{-# LANGUAGE ScopedTypeVariables #-} module RegAlloc.Graph.SpillCost ( SpillCostRecord, plusSpillCostRecord, pprSpillCostRecord, SpillCostInfo, zeroSpillCostInfo, plusSpillCostInfo, slurpSpillCostInfo, chooseSpill, lifeMapFromSpillCostInfo ) where import GhcPrelude import RegAlloc.Liveness import Instruction import RegClass import Reg import GraphBase import Hoopl.Collections (mapLookup) import Cmm import UniqFM import UniqSet import Digraph (flattenSCCs) import Outputable import Platform import State import CFG import Data.List (nub, minimumBy) import Data.Maybe import Control.Monad (join) -- | Records the expected cost to spill some regster. type SpillCostRecord = ( VirtualReg -- register name , Int -- number of writes to this reg , Int -- number of reads from this reg , Int) -- number of instrs this reg was live on entry to -- | Map of `SpillCostRecord` type SpillCostInfo = UniqFM SpillCostRecord -- | Block membership in a loop type LoopMember = Bool type SpillCostState = State (UniqFM SpillCostRecord) () -- | An empty map of spill costs. zeroSpillCostInfo :: SpillCostInfo zeroSpillCostInfo = emptyUFM -- | Add two spill cost infos. plusSpillCostInfo :: SpillCostInfo -> SpillCostInfo -> SpillCostInfo plusSpillCostInfo sc1 sc2 = plusUFM_C plusSpillCostRecord sc1 sc2 -- | Add two spill cost records. plusSpillCostRecord :: SpillCostRecord -> SpillCostRecord -> SpillCostRecord plusSpillCostRecord (r1, a1, b1, c1) (r2, a2, b2, c2) | r1 == r2 = (r1, a1 + a2, b1 + b2, c1 + c2) | otherwise = error "RegSpillCost.plusRegInt: regs don't match" -- | Slurp out information used for determining spill costs. -- -- For each vreg, the number of times it was written to, read from, -- and the number of instructions it was live on entry to (lifetime) -- slurpSpillCostInfo :: forall instr statics. (Outputable instr, Instruction instr) => Platform -> Maybe CFG -> LiveCmmDecl statics instr -> SpillCostInfo slurpSpillCostInfo platform cfg cmm = execState (countCmm cmm) zeroSpillCostInfo where countCmm CmmData{} = return () countCmm (CmmProc info _ _ sccs) = mapM_ (countBlock info) $ flattenSCCs sccs -- Lookup the regs that are live on entry to this block in -- the info table from the CmmProc. countBlock info (BasicBlock blockId instrs) | LiveInfo _ _ (Just blockLive) _ <- info , Just rsLiveEntry <- mapLookup blockId blockLive , rsLiveEntry_virt <- takeVirtuals rsLiveEntry = countLIs (loopMember blockId) rsLiveEntry_virt instrs | otherwise = error "RegAlloc.SpillCost.slurpSpillCostInfo: bad block" countLIs :: LoopMember -> UniqSet VirtualReg -> [LiveInstr instr] -> SpillCostState countLIs _ _ [] = return () -- Skip over comment and delta pseudo instrs. countLIs inLoop rsLive (LiveInstr instr Nothing : lis) | isMetaInstr instr = countLIs inLoop rsLive lis | otherwise = pprPanic "RegSpillCost.slurpSpillCostInfo" $ text "no liveness information on instruction " <> ppr instr countLIs inLoop rsLiveEntry (LiveInstr instr (Just live) : lis) = do -- Increment the lifetime counts for regs live on entry to this instr. mapM_ (incLifetime (loopCount inLoop)) $ nonDetEltsUniqSet rsLiveEntry -- This is non-deterministic but we do not -- currently support deterministic code-generation. -- See Note [Unique Determinism and code generation] -- Increment counts for what regs were read/written from. let (RU read written) = regUsageOfInstr platform instr mapM_ (incUses (loopCount inLoop)) $ catMaybes $ map takeVirtualReg $ nub read mapM_ (incDefs (loopCount inLoop)) $ catMaybes $ map takeVirtualReg $ nub written -- Compute liveness for entry to next instruction. let liveDieRead_virt = takeVirtuals (liveDieRead live) let liveDieWrite_virt = takeVirtuals (liveDieWrite live) let liveBorn_virt = takeVirtuals (liveBorn live) let rsLiveAcross = rsLiveEntry `minusUniqSet` liveDieRead_virt let rsLiveNext = (rsLiveAcross `unionUniqSets` liveBorn_virt) `minusUniqSet` liveDieWrite_virt countLIs inLoop rsLiveNext lis loopCount inLoop | inLoop = 10 | otherwise = 1 incDefs count reg = modify $ \s -> addToUFM_C plusSpillCostRecord s reg (reg, count, 0, 0) incUses count reg = modify $ \s -> addToUFM_C plusSpillCostRecord s reg (reg, 0, count, 0) incLifetime count reg = modify $ \s -> addToUFM_C plusSpillCostRecord s reg (reg, 0, 0, count) loopBlocks = CFG.loopMembers <$> cfg loopMember bid | Just isMember <- join (mapLookup bid <$> loopBlocks) = isMember | otherwise = False -- | Take all the virtual registers from this set. takeVirtuals :: UniqSet Reg -> UniqSet VirtualReg takeVirtuals set = mkUniqSet [ vr | RegVirtual vr <- nonDetEltsUniqSet set ] -- See Note [Unique Determinism and code generation] -- | Choose a node to spill from this graph chooseSpill :: SpillCostInfo -> Graph VirtualReg RegClass RealReg -> VirtualReg chooseSpill info graph = let cost = spillCost_length info graph node = minimumBy (\n1 n2 -> compare (cost $ nodeId n1) (cost $ nodeId n2)) $ nonDetEltsUFM $ graphMap graph -- See Note [Unique Determinism and code generation] in nodeId node ------------------------------------------------------------------------------- -- | Chaitins spill cost function is: -- -- cost = sum loadCost * freq (u) + sum storeCost * freq (d) -- u <- uses (v) d <- defs (v) -- -- There are no loops in our code at the moment, so we can set the freq's to 1. -- -- If we don't have live range splitting then Chaitins function performs badly -- if we have lots of nested live ranges and very few registers. -- -- v1 v2 v3 -- def v1 . -- use v1 . -- def v2 . . -- def v3 . . . -- use v1 . . . -- use v3 . . . -- use v2 . . -- use v1 . -- -- defs uses degree cost -- v1: 1 3 3 1.5 -- v2: 1 2 3 1.0 -- v3: 1 1 3 0.666 -- -- v3 has the lowest cost, but if we only have 2 hardregs and we insert -- spill code for v3 then this isn't going to improve the colorability of -- the graph. -- -- When compiling SHA1, which as very long basic blocks and some vregs -- with very long live ranges the allocator seems to try and spill from -- the inside out and eventually run out of stack slots. -- -- Without live range splitting, its's better to spill from the outside -- in so set the cost of very long live ranges to zero -- {- spillCost_chaitin :: SpillCostInfo -> Graph Reg RegClass Reg -> Reg -> Float spillCost_chaitin info graph reg -- Spilling a live range that only lives for 1 instruction -- isn't going to help us at all - and we definitely want to avoid -- trying to re-spill previously inserted spill code. | lifetime <= 1 = 1/0 -- It's unlikely that we'll find a reg for a live range this long -- better to spill it straight up and not risk trying to keep it around -- and have to go through the build/color cycle again. | lifetime > allocatableRegsInClass (regClass reg) * 10 = 0 -- Otherwise revert to chaitin's regular cost function. | otherwise = fromIntegral (uses + defs) / fromIntegral (nodeDegree graph reg) where (_, defs, uses, lifetime) = fromMaybe (reg, 0, 0, 0) $ lookupUFM info reg -} -- Just spill the longest live range. spillCost_length :: SpillCostInfo -> Graph VirtualReg RegClass RealReg -> VirtualReg -> Float spillCost_length info _ reg | lifetime <= 1 = 1/0 | otherwise = 1 / fromIntegral lifetime where (_, _, _, lifetime) = fromMaybe (reg, 0, 0, 0) $ lookupUFM info reg -- | Extract a map of register lifetimes from a `SpillCostInfo`. lifeMapFromSpillCostInfo :: SpillCostInfo -> UniqFM (VirtualReg, Int) lifeMapFromSpillCostInfo info = listToUFM $ map (\(r, _, _, life) -> (r, (r, life))) $ nonDetEltsUFM info -- See Note [Unique Determinism and code generation] -- | Determine the degree (number of neighbors) of this node which -- have the same class. nodeDegree :: (VirtualReg -> RegClass) -> Graph VirtualReg RegClass RealReg -> VirtualReg -> Int nodeDegree classOfVirtualReg graph reg | Just node <- lookupUFM (graphMap graph) reg , virtConflicts <- length $ filter (\r -> classOfVirtualReg r == classOfVirtualReg reg) $ nonDetEltsUniqSet -- See Note [Unique Determinism and code generation] $ nodeConflicts node = virtConflicts + sizeUniqSet (nodeExclusions node) | otherwise = 0 -- | Show a spill cost record, including the degree from the graph -- and final calulated spill cost. pprSpillCostRecord :: (VirtualReg -> RegClass) -> (Reg -> SDoc) -> Graph VirtualReg RegClass RealReg -> SpillCostRecord -> SDoc pprSpillCostRecord regClass pprReg graph (reg, uses, defs, life) = hsep [ pprReg (RegVirtual reg) , ppr uses , ppr defs , ppr life , ppr $ nodeDegree regClass graph reg , text $ show $ (fromIntegral (uses + defs) / fromIntegral (nodeDegree regClass graph reg) :: Float) ]