Types.Origin import GHC.Tc.Types.Evidence import GHC.Core.Multiplicity import GHC.Core.UsageEnv import GHC.Core.TyCon -- Create chunkified tuple types for monad comprehensions import GHC.Core.Make import GHC.Hs import GHC.Builtin.Types import GHC.Builtin.Types.Prim import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.Misc import GHC.Driver.DynFlags ( getDynFlags ) import GHC.Types.Name import GHC.Types.Id import GHC.Types.SrcLoc import GHC.Types.Basic( VisArity, isDoExpansionGenerated ) import Control.Monad import Control.Arrow ( second ) import qualified Data.List.NonEmpty as NE import Data.Maybe (mapMaybe) import qualified GHC.LanguageExtensions as LangExt {- ************************************************************************ * * \subsection{tcFunBindMatches, tcCaseMatches} * * ************************************************************************ `tcFunBindMatches` typechecks a `[Match]` list which occurs in a `FunBind`. The second argument is the name of the function, which is used in error messages. It checks that all the equations have the same number of arguments before using `tcMatches` to do the work. -} tcFunBindMatches :: UserTypeCtxt -> Name -- Function name -> Mult -- The multiplicity of the binder -> MatchGroup GhcRn (LHsExpr GhcRn) -> [ExpPatType] -- Scoped skolemised binders -> ExpRhoType -- Expected type of function; caller -- has skolemised any outer forall's -> TcM (HsWrapper, MatchGroup GhcTc (LHsExpr GhcTc)) -- See Note [Skolemisation overview] in GHC.Tc.Utils.Unify tcFunBindMatches ctxt fun_name mult matches invis_pat_tys exp_ty = assertPpr (funBindPrecondition matches) (pprMatches matches) $ do { -- Check that they all have the same no of arguments arity <- checkArgCounts matches ; traceTc "tcFunBindMatches 1" (ppr fun_name $$ ppr mult $$ ppr exp_ty $$ ppr arity) ; (wrap_fun, (wrap_mult, r)) <- matchExpectedFunTys herald ctxt arity exp_ty $ \ pat_tys rhs_ty -> tcScalingUsage mult $ -- Makes sure that if the binding is unrestricted, it counts as -- consuming its rhs Many times. do { traceTc "tcFunBindMatches 2" (vcat [ pprUserTypeCtxt ctxt, ppr invis_pat_tys , ppr pat_tys $$ ppr rhs_ty ]) ; tcMatches tcBody (invis_pat_tys ++ pat_tys) rhs_ty matches } ; return (wrap_fun <.> wrap_mult, r) } where herald = ExpectedFunTyMatches (NameThing fun_name) matches funBindPrecondition :: MatchGroup GhcRn (LHsExpr GhcRn) -> Bool funBindPrecondition (MG { mg_alts = L _ alts }) = not (null alts) && all is_fun_rhs alts where is_fun_rhs (L _ (Match { m_ctxt = FunRhs {} })) = True is_fun_rhs _ = False tcLambdaMatches :: HsExpr GhcRn -> HsLamVariant -> MatchGroup GhcRn (LHsExpr GhcRn) -> [ExpPatType] -- Already skolemised -> ExpSigmaType -- NB can be a sigma-type -> TcM (HsWrapper, MatchGroup GhcTc (LHsExpr GhcTc)) tcLambdaMatches e lam_variant matches invis_pat_tys res_ty = do { arity <- checkArgCounts matches -- Check argument counts since this is also used for \cases ; (wrapper, (mult_co_wrap, r)) <- matchExpectedFunTys herald GenSigCtxt arity res_ty $ \ pat_tys rhs_ty -> tcMatches tc_body (invis_pat_tys ++ pat_tys) rhs_ty matches ; return (wrapper <.> mult_co_wrap, r) } where herald = ExpectedFunTyLam lam_variant e -- See Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify tc_body | isDoExpansionGenerated (mg_ext matches) -- See Part 3. B. of Note [Expanding HsDo with XXExprGhcRn] in -- `GHC.Tc.Gen.Do`. Testcase: Typeable1 = tcBodyNC -- NB: Do not add any error contexts -- It has already been done | otherwise = tcBody {- @tcCaseMatches@ doesn't do the argument-count check because the parser guarantees that each equation has exactly one argument. -} tcCaseMatches :: (AnnoBody body, Outputable (body GhcTc)) => TcMatchAltChecker body -- ^ Typecheck the alternative RHSS -> Scaled TcSigmaTypeFRR -- ^ Type of scrutinee -> MatchGroup GhcRn (LocatedA (body GhcRn)) -- ^ The case alternatives -> ExpRhoType -- ^ Type of the whole case expression -> TcM (HsWrapper, MatchGroup GhcTc (LocatedA (body GhcTc))) -- Translated alternatives -- wrapper goes from MatchGroup's ty to expected ty tcCaseMatches tc_body (Scaled scrut_mult scrut_ty) matches res_ty = tcMatches tc_body [ExpFunPatTy (Scaled scrut_mult (mkCheckExpType scrut_ty))] res_ty matches -- @tcGRHSsPat@ typechecks @[GRHSs]@ that occur in a @PatMonoBind@. tcGRHSsPat :: Mult -> GRHSs GhcRn (LHsExpr GhcRn) -> ExpRhoType -> TcM (GRHSs GhcTc (LHsExpr GhcTc)) -- Used for pattern bindings tcGRHSsPat mult grhss res_ty = tcScalingUsage mult $ do { (mult_co_wrapper, r) <- tcGRHSs PatBindRhs tcBody grhss res_ty ; return $ mkWrap mult_co_wrapper r } where mkWrap wrap grhss@(GRHSs { grhssGRHSs = L loc (GRHS x guards body) : rhss }) = grhss { grhssGRHSs = L loc (GRHS x guards (mkLHsWrap wrap body)) : rhss } mkWrap _ (GRHSs { grhssGRHSs = [] }) = panic "tcGRHSsPat: empty GHRSs" mkWrap _ _ = panic "tcGRHSsPat: non-empty extensions" -- Should be the following but it warns of redundant pattern and I couldn't -- find a way to silence them -- -- mkWrap _ (GRHSs { grhssGRHSs = L _ (XGRHS absent) : _ }) = dataConCantHappen absent -- mkWrap _ (XGRHSs absent) = dataConCantHappen absent {- ********************************************************************* * * tcMatch * * ********************************************************************* -} -- | Type checker for a body of a match alternative type TcMatchAltChecker body -- c.f. TcStmtChecker, also in this module = LocatedA (body GhcRn) -> ExpRhoType -> TcM (LocatedA (body GhcTc)) type AnnoBody body = ( Outputable (body GhcRn) , Anno (Match GhcRn (LocatedA (body GhcRn))) ~ SrcSpanAnnA , Anno (Match GhcTc (LocatedA (body GhcTc))) ~ SrcSpanAnnA , Anno [LocatedA (Match GhcRn (LocatedA (body GhcRn)))] ~ SrcSpanAnnL , Anno [LocatedA (Match GhcTc (LocatedA (body GhcTc)))] ~ SrcSpanAnnL , Anno (GRHS GhcRn (LocatedA (body GhcRn))) ~ EpAnnCO , Anno (GRHS GhcTc (LocatedA (body GhcTc))) ~ EpAnnCO , Anno (StmtLR GhcRn GhcRn (LocatedA (body GhcRn))) ~ SrcSpanAnnA , Anno (StmtLR GhcTc GhcTc (LocatedA (body GhcTc))) ~ SrcSpanAnnA ) -- | Type-check a MatchGroup. tcMatches :: (AnnoBody body, Outputable (body GhcTc)) => TcMatchAltChecker body -> [ExpPatType] -- ^ Expected pattern types. -> ExpRhoType -- ^ Expected result-type of the Match. -> MatchGroup GhcRn (LocatedA (body GhcRn)) -> TcM (HsWrapper, MatchGroup GhcTc (LocatedA (body GhcTc))) tcMatches tc_body pat_tys rhs_ty (MG { mg_alts = L l matches , mg_ext = origin }) | null matches -- Deal with case e of {} -- Since there are no branches, no one else will fill in rhs_ty -- when in inference mode, so we must do it ourselves, -- here, using expTypeToType = do { tcEmitBindingUsage bottomUE ; pat_tys <- mapM scaledExpTypeToType (filter_out_forall_pat_tys pat_tys) ; rhs_ty <- expTypeToType rhs_ty ; return (idHsWrapper, MG { mg_alts = L l [] , mg_ext = MatchGroupTc pat_tys rhs_ty origin }) } | otherwise = do { umatches <- mapM (tcCollectingUsage . tcMatch tc_body pat_tys rhs_ty) matches ; let (usages, wmatches) = unzip umatches ; let (wrappers, matches') = unzip wmatches ; let wrapper = mconcat wrappers ; tcEmitBindingUsage $ supUEs usages ; pat_tys <- mapM readScaledExpType (filter_out_forall_pat_tys pat_tys) ; rhs_ty <- readExpType rhs_ty ; traceTc "tcMatches" (ppr matches' $$ ppr pat_tys $$ ppr rhs_ty) ; return (wrapper, MG { mg_alts = L l matches' , mg_ext = MatchGroupTc pat_tys rhs_ty origin }) } where -- We filter out foralls because we have no use for them in HsToCore. filter_out_forall_pat_tys :: [ExpPatType] -> [Scaled ExpSigmaTypeFRR] filter_out_forall_pat_tys = mapMaybe match_fun_pat_ty where match_fun_pat_ty (ExpFunPatTy t) = Just t match_fun_pat_ty ExpForAllPatTy{} = Nothing ------------- tcMatch :: (AnnoBody body) => TcMatchAltChecker body -> [ExpPatType] -- Expected pattern types -> ExpRhoType -- Expected result-type of the Match. -> LMatch GhcRn (LocatedA (body GhcRn)) -> TcM (HsWrapper, LMatch GhcTc (LocatedA (body GhcTc))) tcMatch tc_body pat_tys rhs_ty match = do { (L loc (wrapper, r)) <- wrapLocMA (tc_match pat_tys rhs_ty) match ; return (wrapper, L loc r) } where tc_match pat_tys rhs_ty match@(Match { m_ctxt = ctxt, m_pats = pats, m_grhss = grhss }) = add_match_ctxt $ do { (pats', (wrapper, grhss')) <- tcMatchPats ctxt pats pat_tys $ tcGRHSs ctxt tc_body grhss rhs_ty -- NB: pats' are just the /value/ patterns -- See Note [tcMatchPats] in GHC.Tc.Gen.Pat ; return (wrapper, Match { m_ext = noAnn , m_ctxt = ctxt , m_pats = pats' , m_grhss = grhss' }) } where -- For (\x -> e), tcExpr has already said "In the expression \x->e" -- so we don't want to add "In the lambda abstraction \x->e" -- But for \cases with many alternatives, it is helpful to say -- which particular alternative we are looking at add_match_ctxt thing_inside = case ctxt of LamAlt LamSingle -> thing_inside StmtCtxt (HsDoStmt{}) -> thing_inside -- this is an expanded do stmt _ -> addErrCtxt (pprMatchInCtxt match) thing_inside ------------- tcGRHSs :: AnnoBody body => HsMatchContextRn -> TcMatchAltChecker body -> GRHSs GhcRn (LocatedA (body GhcRn)) -> ExpRhoType -> TcM (HsWrapper, GRHSs GhcTc (LocatedA (body GhcTc))) -- Notice that we pass in the full res_ty, so that we get -- good inference from simple things like -- f = \(x::forall a.a->a) -> -- We used to force it to be a monotype when there was more than one guard -- but we don't need to do that any more tcGRHSs ctxt tc_body (GRHSs _ grhss binds) res_ty = do { (binds', wrapper, grhss') <- tcLocalBinds binds $ do tcGRHSList ctxt tc_body grhss res_ty ; return (wrapper, GRHSs emptyComments grhss' binds') } tcGRHSList :: forall body. AnnoBody body => HsMatchContextRn -> TcMatchAltChecker body -> [LGRHS GhcRn (LocatedA (body GhcRn))] -> ExpRhoType -> TcM [LGRHS GhcTc (LocatedA (body GhcTc))] tcGRHSList ctxt tc_body grhss res_ty = do { (usages, grhss') <- mapAndUnzipM (wrapLocSndMA tc_alt) grhss ; tcEmitBindingUsage $ supUEs usages ; return grhss' } where stmt_ctxt = PatGuard ctxt tc_alt :: GRHS GhcRn (LocatedA (body GhcRn)) -> TcM (UsageEnv, GRHS GhcTc (LocatedA (body GhcTc))) tc_alt (GRHS _ guards rhs) = tcCollectingUsage $ do { (guards', rhs') <- tcStmtsAndThen stmt_ctxt tcGuardStmt guards res_ty $ tc_body rhs ; return (GRHS noAnn guards' rhs') } {- ************************************************************************ * * \subsection{@tcDoStmts@ typechecks a {\em list} of do statements} * * ************************************************************************ -} tcDoStmts :: HsDoFlavour -> LocatedL [LStmt GhcRn (LHsExpr GhcRn)] -> ExpRhoType -> TcM (HsExpr GhcTc) -- Returns a HsDo tcDoStmts ListComp (L l stmts) res_ty = do { res_ty <- expTypeToType res_ty ; (co, elt_ty) <- matchExpectedListTy res_ty ; let list_ty = mkListTy elt_ty ; stmts' <- tcStmts (HsDoStmt ListComp) (tcLcStmt listTyCon) stmts (mkCheckExpType elt_ty) ; return $ mkHsWrapCo co (HsDo list_ty ListComp (L l stmts')) } tcDoStmts doExpr@(DoExpr _) ss@(L l stmts) res_ty = do { isApplicativeDo <- xoptM LangExt.ApplicativeDo ; if isApplicativeDo then do { stmts' <- tcStmts (HsDoStmt doExpr) tcDoStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty doExpr (L l stmts')) } else do { expanded_expr <- expandDoStmts doExpr stmts -- Do expansion on the fly ; mkExpandedExprTc (HsDo noExtField doExpr ss) <$> tcExpr (unLoc expanded_expr) res_ty } } tcDoStmts mDoExpr@(MDoExpr _) ss@(L _ stmts) res_ty = do { expanded_expr <- expandDoStmts mDoExpr stmts -- Do expansion on the fly ; mkExpandedExprTc (HsDo noExtField mDoExpr ss) <$> tcExpr (unLoc expanded_expr) res_ty } tcDoStmts MonadComp (L l stmts) res_ty = do { stmts' <- tcStmts (HsDoStmt MonadComp) tcMcStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty MonadComp (L l stmts')) } tcDoStmts ctxt@GhciStmtCtxt _ _ = pprPanic "tcDoStmts" (pprHsDoFlavour ctxt) tcBody :: LHsExpr GhcRn -> ExpRhoType -> TcM (LHsExpr GhcTc) tcBody body res_ty = do { traceTc "tcBody" (ppr res_ty) ; tcPolyLExpr body res_ty } tcBodyNC :: LHsExpr GhcRn -> ExpRhoType -> TcM (LHsExpr GhcTc) tcBodyNC body res_ty = do { traceTc "tcBodyNC" (ppr res_ty) ; tcMonoExprNC body res_ty } {- ************************************************************************ * * \subsection{tcStmts} * * ************************************************************************ -} type TcExprStmtChecker = TcStmtChecker HsExpr ExpRhoType type TcCmdStmtChecker = TcStmtChecker HsCmd TcRhoType type TcStmtChecker body rho_type = forall thing. HsStmtContextRn -> Stmt GhcRn (LocatedA (body GhcRn)) -> rho_type -- Result type for comprehension -> (rho_type -> TcM thing) -- Checker for what follows the stmt -> TcM (Stmt GhcTc (LocatedA (body GhcTc)), thing) tcStmts :: (AnnoBody body) => HsStmtContextRn -> TcStmtChecker body rho_type -- NB: higher-rank type -> [LStmt GhcRn (LocatedA (body GhcRn))] -> rho_type -> TcM [LStmt GhcTc (LocatedA (body GhcTc))] tcStmts ctxt stmt_chk stmts res_ty = do { (stmts', _) <- tcStmtsAndThen ctxt stmt_chk stmts res_ty $ const (return ()) ; return stmts' } tcStmtsAndThen :: (AnnoBody body) => HsStmtContextRn -> TcStmtChecker body rho_type -- NB: higher-rank type -> [LStmt GhcRn (LocatedA (body GhcRn))] -> rho_type -> (rho_type -> TcM thing) -> TcM ([LStmt GhcTc (LocatedA (body GhcTc))], thing) -- Note the higher-rank type. stmt_chk is applied at different -- types in the equations for tcStmts tcStmtsAndThen _ _ [] res_ty thing_inside = do { thing <- thing_inside res_ty ; return ([], thing) } -- LetStmts are handled uniformly, regardless of context tcStmtsAndThen ctxt stmt_chk (L loc (LetStmt x binds) : stmts) res_ty thing_inside = do { (binds', _, (stmts',thing)) <- tcLocalBinds binds $ tcStmtsAndThen ctxt stmt_chk stmts res_ty thing_inside ; return (L loc (LetStmt x binds') : stmts', thing) } -- Don't set the error context for an ApplicativeStmt. It ought to be -- possible to do this with a popErrCtxt in the tcStmt case for -- ApplicativeStmt, but it did something strange and broke a test (ado002). tcStmtsAndThen ctxt stmt_chk (L loc stmt : stmts) res_ty thing_inside | ApplicativeStmt{} <- stmt = do { (stmt', (stmts', thing)) <- stmt_chk ctxt stmt res_ty $ \ res_ty' -> tcStmtsAndThen ctxt stmt_chk stmts res_ty' $ thing_inside ; return (L loc stmt' : stmts', thing) } -- For the vanilla case, handle the location-setting part | otherwise = do { (stmt', (stmts', thing)) <- setSrcSpanA loc $ addErrCtxt (pprStmtInCtxt ctxt stmt) $ stmt_chk ctxt stmt res_ty $ \ res_ty' -> popErrCtxt $ tcStmtsAndThen ctxt stmt_chk stmts res_ty' $ thing_inside ; return (L loc stmt' : stmts', thing) } --------------------------------------------------- -- Pattern guards --------------------------------------------------- tcGuardStmt :: TcExprStmtChecker tcGuardStmt _ (BodyStmt _ guard _ _) res_ty thing_inside = do { guard' <- tcScalingUsage ManyTy $ tcCheckMonoExpr guard boolTy -- Scale the guard to Many (see #19120 and #19193) ; thing <- thing_inside res_ty ; return (BodyStmt boolTy guard' noSyntaxExpr noSyntaxExpr, thing) } tcGuardStmt ctxt (BindStmt _ pat rhs) res_ty thing_inside = do { -- The Many on the next line and the unrestricted on the line after -- are linked. These must be the same multiplicity. Consider -- x <- rhs -> u -- -- The multiplicity of x in u must be the same as the multiplicity at -- which the rhs has been consumed. When solving #18738, we want these -- two multiplicity to still be the same. (rhs', rhs_ty) <- tcScalingUsage ManyTy $ tcInferRhoNC rhs -- Stmt has a context already ; hasFixedRuntimeRep_syntactic FRRBindStmtGuard rhs_ty ; (pat', thing) <- tcCheckPat_O (StmtCtxt ctxt) (lexprCtOrigin rhs) pat (unrestricted rhs_ty) $ thing_inside res_ty ; return (mkTcBindStmt pat' rhs', thing) } tcGuardStmt _ stmt _ _ = pprPanic "tcGuardStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- List comprehensions -- (no rebindable syntax) --------------------------------------------------- -- Dealt with separately, rather than by tcMcStmt, because -- a) We have special desugaring rules for list comprehensions, -- which avoid creating intermediate lists. They in turn -- assume that the bind/return operations are the regular -- polymorphic ones, and in particular don't have any -- coercion matching stuff in them. It's hard to avoid the -- potential for non-trivial coercions in tcMcStmt tcLcStmt :: TyCon -- The list type constructor ([]) -> TcExprStmtChecker tcLcStmt _ _ (LastStmt x body noret _) elt_ty thing_inside = do { body' <- tcMonoExprNC body elt_ty ; thing <- thing_inside (panic "tcLcStmt: thing_inside") ; return (LastStmt x body' noret noSyntaxExpr, thing) } -- A generator, pat <- rhs tcLcStmt m_tc ctxt (BindStmt _ pat rhs) elt_ty thing_inside = do { pat_ty <- newFlexiTyVarTy liftedTypeKind ; rhs' <- tcCheckMonoExpr rhs (mkTyConApp m_tc [pat_ty]) ; (pat', thing) <- tcCheckPat (StmtCtxt ctxt) pat (unrestricted pat_ty) $ thing_inside elt_ty ; return (mkTcBindStmt pat' rhs', thing) } -- A boolean guard tcLcStmt _ _ (BodyStmt _ rhs _ _) elt_ty thing_inside = do { rhs' <- tcCheckMonoExpr rhs boolTy ; thing <- thing_inside elt_ty ; return (BodyStmt boolTy rhs' noSyntaxExpr noSyntaxExpr, thing) } -- ParStmt: See notes with tcMcStmt and Note [Scoping in parallel list comprehensions] tcLcStmt m_tc ctxt (ParStmt _ bndr_stmts_s _ _) elt_ty thing_inside = do { env <- getLocalRdrEnv ; (pairs', thing) <- loop env [] bndr_stmts_s ; return (ParStmt unitTy pairs' noExpr noSyntaxExpr, thing) } where -- loop :: LocalRdrEnv -- The original LocalRdrEnv -- -> [Name] -- Variables bound by earlier branches -- -> [([LStmt GhcRn], [GhcRn])] -- -> TcM ([([LStmt GhcTc], [GhcTc])], thing) -- -- Invariant: on entry to `loop`, the LocalRdrEnv is set to -- origEnv, the LocalRdrEnv for the entire comprehension loop _ allBinds [] = do { thing <- bindLocalNames allBinds $ thing_inside elt_ty ; return ([], thing) } -- matching in the branches loop origEnv priorBinds (ParStmtBlock x stmts names _ : pairs) = do { (stmts', (ids, pairs', thing)) <- tcStmtsAndThen ctxt (tcLcStmt m_tc) stmts elt_ty $ \ _elt_ty' -> do { ids <- tcLookupLocalIds names ; (pairs', thing) <- setLocalRdrEnv origEnv $ loop origEnv (names ++ priorBinds) pairs ; return (ids, pairs', thing) } ; return ( ParStmtBlock x stmts' ids noSyntaxExpr : pairs', thing ) } tcLcStmt m_tc ctxt (TransStmt { trS_form = form, trS_stmts = stmts , trS_bndrs = bindersMap , trS_by = by, trS_using = using }) elt_ty thing_inside = do { let (bndr_names, n_bndr_names) = unzip bindersMap unused_ty = pprPanic "tcLcStmt: inner ty" (ppr bindersMap) -- The inner 'stmts' lack a LastStmt, so the element type -- passed in to tcStmtsAndThen is never looked at ; (stmts', (bndr_ids, by')) <- tcStmtsAndThen (TransStmtCtxt ctxt) (tcLcStmt m_tc) stmts unused_ty $ \_ -> do { by' <- traverse tcInferRho by ; bndr_ids <- tcLookupLocalIds bndr_names ; return (bndr_ids, by') } ; let m_app ty = mkTyConApp m_tc [ty] --------------- Typecheck the 'using' function ------------- -- using :: ((a,b,c)->t) -> m (a,b,c) -> m (a,b,c)m (ThenForm) -- :: ((a,b,c)->t) -> m (a,b,c) -> m (m (a,b,c))) (GroupForm) -- n_app :: Type -> Type -- Wraps a 'ty' into '[ty]' for GroupForm ; let n_app = case form of ThenForm -> (\ty -> ty) _ -> m_app by_arrow :: Type -> Type -- Wraps 'ty' to '(a->t) -> ty' if the By is present by_arrow = case by' of Nothing -> \ty -> ty Just (_,e_ty) -> \ty -> (alphaTy `mkVisFunTyMany` e_ty) `mkVisFunTyMany` ty tup_ty = mkBigCoreVarTupTy bndr_ids poly_arg_ty = m_app alphaTy poly_res_ty = m_app (n_app alphaTy) using_poly_ty = mkInfForAllTy alphaTyVar $ by_arrow $ poly_arg_ty `mkVisFunTyMany` poly_res_ty ; using' <- tcCheckPolyExpr using using_poly_ty ; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using' -- 'stmts' returns a result of type (m1_ty tuple_ty), -- typically something like [(Int,Bool,Int)] -- We don't know what tuple_ty is yet, so we use a variable ; let mk_n_bndr :: Name -> TcId -> TcId mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name ManyTy (n_app (idType bndr_id)) -- Ensure that every old binder of type `b` is linked up with its -- new binder which should have type `n b` -- See Note [TransStmt binder map] in GHC.Hs.Expr n_bndr_ids = zipWith mk_n_bndr n_bndr_names bndr_ids bindersMap' = bndr_ids `zip` n_bndr_ids -- Type check the thing in the environment with -- these new binders and return the result ; thing <- tcExtendIdEnv n_bndr_ids (thing_inside elt_ty) ; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap' , trS_by = fmap fst by', trS_using = final_using , trS_ret = noSyntaxExpr , trS_bind = noSyntaxExpr , trS_fmap = noExpr , trS_ext = unitTy , trS_form = form }, thing) } tcLcStmt _ _ stmt _ _ = pprPanic "tcLcStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- Monad comprehensions -- (supports rebindable syntax) --------------------------------------------------- tcMcStmt :: TcExprStmtChecker tcMcStmt _ (LastStmt x body noret return_op) res_ty thing_inside = do { (body', return_op') <- tcSyntaxOp MCompOrigin return_op [SynRho] res_ty $ \ [a_ty] [mult]-> tcScalingUsage mult $ tcCheckMonoExprNC body a_ty ; thing <- thing_inside (panic "tcMcStmt: thing_inside") ; return (LastStmt x body' noret return_op', thing) } -- Generators for monad comprehensions ( pat <- rhs ) -- -- [ body | q <- gen ] -> gen :: m a -- q :: a -- tcMcStmt ctxt (BindStmt xbsrn pat rhs) res_ty thing_inside -- (>>=) :: rhs_ty -> (pat_ty -> new_res_ty) -> res_ty = do { ((rhs_ty, rhs', pat_mult, pat', thing, new_res_ty), bind_op') <- tcSyntaxOp MCompOrigin (xbsrn_bindOp xbsrn) [SynRho, SynFun SynAny SynRho] res_ty $ \ [rhs_ty, pat_ty, new_res_ty] [rhs_mult, fun_mult, pat_mult] -> do { rhs' <- tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty ; (pat', thing) <- tcScalingUsage fun_mult $ tcCheckPat (StmtCtxt ctxt) pat (Scaled pat_mult pat_ty) $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs_ty, rhs', pat_mult, pat', thing, new_res_ty) } ; hasFixedRuntimeRep_syntactic (FRRBindStmt MonadComprehension) rhs_ty -- If (but only if) the pattern can fail, typecheck the 'fail' operator ; fail_op' <- fmap join . forM (xbsrn_failOp xbsrn) $ \fail -> tcMonadFailOp (MCompPatOrigin pat) pat' fail new_res_ty ; let xbstc = XBindStmtTc { xbstc_bindOp = bind_op' , xbstc_boundResultType = new_res_ty , xbstc_boundResultMult = pat_mult , xbstc_failOp = fail_op' } ; return (BindStmt xbstc pat' rhs', thing) } -- Boolean expressions. -- -- [ body | stmts, expr ] -> expr :: m Bool -- tcMcStmt _ (BodyStmt _ rhs then_op guard_op) res_ty thing_inside = do { -- Deal with rebindable syntax: -- guard_op :: test_ty -> rhs_ty -- then_op :: rhs_ty -> new_res_ty -> res_ty -- Where test_ty is, for example, Bool ; ((thing, rhs', rhs_ty, new_res_ty, test_ty, guard_op'), then_op') <- tcSyntaxOp MCompOrigin then_op [SynRho, SynRho] res_ty $ \ [rhs_ty, new_res_ty] [rhs_mult, fun_mult] -> do { ((rhs', test_ty), guard_op') <- tcScalingUsage rhs_mult $ tcSyntaxOp MCompOrigin guard_op [SynAny] (mkCheckExpType rhs_ty) $ \ [test_ty] [test_mult] -> do rhs' <- tcScalingUsage test_mult $ tcCheckMonoExpr rhs test_ty return $ (rhs', test_ty) ; thing <- tcScalingUsage fun_mult $ thing_inside (mkCheckExpType new_res_ty) ; return (thing, rhs', rhs_ty, new_res_ty, test_ty, guard_op') } ; hasFixedRuntimeRep_syntactic FRRBodyStmtGuard test_ty ; hasFixedRuntimeRep_syntactic (FRRBodyStmt MonadComprehension 1) rhs_ty ; hasFixedRuntimeRep_syntactic (FRRBodyStmt MonadComprehension 2) new_res_ty ; return (BodyStmt rhs_ty rhs' then_op' guard_op', thing) } -- Grouping statements -- -- [ body | stmts, then group by e using f ] -- -> e :: t -- f :: forall a. (a -> t) -> m a -> m (m a) -- [ body | stmts, then group using f ] -- -> f :: forall a. m a -> m (m a) -- We type [ body | (stmts, group by e using f), ... ] -- f [ (a,b,c) | stmts ] >>= \(a,b,c) -> ...body.... -- -- We type the functions as follows: -- f :: m1 (a,b,c) -> m2 (a,b,c) (ThenForm) -- :: m1 (a,b,c) -> m2 (n (a,b,c)) (GroupForm) -- (>>=) :: m2 (a,b,c) -> ((a,b,c) -> res) -> res (ThenForm) -- :: m2 (n (a,b,c)) -> (n (a,b,c) -> res) -> res (GroupForm) -- tcMcStmt ctxt (TransStmt { trS_stmts = stmts, trS_bndrs = bindersMap , trS_by = by, trS_using = using, trS_form = form , trS_ret = return_op, trS_bind = bind_op , trS_fmap = fmap_op }) res_ty thing_inside = do { m1_ty <- newFlexiTyVarTy typeToTypeKind ; m2_ty <- newFlexiTyVarTy typeToTypeKind ; tup_ty <- newFlexiTyVarTy liftedTypeKind ; by_e_ty <- newFlexiTyVarTy liftedTypeKind -- The type of the 'by' expression (if any) -- n_app :: Type -> Type -- Wraps a 'ty' into '(n ty)' for GroupForm ; n_app <- case form of ThenForm -> return (\ty -> ty) _ -> do { n_ty <- newFlexiTyVarTy typeToTypeKind ; return (n_ty `mkAppTy`) } ; let by_arrow :: Type -> Type -- (by_arrow res) produces ((alpha->e_ty) -> res) ('by' present) -- or res ('by' absent) by_arrow = case by of Nothing -> \res -> res Just {} -> \res -> (alphaTy `mkVisFunTyMany` by_e_ty) `mkVisFunTyMany` res poly_arg_ty = m1_ty `mkAppTy` alphaTy using_arg_ty = m1_ty `mkAppTy` tup_ty poly_res_ty = m2_ty `mkAppTy` n_app alphaTy using_res_ty = m2_ty `mkAppTy` n_app tup_ty using_poly_ty = mkInfForAllTy alphaTyVar $ by_arrow $ poly_arg_ty `mkVisFunTyMany` poly_res_ty -- 'stmts' returns a result of type (m1_ty tuple_ty), -- typically something like [(Int,Bool,Int)] -- We don't know what tuple_ty is yet, so we use a variable ; let (bndr_names, n_bndr_names) = unzip bindersMap ; (stmts', (bndr_ids, by', return_op')) <- tcStmtsAndThen (TransStmtCtxt ctxt) tcMcStmt stmts (mkCheckExpType using_arg_ty) $ \res_ty' -> do { by' <- case by of Nothing -> return Nothing Just e -> do { e' <- tcCheckMonoExpr e by_e_ty ; return (Just e') } -- Find the Ids (and hence types) of all old binders ; bndr_ids <- tcLookupLocalIds bndr_names -- 'return' is only used for the binders, so we know its type. -- return :: (a,b,c,..) -> m (a,b,c,..) ; (_, return_op') <- tcSyntaxOp MCompOrigin return_op [synKnownType (mkBigCoreVarTupTy bndr_ids)] res_ty' $ \ _ _ -> return () ; return (bndr_ids, by', return_op') } --------------- Typecheck the 'bind' function ------------- -- (>>=) :: m2 (n (a,b,c)) -> ( n (a,b,c) -> new_res_ty ) -> res_ty ; new_res_ty <- newFlexiTyVarTy liftedTypeKind ; (_, bind_op') <- tcSyntaxOp MCompOrigin bind_op [ synKnownType using_res_ty , synKnownType (n_app tup_ty `mkVisFunTyMany` new_res_ty) ] res_ty $ \ _ _ -> return () --------------- Typecheck the 'fmap' function ------------- ; fmap_op' <- case form of ThenForm -> return noExpr _ -> fmap unLoc . tcCheckPolyExpr (noLocA fmap_op) $ mkInfForAllTy alphaTyVar $ mkInfForAllTy betaTyVar $ (alphaTy `mkVisFunTyMany` betaTy) `mkVisFunTyMany` (n_app alphaTy) `mkVisFunTyMany` (n_app betaTy) --------------- Typecheck the 'using' function ------------- -- using :: ((a,b,c)->t) -> m1 (a,b,c) -> m2 (n (a,b,c)) ; using' <- tcCheckPolyExpr using using_poly_ty ; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using' --------------- Building the bindersMap ---------------- ; let mk_n_bndr :: Name -> TcId -> TcId mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name ManyTy (n_app (idType bndr_id)) -- Ensure that every old binder of type `b` is linked up with its -- new binder which should have type `n b` -- See Note [TransStmt binder map] in GHC.Hs.Expr n_bndr_ids = zipWithEqual "tcMcStmt" mk_n_bndr n_bndr_names bndr_ids bindersMap' = bndr_ids `zip` n_bndr_ids -- Type check the thing in the environment with -- these new binders and return the result ; thing <- tcExtendIdEnv n_bndr_ids $ thing_inside (mkCheckExpType new_res_ty) ; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap' , trS_by = by', trS_using = final_using , trS_ret = return_op', trS_bind = bind_op' , trS_ext = n_app tup_ty , trS_fmap = fmap_op', trS_form = form }, thing) } -- A parallel set of comprehensions -- [ (g x, h x) | ... ; let g v = ... -- | ... ; let h v = ... ] -- -- It's possible that g,h are overloaded, so we need to feed the LIE from the -- (g x, h x) up through both lots of bindings (so we get the bindLocalMethods). -- Similarly if we had an existential pattern match: -- -- data T = forall a. Show a => C a -- -- [ (show x, show y) | ... ; C x <- ... -- | ... ; C y <- ... ] -- -- Then we need the LIE from (show x, show y) to be simplified against -- the bindings for x and y. -- -- It's difficult to do this in parallel, so we rely on the renamer to -- ensure that g,h and x,y don't duplicate, and simply grow the environment. -- So the binders of the first parallel group will be in scope in the second -- group. But that's fine; there's no shadowing to worry about. -- -- Note: The `mzip` function will get typechecked via: -- -- ParStmt [st1::t1, st2::t2, st3::t3] -- -- mzip :: m st1 -- -> (m st2 -> m st3 -> m (st2, st3)) -- recursive call -- -> m (st1, (st2, st3)) -- tcMcStmt ctxt (ParStmt _ bndr_stmts_s mzip_op bind_op) res_ty thing_inside = do { m_ty <- newFlexiTyVarTy typeToTypeKind ; let mzip_ty = mkInfForAllTys [alphaTyVar, betaTyVar] $ (m_ty `mkAppTy` alphaTy) `mkVisFunTyMany` (m_ty `mkAppTy` betaTy) `mkVisFunTyMany` (m_ty `mkAppTy` mkBoxedTupleTy [alphaTy, betaTy]) ; mzip_op' <- unLoc `fmap` tcCheckPolyExpr (noLocA mzip_op) mzip_ty -- type dummies since we don't know all binder types yet ; id_tys_s <- (mapM . mapM) (const (newFlexiTyVarTy liftedTypeKind)) [ names | ParStmtBlock _ _ names _ <- bndr_stmts_s ] -- Typecheck bind: ; let tup_tys = [ mkBigCoreTupTy id_tys | id_tys <- id_tys_s ] tuple_ty = mk_tuple_ty tup_tys ; (((blocks', thing), inner_res_ty), bind_op') <- tcSyntaxOp MCompOrigin bind_op [ synKnownType (m_ty `mkAppTy` tuple_ty) , SynFun (synKnownType tuple_ty) SynRho ] res_ty $ \ [inner_res_ty] _ -> do { stuff <- loop m_ty (mkCheckExpType inner_res_ty) tup_tys bndr_stmts_s ; return (stuff, inner_res_ty) } ; return (ParStmt inner_res_ty blocks' mzip_op' bind_op', thing) } where mk_tuple_ty tys = foldr1 (\tn tm -> mkBoxedTupleTy [tn, tm]) tys -- loop :: Type -- m_ty -- -> ExpRhoType -- inner_res_ty -- -> [TcType] -- tup_tys -- -> [ParStmtBlock Name] -- -> TcM ([([LStmt GhcTc], [TcId])], thing) loop _ inner_res_ty [] [] = do { thing <- thing_inside inner_res_ty ; return ([], thing) } -- matching in the branches loop m_ty inner_res_ty (tup_ty_in : tup_tys_in) (ParStmtBlock x stmts names return_op : pairs) = do { let m_tup_ty = m_ty `mkAppTy` tup_ty_in ; (stmts', (ids, return_op', pairs', thing)) <- tcStmtsAndThen ctxt tcMcStmt stmts (mkCheckExpType m_tup_ty) $ \m_tup_ty' -> do { ids <- tcLookupLocalIds names ; let tup_ty = mkBigCoreVarTupTy ids ; (_, return_op') <- tcSyntaxOp MCompOrigin return_op [synKnownType tup_ty] m_tup_ty' $ \ _ _ -> return () ; (pairs', thing) <- loop m_ty inner_res_ty tup_tys_in pairs ; return (ids, return_op', pairs', thing) } ; return (ParStmtBlock x stmts' ids return_op' : pairs', thing) } loop _ _ _ _ = panic "tcMcStmt.loop" tcMcStmt _ stmt _ _ = pprPanic "tcMcStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- Do-notation -- (supports rebindable syntax) --------------------------------------------------- tcDoStmt :: TcExprStmtChecker tcDoStmt _ (LastStmt x body noret _) res_ty thing_inside = do { body' <- tcMonoExprNC body res_ty ; thing <- thing_inside (panic "tcDoStmt: thing_inside") ; return (LastStmt x body' noret noSyntaxExpr, thing) } tcDoStmt ctxt (BindStmt xbsrn pat rhs) res_ty thing_inside = do { -- Deal with rebindable syntax: -- (>>=) :: rhs_ty ->_rhs_mult (pat_ty ->_pat_mult new_res_ty) ->_fun_mult res_ty -- This level of generality is needed for using do-notation -- in full generality; see #1537 ((rhs_ty, rhs', pat_mult, pat', new_res_ty, thing), bind_op') <- tcSyntaxOp DoOrigin (xbsrn_bindOp xbsrn) [SynRho, SynFun SynAny SynRho] res_ty $ \ [rhs_ty, pat_ty, new_res_ty] [rhs_mult,fun_mult,pat_mult] -> do { rhs' <-tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty ; (pat', thing) <- tcScalingUsage fun_mult $ tcCheckPat (StmtCtxt ctxt) pat (Scaled pat_mult pat_ty) $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs_ty, rhs', pat_mult, pat', new_res_ty, thing) } ; hasFixedRuntimeRep_syntactic (FRRBindStmt DoNotation) rhs_ty -- If (but only if) the pattern can fail, typecheck the 'fail' operator ; fail_op' <- fmap join . forM (xbsrn_failOp xbsrn) $ \fail -> tcMonadFailOp (DoPatOrigin pat) pat' fail new_res_ty ; let xbstc = XBindStmtTc { xbstc_bindOp = bind_op' , xbstc_boundResultType = new_res_ty , xbstc_boundResultMult = pat_mult , xbstc_failOp = fail_op' } ; return (BindStmt xbstc pat' rhs', thing) } tcDoStmt ctxt (ApplicativeStmt _ pairs mb_join) res_ty thing_inside = do { let tc_app_stmts ty = tcApplicativeStmts ctxt pairs ty $ thing_inside . mkCheckExpType ; ((pairs', body_ty, thing), mb_join') <- case mb_join of Nothing -> (, Nothing) <$> tc_app_stmts res_ty Just join_op -> second Just <$> (tcSyntaxOp DoOrigin join_op [SynRho] res_ty $ \ [rhs_ty] [rhs_mult] -> tcScalingUsage rhs_mult $ tc_app_stmts (mkCheckExpType rhs_ty)) ; return (ApplicativeStmt body_ty pairs' mb_join', thing) } tcDoStmt _ (BodyStmt _ rhs then_op _) res_ty thing_inside = do { -- Deal with rebindable syntax; -- (>>) :: rhs_ty -> new_res_ty -> res_ty ; ((rhs', rhs_ty, new_res_ty, thing), then_op') <- tcSyntaxOp DoOrigin then_op [SynRho, SynRho] res_ty $ \ [rhs_ty, new_res_ty] [rhs_mult,fun_mult] -> do { rhs' <- tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty ; thing <- tcScalingUsage fun_mult $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs', rhs_ty, new_res_ty, thing) } ; hasFixedRuntimeRep_syntactic (FRRBodyStmt DoNotation 1) rhs_ty ; hasFixedRuntimeRep_syntactic (FRRBodyStmt DoNotation 2) new_res_ty ; return (BodyStmt rhs_ty rhs' then_op' noSyntaxExpr, thing) } tcDoStmt ctxt (RecStmt { recS_stmts = L l stmts, recS_later_ids = later_names , recS_rec_ids = rec_names, recS_ret_fn = ret_op , recS_mfix_fn = mfix_op, recS_bind_fn = bind_op }) res_ty thing_inside = do { let tup_names = rec_names ++ filterOut (`elem` rec_names) later_names ; tup_elt_tys <- newFlexiTyVarTys (length tup_names) liftedTypeKind ; let tup_ids = zipWith (\n t -> mkLocalId n ManyTy t) tup_names tup_elt_tys -- Many because it's a recursive definition tup_ty = mkBigCoreTupTy tup_elt_tys ; tcExtendIdEnv tup_ids $ do { ((stmts', (ret_op', tup_rets)), stmts_ty) <- tcInfer $ \ exp_ty -> tcStmtsAndThen ctxt tcDoStmt stmts exp_ty $ \ inner_res_ty -> do { tup_rets <- zipWithM tcCheckId tup_names (map mkCheckExpType tup_elt_tys) -- Unify the types of the "final" Ids (which may -- be polymorphic) with those of "knot-tied" Ids ; (_, ret_op') <- tcSyntaxOp DoOrigin ret_op [synKnownType tup_ty] inner_res_ty $ \_ _ -> return () ; return (ret_op', tup_rets) } ; ((_, mfix_op'), mfix_res_ty) <- tcInfer $ \ exp_ty -> tcSyntaxOp DoOrigin mfix_op [synKnownType (mkVisFunTyMany tup_ty stmts_ty)] exp_ty $ \ _ _ -> return () ; ((thing, new_res_ty), bind_op') <- tcSyntaxOp DoOrigin bind_op [ synKnownType mfix_res_ty , SynFun (synKnownType tup_ty) SynRho ] res_ty $ \ [new_res_ty] _ -> do { thing <- thing_inside (mkCheckExpType new_res_ty) ; return (thing, new_res_ty) } ; let rec_ids = takeList rec_names tup_ids ; later_ids <- tcLookupLocalIds later_names ; traceTc "tcdo" $ vcat [ppr rec_ids <+> ppr (map idType rec_ids), ppr later_ids <+> ppr (map idType later_ids)] ; return (RecStmt { recS_stmts = L l stmts', recS_later_ids = later_ids , recS_rec_ids = rec_ids, recS_ret_fn = ret_op' , recS_mfix_fn = mfix_op', recS_bind_fn = bind_op' , recS_ext = RecStmtTc { recS_bind_ty = new_res_ty , recS_later_rets = [] , recS_rec_rets = tup_rets , recS_ret_ty = stmts_ty} }, thing) }} tcDoStmt _ stmt _ _ = pprPanic "tcDoStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- MonadFail Proposal warnings --------------------------------------------------- -- The idea behind issuing MonadFail warnings is that we add them whenever a -- failable pattern is encountered. However, instead of throwing a type error -- when the constraint cannot be satisfied, we only issue a warning in -- "GHC.Tc.Errors". tcMonadFailOp :: CtOrigin -> LPat GhcTc -> SyntaxExpr GhcRn -- The fail op -> TcType -- Type of the whole do-expression -> TcRn (FailOperator GhcTc) -- Typechecked fail op -- Get a 'fail' operator expression, to use if the pattern match fails. -- This won't be used in cases where we've already determined the pattern -- match can't fail (so the fail op is Nothing), however, it seems that the -- isIrrefutableHsPat test is still required here for some reason I haven't -- yet determined. tcMonadFailOp orig pat fail_op res_ty = do dflags <- getDynFlags if isIrrefutableHsPat dflags pat then return Nothing else Just . snd <$> (tcSyntaxOp orig fail_op [synKnownType stringTy] (mkCheckExpType res_ty) $ \_ _ -> return ()) {- Note [Treat rebindable syntax first] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When typechecking do { bar; ... } :: IO () we want to typecheck 'bar' in the knowledge that it should be an IO thing, pushing info from the context into the RHS. To do this, we check the rebindable syntax first, and push that information into (tcLExprNC rhs). Otherwise the error shows up when checking the rebindable syntax, and the expected/inferred stuff is back to front (see #3613). Note [typechecking ApplicativeStmt] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ join ((\pat1 ... patn -> body) <$> e1 <*> ... <*> en) fresh type variables: pat_ty_1..pat_ty_n exp_ty_1..exp_ty_n t_1..t_(n-1) body :: body_ty (\pat1 ... patn -> body) :: pat_ty_1 -> ... -> pat_ty_n -> body_ty pat_i :: pat_ty_i e_i :: exp_ty_i <$> :: (pat_ty_1 -> ... -> pat_ty_n -> body_ty) -> exp_ty_1 -> t_1 <*>_i :: t_(i-1) -> exp_ty_i -> t_i join :: tn -> res_ty Note [Scoping in parallel list comprehensions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In a parallel list comprehension like [ ebody | a <- blah1; e1 | b <- blah2; e2 ] we want to ensure that in the lexical environment, tcl_rdr :: LocalRdrEnv, we have * 'a' in scope in e1, but not 'b' * 'b' in scope in e2, but not 'a' * Both in scope in ebody We don't want too /many/ variables in the LocalRdrEnv, else we make stupid suggestions for an out-of-scope variable (#22940). To achieve this we: * At the start of each branch, reset the LocalRdrEnv to the outer scope. * Before typechecking ebody, add to LocalRdrEnv all the variables bound in all branches. This step is done with bindLocalNames. -} tcApplicativeStmts :: HsStmtContextRn -> [(SyntaxExpr GhcRn, ApplicativeArg GhcRn)] -> ExpRhoType -- rhs_ty -> (TcRhoType -> TcM t) -- thing_inside -> TcM ([(SyntaxExpr GhcTc, ApplicativeArg GhcTc)], Type, t) tcApplicativeStmts ctxt pairs rhs_ty thing_inside = do { body_ty <- newFlexiTyVarTy liftedTypeKind ; let arity = length pairs ; ts <- replicateM (arity-1) $ newInferExpType ; exp_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind ; pat_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind ; let fun_ty = mkVisFunTysMany pat_tys body_ty -- NB. do the <$>,<*> operators first, we don't want type errors here -- i.e. goOps before goArgs -- See Note [Treat rebindable syntax first] ; let (ops, args) = unzip pairs ; ops' <- goOps fun_ty (zip3 ops (ts ++ [rhs_ty]) exp_tys) -- Typecheck each ApplicativeArg separately -- See Note [ApplicativeDo and constraints] ; args' <- mapM (goArg body_ty) (zip3 args pat_tys exp_tys) -- Bring into scope all the things bound by the args, -- and typecheck the thing_inside -- See Note [ApplicativeDo and constraints] ; res <- tcExtendIdEnv (concatMap get_arg_bndrs args') $ thing_inside body_ty ; return (zip ops' args', body_ty, res) } where goOps _ [] = return [] goOps t_left ((op,t_i,exp_ty) : ops) = do { (_, op') <- tcSyntaxOp DoOrigin op [synKnownType t_left, synKnownType exp_ty] t_i $ \ _ _ -> return () ; t_i <- readExpType t_i ; ops' <- goOps t_i ops ; return (op' : ops') } goArg :: Type -> (ApplicativeArg GhcRn, Type, Type) -> TcM (ApplicativeArg GhcTc) goArg body_ty (ApplicativeArgOne { xarg_app_arg_one = fail_op , app_arg_pattern = pat , arg_expr = rhs , .. }, pat_ty, exp_ty) = setSrcSpan (combineSrcSpans (getLocA pat) (getLocA rhs)) $ addErrCtxt (pprStmtInCtxt ctxt (mkRnBindStmt pat rhs)) $ do { rhs' <- tcCheckMonoExprNC rhs exp_ty ; (pat', _) <- tcCheckPat (StmtCtxt ctxt) pat (unrestricted pat_ty) $ return () ; fail_op' <- fmap join . forM fail_op $ \fail -> tcMonadFailOp (DoPatOrigin pat) pat' fail body_ty ; return (ApplicativeArgOne { xarg_app_arg_one = fail_op' , app_arg_pattern = pat' , arg_expr = rhs' , .. } ) } goArg _body_ty (ApplicativeArgMany x stmts ret pat ctxt, pat_ty, exp_ty) = do { (stmts', (ret',pat')) <- tcStmtsAndThen (HsDoStmt ctxt) tcDoStmt stmts (mkCheckExpType exp_ty) $ \res_ty -> do { ret' <- tcExpr ret res_ty ; (pat', _) <- tcCheckPat (StmtCtxt (HsDoStmt ctxt)) pat (unrestricted pat_ty) $ return () ; return (ret', pat') } ; return (ApplicativeArgMany x stmts' ret' pat' ctxt) } get_arg_bndrs :: ApplicativeArg GhcTc -> [Id] get_arg_bndrs (ApplicativeArgOne { app_arg_pattern = pat }) = collectPatBinders CollNoDictBinders pat get_arg_bndrs (ApplicativeArgMany { bv_pattern = pat }) = collectPatBinders CollNoDictBinders pat {- Note [ApplicativeDo and constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ An applicative-do is supposed to take place in parallel, so constraints bound in one arm can't possibly be available in another (#13242). Our current rule is this (more details and discussion on the ticket). Consider ...stmts... ApplicativeStmts [arg1, arg2, ... argN] ...more stmts... where argi :: ApplicativeArg. Each 'argi' itself contains one or more Stmts. Now, we say that: * Constraints required by the argi can be solved from constraint bound by ...stmts... * Constraints and existentials bound by the argi are not available to solve constraints required either by argj (where i /= j), or by ...more stmts.... * Within the stmts of each 'argi' individually, however, constraints bound by earlier stmts can be used to solve later ones. To achieve this, we just typecheck each 'argi' separately, bring all the variables they bind into scope, and typecheck the thing_inside. ************************************************************************ * * \subsection{Errors and contexts} * * ************************************************************************ -} -- | @checkArgCounts@ takes a @[RenamedMatch]@ and decides whether the same -- number of /required/ args are used in each equation. -- Returns the arity, the number of required args -- E.g. f @a True y = ... -- f False z = ... -- The MatchGroup for `f` has arity 2, not 3 checkArgCounts :: AnnoBody body => MatchGroup GhcRn (LocatedA (body GhcRn)) -> TcM VisArity checkArgCounts (MG { mg_alts = L _ [] }) = return 1 -- See Note [Empty MatchGroups] in GHC.Rename.Bind -- case e of {} or \case {} -- Both have arity 1 checkArgCounts (MG { mg_alts = L _ (match1:matches) }) | null matches -- There was only one match; nothing to check = return n_args1 -- Two or more matches: check that they agree on arity | Just bad_matches <- mb_bad_matches = failWithTc $ TcRnMatchesHaveDiffNumArgs (m_ctxt (unLoc match1)) $ MatchArgMatches match1 bad_matches | otherwise = return n_args1 where n_args1 = reqd_args_in_match match1 mb_bad_matches = NE.nonEmpty [m | m <- matches, reqd_args_in_match m /= n_args1] reqd_args_in_match :: LocatedA (Match GhcRn body1) -> VisArity -- Counts the number of /required/ args in the match reqd_args_in_match (L _ (Match { m_pats = pats })) = count (isVisArgPat . unLoc) pats