{-# LANGUAGE BinaryLiterals, CPP, ScopedTypeVariables, BangPatterns #-} -- -- (c) The University of Glasgow 2002-2006 -- {-# OPTIONS_GHC -O2 #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- | Binary interface file support. module BinIface ( writeBinIface, readBinIface, getSymtabName, getDictFastString, CheckHiWay(..), TraceBinIFaceReading(..), getWithUserData, putWithUserData ) where #include "HsVersions.h" import GhcPrelude import TcRnMonad import PrelInfo ( isKnownKeyName, lookupKnownKeyName ) import IfaceEnv import HscTypes import Module import Name import DynFlags import UniqFM import UniqSupply import Panic import Binary import SrcLoc import ErrUtils import FastMutInt import Unique import Outputable import NameCache import Platform import FastString import Constants import Util import Data.Array import Data.Array.ST import Data.Array.Unsafe import Data.Bits import Data.Char import Data.Word import Data.IORef import Data.Foldable import Control.Monad import Control.Monad.ST import Control.Monad.Trans.Class import qualified Control.Monad.Trans.State.Strict as State -- --------------------------------------------------------------------------- -- Reading and writing binary interface files -- data CheckHiWay = CheckHiWay | IgnoreHiWay deriving Eq data TraceBinIFaceReading = TraceBinIFaceReading | QuietBinIFaceReading deriving Eq -- | Read an interface file readBinIface :: CheckHiWay -> TraceBinIFaceReading -> FilePath -> TcRnIf a b ModIface readBinIface checkHiWay traceBinIFaceReading hi_path = do ncu <- mkNameCacheUpdater dflags <- getDynFlags liftIO $ readBinIface_ dflags checkHiWay traceBinIFaceReading hi_path ncu readBinIface_ :: DynFlags -> CheckHiWay -> TraceBinIFaceReading -> FilePath -> NameCacheUpdater -> IO ModIface readBinIface_ dflags checkHiWay traceBinIFaceReading hi_path ncu = do let printer :: SDoc -> IO () printer = case traceBinIFaceReading of TraceBinIFaceReading -> \sd -> putLogMsg dflags NoReason SevOutput noSrcSpan (defaultDumpStyle dflags) sd QuietBinIFaceReading -> \_ -> return () wantedGot :: Outputable a => String -> a -> a -> IO () wantedGot what wanted got = printer (text what <> text ": " <> vcat [text "Wanted " <> ppr wanted <> text ",", text "got " <> ppr got]) errorOnMismatch :: (Eq a, Show a) => String -> a -> a -> IO () errorOnMismatch what wanted got = -- This will be caught by readIface which will emit an error -- msg containing the iface module name. when (wanted /= got) $ throwGhcExceptionIO $ ProgramError (what ++ " (wanted " ++ show wanted ++ ", got " ++ show got ++ ")") bh <- Binary.readBinMem hi_path -- Read the magic number to check that this really is a GHC .hi file -- (This magic number does not change when we change -- GHC interface file format) magic <- get bh wantedGot "Magic" (binaryInterfaceMagic dflags) magic errorOnMismatch "magic number mismatch: old/corrupt interface file?" (binaryInterfaceMagic dflags) magic -- Note [dummy iface field] -- read a dummy 32/64 bit value. This field used to hold the -- dictionary pointer in old interface file formats, but now -- the dictionary pointer is after the version (where it -- should be). Also, the serialisation of value of type "Bin -- a" used to depend on the word size of the machine, now they -- are always 32 bits. if wORD_SIZE dflags == 4 then do _ <- Binary.get bh :: IO Word32; return () else do _ <- Binary.get bh :: IO Word64; return () -- Check the interface file version and ways. check_ver <- get bh let our_ver = show hiVersion wantedGot "Version" our_ver check_ver errorOnMismatch "mismatched interface file versions" our_ver check_ver check_way <- get bh let way_descr = getWayDescr dflags wantedGot "Way" way_descr check_way when (checkHiWay == CheckHiWay) $ errorOnMismatch "mismatched interface file ways" way_descr check_way getWithUserData ncu bh -- | This performs a get action after reading the dictionary and symbol -- table. It is necessary to run this before trying to deserialise any -- Names or FastStrings. getWithUserData :: Binary a => NameCacheUpdater -> BinHandle -> IO a getWithUserData ncu bh = do -- Read the dictionary -- The next word in the file is a pointer to where the dictionary is -- (probably at the end of the file) dict_p <- Binary.get bh data_p <- tellBin bh -- Remember where we are now seekBin bh dict_p dict <- getDictionary bh seekBin bh data_p -- Back to where we were before -- Initialise the user-data field of bh bh <- do bh <- return $ setUserData bh $ newReadState (error "getSymtabName") (getDictFastString dict) symtab_p <- Binary.get bh -- Get the symtab ptr data_p <- tellBin bh -- Remember where we are now seekBin bh symtab_p symtab <- getSymbolTable bh ncu seekBin bh data_p -- Back to where we were before -- It is only now that we know how to get a Name return $ setUserData bh $ newReadState (getSymtabName ncu dict symtab) (getDictFastString dict) -- Read the interface file get bh -- | Write an interface file writeBinIface :: DynFlags -> FilePath -> ModIface -> IO () writeBinIface dflags hi_path mod_iface = do bh <- openBinMem initBinMemSize put_ bh (binaryInterfaceMagic dflags) -- dummy 32/64-bit field before the version/way for -- compatibility with older interface file formats. -- See Note [dummy iface field] above. if wORD_SIZE dflags == 4 then Binary.put_ bh (0 :: Word32) else Binary.put_ bh (0 :: Word64) -- The version and way descriptor go next put_ bh (show hiVersion) let way_descr = getWayDescr dflags put_ bh way_descr putWithUserData (debugTraceMsg dflags 3) bh mod_iface -- And send the result to the file writeBinMem bh hi_path -- | Put a piece of data with an initialised `UserData` field. This -- is necessary if you want to serialise Names or FastStrings. -- It also writes a symbol table and the dictionary. -- This segment should be read using `getWithUserData`. putWithUserData :: Binary a => (SDoc -> IO ()) -> BinHandle -> a -> IO () putWithUserData log_action bh payload = do -- Remember where the dictionary pointer will go dict_p_p <- tellBin bh -- Placeholder for ptr to dictionary put_ bh dict_p_p -- Remember where the symbol table pointer will go symtab_p_p <- tellBin bh put_ bh symtab_p_p -- Make some initial state symtab_next <- newFastMutInt writeFastMutInt symtab_next 0 symtab_map <- newIORef emptyUFM let bin_symtab = BinSymbolTable { bin_symtab_next = symtab_next, bin_symtab_map = symtab_map } dict_next_ref <- newFastMutInt writeFastMutInt dict_next_ref 0 dict_map_ref <- newIORef emptyUFM let bin_dict = BinDictionary { bin_dict_next = dict_next_ref, bin_dict_map = dict_map_ref } -- Put the main thing, bh <- return $ setUserData bh $ newWriteState (putName bin_dict bin_symtab) (putName bin_dict bin_symtab) (putFastString bin_dict) put_ bh payload -- Write the symtab pointer at the front of the file symtab_p <- tellBin bh -- This is where the symtab will start putAt bh symtab_p_p symtab_p -- Fill in the placeholder seekBin bh symtab_p -- Seek back to the end of the file -- Write the symbol table itself symtab_next <- readFastMutInt symtab_next symtab_map <- readIORef symtab_map putSymbolTable bh symtab_next symtab_map log_action (text "writeBinIface:" <+> int symtab_next <+> text "Names") -- NB. write the dictionary after the symbol table, because -- writing the symbol table may create more dictionary entries. -- Write the dictionary pointer at the front of the file dict_p <- tellBin bh -- This is where the dictionary will start putAt bh dict_p_p dict_p -- Fill in the placeholder seekBin bh dict_p -- Seek back to the end of the file -- Write the dictionary itself dict_next <- readFastMutInt dict_next_ref dict_map <- readIORef dict_map_ref putDictionary bh dict_next dict_map log_action (text "writeBinIface:" <+> int dict_next <+> text "dict entries") -- | Initial ram buffer to allocate for writing interface files initBinMemSize :: Int initBinMemSize = 1024 * 1024 binaryInterfaceMagic :: DynFlags -> Word32 binaryInterfaceMagic dflags | target32Bit (targetPlatform dflags) = 0x1face | otherwise = 0x1face64 -- ----------------------------------------------------------------------------- -- The symbol table -- putSymbolTable :: BinHandle -> Int -> UniqFM (Int,Name) -> IO () putSymbolTable bh next_off symtab = do put_ bh next_off let names = elems (array (0,next_off-1) (nonDetEltsUFM symtab)) -- It's OK to use nonDetEltsUFM here because the elements have -- indices that array uses to create order mapM_ (\n -> serialiseName bh n symtab) names getSymbolTable :: BinHandle -> NameCacheUpdater -> IO SymbolTable getSymbolTable bh ncu = do sz <- get bh od_names <- sequence (replicate sz (get bh)) updateNameCache ncu $ \namecache -> runST $ flip State.evalStateT namecache $ do mut_arr <- lift $ newSTArray_ (0, sz-1) for_ (zip [0..] od_names) $ \(i, odn) -> do (nc, !n) <- State.gets $ \nc -> fromOnDiskName nc odn lift $ writeArray mut_arr i n State.put nc arr <- lift $ unsafeFreeze mut_arr namecache' <- State.get return (namecache', arr) where -- This binding is required because the type of newArray_ cannot be inferred newSTArray_ :: forall s. (Int, Int) -> ST s (STArray s Int Name) newSTArray_ = newArray_ type OnDiskName = (UnitId, ModuleName, OccName) fromOnDiskName :: NameCache -> OnDiskName -> (NameCache, Name) fromOnDiskName nc (pid, mod_name, occ) = let mod = mkModule pid mod_name cache = nsNames nc in case lookupOrigNameCache cache mod occ of Just name -> (nc, name) Nothing -> let (uniq, us) = takeUniqFromSupply (nsUniqs nc) name = mkExternalName uniq mod occ noSrcSpan new_cache = extendNameCache cache mod occ name in ( nc{ nsUniqs = us, nsNames = new_cache }, name ) serialiseName :: BinHandle -> Name -> UniqFM (Int,Name) -> IO () serialiseName bh name _ = do let mod = ASSERT2( isExternalName name, ppr name ) nameModule name put_ bh (moduleUnitId mod, moduleName mod, nameOccName name) -- Note [Symbol table representation of names] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- An occurrence of a name in an interface file is serialized as a single 32-bit -- word. The format of this word is: -- 00xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx -- A normal name. x is an index into the symbol table -- 10xxxxxx xxyyyyyy yyyyyyyy yyyyyyyy -- A known-key name. x is the Unique's Char, y is the int part. We assume that -- all known-key uniques fit in this space. This is asserted by -- PrelInfo.knownKeyNamesOkay. -- -- During serialization we check for known-key things using isKnownKeyName. -- During deserialization we use lookupKnownKeyName to get from the unique back -- to its corresponding Name. -- See Note [Symbol table representation of names] putName :: BinDictionary -> BinSymbolTable -> BinHandle -> Name -> IO () putName _dict BinSymbolTable{ bin_symtab_map = symtab_map_ref, bin_symtab_next = symtab_next } bh name | isKnownKeyName name , let (c, u) = unpkUnique (nameUnique name) -- INVARIANT: (ord c) fits in 8 bits = -- ASSERT(u < 2^(22 :: Int)) put_ bh (0x80000000 .|. (fromIntegral (ord c) `shiftL` 22) .|. (fromIntegral u :: Word32)) | otherwise = do symtab_map <- readIORef symtab_map_ref case lookupUFM symtab_map name of Just (off,_) -> put_ bh (fromIntegral off :: Word32) Nothing -> do off <- readFastMutInt symtab_next -- MASSERT(off < 2^(30 :: Int)) writeFastMutInt symtab_next (off+1) writeIORef symtab_map_ref $! addToUFM symtab_map name (off,name) put_ bh (fromIntegral off :: Word32) -- See Note [Symbol table representation of names] getSymtabName :: NameCacheUpdater -> Dictionary -> SymbolTable -> BinHandle -> IO Name getSymtabName _ncu _dict symtab bh = do i :: Word32 <- get bh case i .&. 0xC0000000 of 0x00000000 -> return $! symtab ! fromIntegral i 0x80000000 -> let tag = chr (fromIntegral ((i .&. 0x3FC00000) `shiftR` 22)) ix = fromIntegral i .&. 0x003FFFFF u = mkUnique tag ix in return $! case lookupKnownKeyName u of Nothing -> pprPanic "getSymtabName:unknown known-key unique" (ppr i $$ ppr (unpkUnique u)) Just n -> n _ -> pprPanic "getSymtabName:unknown name tag" (ppr i) data BinSymbolTable = BinSymbolTable { bin_symtab_next :: !FastMutInt, -- The next index to use bin_symtab_map :: !(IORef (UniqFM (Int,Name))) -- indexed by Name } putFastString :: BinDictionary -> BinHandle -> FastString -> IO () putFastString dict bh fs = allocateFastString dict fs >>= put_ bh allocateFastString :: BinDictionary -> FastString -> IO Word32 allocateFastString BinDictionary { bin_dict_next = j_r, bin_dict_map = out_r} f = do out <- readIORef out_r let uniq = getUnique f case lookupUFM out uniq of Just (j, _) -> return (fromIntegral j :: Word32) Nothing -> do j <- readFastMutInt j_r writeFastMutInt j_r (j + 1) writeIORef out_r $! addToUFM out uniq (j, f) return (fromIntegral j :: Word32) getDictFastString :: Dictionary -> BinHandle -> IO FastString getDictFastString dict bh = do j <- get bh return $! (dict ! fromIntegral (j :: Word32)) data BinDictionary = BinDictionary { bin_dict_next :: !FastMutInt, -- The next index to use bin_dict_map :: !(IORef (UniqFM (Int,FastString))) -- indexed by FastString } getWayDescr :: DynFlags -> String getWayDescr dflags | platformUnregisterised (targetPlatform dflags) = 'u':tag | otherwise = tag where tag = buildTag dflags -- if this is an unregisterised build, make sure our interfaces -- can't be used by a registerised build.