{- (c) The University of Glasgow 2006 (c) The AQUA Project, Glasgow University, 1996-1998 TcTyClsDecls: Typecheck type and class declarations -} {-# LANGUAGE CPP, TupleSections, MultiWayIf #-} {-# LANGUAGE TypeFamilies #-} module TcTyClsDecls ( tcTyAndClassDecls, -- Functions used by TcInstDcls to check -- data/type family instance declarations kcDataDefn, tcConDecls, dataDeclChecks, checkValidTyCon, tcFamTyPats, tcTyFamInstEqn, tcAddTyFamInstCtxt, tcMkDataFamInstCtxt, tcAddDataFamInstCtxt, wrongKindOfFamily, dataConCtxt ) where #include "HsVersions.h" import GhcPrelude import HsSyn import HscTypes import BuildTyCl import TcRnMonad import TcEnv import TcValidity import TcHsSyn import TcTyDecls import TcClassDcl import {-# SOURCE #-} TcInstDcls( tcInstDecls1 ) import TcDeriv (DerivInfo) import TcEvidence ( tcCoercionKind, isEmptyTcEvBinds ) import TcUnify ( checkConstraints ) import TcHsType import TcMType import TysWiredIn ( unitTy ) import TcType import RnEnv( lookupConstructorFields ) import FamInst import FamInstEnv import Coercion import Type import TyCoRep -- for checkValidRoles import Class import CoAxiom import TyCon import DataCon import Id import Var import VarEnv import VarSet import Module import Name import NameSet import NameEnv import Outputable import Maybes import Unify import Util import Pair import SrcLoc import ListSetOps import DynFlags import Unique import ConLike( ConLike(..) ) import BasicTypes import qualified GHC.LanguageExtensions as LangExt import Control.Monad import Data.List import Data.List.NonEmpty ( NonEmpty(..) ) {- ************************************************************************ * * \subsection{Type checking for type and class declarations} * * ************************************************************************ Note [Grouping of type and class declarations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcTyAndClassDecls is called on a list of `TyClGroup`s. Each group is a strongly connected component of mutually dependent types and classes. We kind check and type check each group separately to enhance kind polymorphism. Take the following example: type Id a = a data X = X (Id Int) If we were to kind check the two declarations together, we would give Id the kind * -> *, since we apply it to an Int in the definition of X. But we can do better than that, since Id really is kind polymorphic, and should get kind forall (k::*). k -> k. Since it does not depend on anything else, it can be kind-checked by itself, hence getting the most general kind. We then kind check X, which works fine because we then know the polymorphic kind of Id, and simply instantiate k to *. Note [Check role annotations in a second pass] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Role inference potentially depends on the types of all of the datacons declared in a mutually recursive group. The validity of a role annotation, in turn, depends on the result of role inference. Because the types of datacons might be ill-formed (see #7175 and Note [Checking GADT return types]) we must check *all* the tycons in a group for validity before checking *any* of the roles. Thus, we take two passes over the resulting tycons, first checking for general validity and then checking for valid role annotations. -} tcTyAndClassDecls :: [TyClGroup GhcRn] -- Mutually-recursive groups in -- dependency order -> TcM ( TcGblEnv -- Input env extended by types and -- classes -- and their implicit Ids,DataCons , [InstInfo GhcRn] -- Source-code instance decls info , [DerivInfo] -- data family deriving info ) -- Fails if there are any errors tcTyAndClassDecls tyclds_s -- The code recovers internally, but if anything gave rise to -- an error we'd better stop now, to avoid a cascade -- Type check each group in dependency order folding the global env = checkNoErrs $ fold_env [] [] tyclds_s where fold_env :: [InstInfo GhcRn] -> [DerivInfo] -> [TyClGroup GhcRn] -> TcM (TcGblEnv, [InstInfo GhcRn], [DerivInfo]) fold_env inst_info deriv_info [] = do { gbl_env <- getGblEnv ; return (gbl_env, inst_info, deriv_info) } fold_env inst_info deriv_info (tyclds:tyclds_s) = do { (tcg_env, inst_info', deriv_info') <- tcTyClGroup tyclds ; setGblEnv tcg_env $ -- remaining groups are typechecked in the extended global env. fold_env (inst_info' ++ inst_info) (deriv_info' ++ deriv_info) tyclds_s } tcTyClGroup :: TyClGroup GhcRn -> TcM (TcGblEnv, [InstInfo GhcRn], [DerivInfo]) -- Typecheck one strongly-connected component of type, class, and instance decls -- See Note [TyClGroups and dependency analysis] in HsDecls tcTyClGroup (TyClGroup { group_tyclds = tyclds , group_roles = roles , group_instds = instds }) = do { let role_annots = mkRoleAnnotEnv roles -- Step 1: Typecheck the type/class declarations ; traceTc "---- tcTyClGroup ---- {" empty ; traceTc "Decls for" (ppr (map (tcdName . unLoc) tyclds)) ; tyclss <- tcTyClDecls tyclds role_annots -- Step 1.5: Make sure we don't have any type synonym cycles ; traceTc "Starting synonym cycle check" (ppr tyclss) ; this_uid <- fmap thisPackage getDynFlags ; checkSynCycles this_uid tyclss tyclds ; traceTc "Done synonym cycle check" (ppr tyclss) -- Step 2: Perform the validity check on those types/classes -- We can do this now because we are done with the recursive knot -- Do it before Step 3 (adding implicit things) because the latter -- expects well-formed TyCons ; traceTc "Starting validity check" (ppr tyclss) ; tyclss <- concatMapM checkValidTyCl tyclss ; traceTc "Done validity check" (ppr tyclss) ; mapM_ (recoverM (return ()) . checkValidRoleAnnots role_annots) tyclss -- See Note [Check role annotations in a second pass] ; traceTc "---- end tcTyClGroup ---- }" empty -- Step 3: Add the implicit things; -- we want them in the environment because -- they may be mentioned in interface files ; gbl_env <- addTyConsToGblEnv tyclss -- Step 4: check instance declarations ; setGblEnv gbl_env $ tcInstDecls1 instds } tcTyClGroup (XTyClGroup _) = panic "tcTyClGroup" tcTyClDecls :: [LTyClDecl GhcRn] -> RoleAnnotEnv -> TcM [TyCon] tcTyClDecls tyclds role_annots = tcExtendKindEnv promotion_err_env $ --- See Note [Type environment evolution] do { -- Step 1: kind-check this group and returns the final -- (possibly-polymorphic) kind of each TyCon and Class -- See Note [Kind checking for type and class decls] tc_tycons <- kcTyClGroup tyclds ; traceTc "tcTyAndCl generalized kinds" (vcat (map ppr_tc_tycon tc_tycons)) -- Step 2: type-check all groups together, returning -- the final TyCons and Classes -- -- NB: We have to be careful here to NOT eagerly unfold -- type synonyms, as we have not tested for type synonym -- loops yet and could fall into a black hole. ; fixM $ \ ~rec_tyclss -> do { tcg_env <- getGblEnv ; let roles = inferRoles (tcg_src tcg_env) role_annots rec_tyclss -- Populate environment with knot-tied ATyCon for TyCons -- NB: if the decls mention any ill-staged data cons -- (see Note [Recursion and promoting data constructors]) -- we will have failed already in kcTyClGroup, so no worries here ; tcExtendRecEnv (zipRecTyClss tc_tycons rec_tyclss) $ -- Also extend the local type envt with bindings giving -- a TcTyCon for each each knot-tied TyCon or Class -- See Note [Type checking recursive type and class declarations] -- and Note [Type environment evolution] tcExtendKindEnvWithTyCons tc_tycons $ -- Kind and type check declarations for this group mapM (tcTyClDecl roles) tyclds } } where promotion_err_env = mkPromotionErrorEnv tyclds ppr_tc_tycon tc = parens (sep [ ppr (tyConName tc) <> comma , ppr (tyConBinders tc) <> comma , ppr (tyConResKind tc) , ppr (isTcTyCon tc) ]) zipRecTyClss :: [TcTyCon] -> [TyCon] -- Knot-tied -> [(Name,TyThing)] -- Build a name-TyThing mapping for the TyCons bound by decls -- being careful not to look at the knot-tied [TyThing] -- The TyThings in the result list must have a visible ATyCon, -- because typechecking types (in, say, tcTyClDecl) looks at -- this outer constructor zipRecTyClss tc_tycons rec_tycons = [ (name, ATyCon (get name)) | tc_tycon <- tc_tycons, let name = getName tc_tycon ] where rec_tc_env :: NameEnv TyCon rec_tc_env = foldr add_tc emptyNameEnv rec_tycons add_tc :: TyCon -> NameEnv TyCon -> NameEnv TyCon add_tc tc env = foldr add_one_tc env (tc : tyConATs tc) add_one_tc :: TyCon -> NameEnv TyCon -> NameEnv TyCon add_one_tc tc env = extendNameEnv env (tyConName tc) tc get name = case lookupNameEnv rec_tc_env name of Just tc -> tc other -> pprPanic "zipRecTyClss" (ppr name <+> ppr other) {- ************************************************************************ * * Kind checking * * ************************************************************************ Note [Kind checking for type and class decls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Kind checking is done thus: 1. Make up a kind variable for each parameter of the declarations, and extend the kind environment (which is in the TcLclEnv) 2. Kind check the declarations We need to kind check all types in the mutually recursive group before we know the kind of the type variables. For example: class C a where op :: D b => a -> b -> b class D c where bop :: (Monad c) => ... Here, the kind of the locally-polymorphic type variable "b" depends on *all the uses of class D*. For example, the use of Monad c in bop's type signature means that D must have kind Type->Type. Note: we don't treat type synonyms specially (we used to, in the past); in particular, even if we have a type synonym cycle, we still kind check it normally, and test for cycles later (checkSynCycles). The reason we can get away with this is because we have more systematic TYPE r inference, which means that we can do unification between kinds that aren't lifted (this historically was not true.) The downside of not directly reading off the kinds off the RHS of type synonyms in topological order is that we don't transparently support making synonyms of types with higher-rank kinds. But you can always specify a CUSK directly to make this work out. See tc269 for an example. Note [Skip decls with CUSKs in kcLTyClDecl] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data T (a :: *) = MkT (S a) -- Has CUSK data S a = MkS (T Int) (S a) -- No CUSK Via getInitialKinds we get T :: * -> * S :: kappa -> * Then we call kcTyClDecl on each decl in the group, to constrain the kind unification variables. BUT we /skip/ the RHS of any decl with a CUSK. Here we skip the RHS of T, so we eventually get S :: forall k. k -> * This gets us more polymorphism than we would otherwise get, similar (but implemented strangely differently from) the treatment of type signatures in value declarations. Open type families ~~~~~~~~~~~~~~~~~~ This treatment of type synonyms only applies to Haskell 98-style synonyms. General type functions can be recursive, and hence, appear in `alg_decls'. The kind of an open type family is solely determinded by its kind signature; hence, only kind signatures participate in the construction of the initial kind environment (as constructed by `getInitialKind'). In fact, we ignore instances of families altogether in the following. However, we need to include the kinds of *associated* families into the construction of the initial kind environment. (This is handled by `allDecls'). See also Note [Kind checking recursive type and class declarations] Note [How TcTyCons work] ~~~~~~~~~~~~~~~~~~~~~~~~ TcTyCons are used for two distinct purposes 1. When recovering from a type error in a type declaration, we want to put the erroneous TyCon in the environment in a way that won't lead to more errors. We use a TcTyCon for this; see makeRecoveryTyCon. 2. When checking a type/class declaration (in module TcTyClsDecls), we come upon knowledge of the eventual tycon in bits and pieces. S1) First, we use getInitialKinds to look over the user-provided kind signature of a tycon (including, for example, the number of parameters written to the tycon) to get an initial shape of the tycon's kind. We record that shape in a TcTyCon. S2) Then, using these initial kinds, we kind-check the body of the tycon (class methods, data constructors, etc.), filling in the metavariables in the tycon's initial kind. S3) We then generalize to get the tycon's final, fixed kind. Finally, once this has happened for all tycons in a mutually recursive group, we can desugar the lot. For convenience, we store partially-known tycons in TcTyCons, which might store meta-variables. These TcTyCons are stored in the local environment in TcTyClsDecls, until the real full TyCons can be created during desugaring. A desugared program should never have a TcTyCon. A challenging piece in all of this is that we end up taking three separate passes over every declaration: - one in getInitialKind (this pass look only at the head, not the body) - one in kcTyClDecls (to kind-check the body) - a final one in tcTyClDecls (to desugar) In the latter two passes, we need to connect the user-written type variables in an LHsQTyVars with the variables in the tycon's inferred kind. Because the tycon might not have a CUSK, this matching up is, in general, quite hard to do. (Look through the git history between Dec 2015 and Apr 2016 for TcHsType.splitTelescopeTvs!) Instead of trying, we just store the list of type variables to bring into scope, in the tyConScopedTyVars field of the TcTyCon. These tyvars are brought into scope in kcTyClTyVars and tcTyClTyVars, both in TcHsType. In a TcTyCon, everything is zonked after the kind-checking pass (S2). See also Note [Type checking recursive type and class declarations]. Note [Check telescope again during generalisation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The telescope check before kind generalisation is useful to catch something like this: data T a k = MkT (Proxy (a :: k)) Clearly, the k has to come first. Checking for this problem must come before kind generalisation, as described in Note [Bad telescopes] in TcValidity. However, we have to check again *after* kind generalisation, to catch something like this: data SameKind :: k -> k -> Type -- to force unification data S a (b :: a) (d :: SameKind c b) Note that c has no explicit binding site. As such, it's quantified by kind generalisation. (Note that kcHsTyVarBndrs does not return such variables as binders in its returned TcTyCon.) The user-written part of this telescope is well-ordered; no earlier variables depend on later ones. However, after kind generalisation, we put c up front, like so: data S {c :: a} a (b :: a) (d :: SameKind c b) We now have a problem. We could detect this problem just by looking at the free vars of the kinds of the generalised variables (the kvs), but we get such a nice error message out of checkValidTelescope that it seems like the right thing to do. Note [Type environment evolution] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As we typecheck a group of declarations the type environment evolves. Consider for example: data B (a :: Type) = MkB (Proxy 'MkB) We do the following steps: 1. Start of tcTyClDecls: use mkPromotionErrorEnv to initialise the type env with promotion errors B :-> TyConPE MkB :-> DataConPE 2. kcTyCLGruup - Do getInitialKinds, which will signal a promotion error if B is used in any of the kinds needed to initialse B's kind (e.g. (a :: Type)) here - Extend the type env with these initial kinds (monomorphic for decls that lack a CUSK) B :-> TcTyCon (thereby overriding the B :-> TyConPE binding) and do kcLTyClDecl on each decl to get equality constraints on all those inital kinds - Generalise the inital kind, making a poly-kinded TcTyCon 3. Back in tcTyDecls, extend the envt with bindings of the poly-kinded TcTyCons, again overriding the promotion-error bindings. But note that the data constructor promotion errors are still in place so that (in our example) a use of MkB will sitll be signalled as an error. 4. Typecheck the decls. 5. In tcTyClGroup, extend the envt with bindings for TyCon and DataCons Note [Missed opportunity to retain higher-rank kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In 'kcTyClGroup', there is a missed opportunity to make kind inference work in a few more cases. The idea is analogous to Note [Single function non-recursive binding special-case]: * If we have an SCC with a single decl, which is non-recursive, instead of creating a unification variable representing the kind of the decl and unifying it with the rhs, we can just read the type directly of the rhs. * Furthermore, we can update our SCC analysis to ignore dependencies on declarations which have CUSKs: we don't have to kind-check these all at once, since we can use the CUSK to initialize the kind environment. Unfortunately this requires reworking a bit of the code in 'kcLTyClDecl' so I've decided to punt unless someone shouts about it. Note [Don't process associated types in kcLHsQTyVars] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Previously, we processed associated types in the thing_inside in kcLHsQTyVars, but this was wrong -- we want to do ATs sepearately. The consequence for not doing it this way is #15142: class ListTuple (tuple :: Type) (as :: [(k, Type)]) where type ListToTuple as :: Type We assign k a kind kappa[1]. When checking the tuple (k, Type), we try to unify kappa ~ Type, but this gets deferred because we bumped the TcLevel as we bring `tuple` into scope. Thus, when we check ListToTuple, kappa[1] still hasn't unified with Type. And then, when we generalize the kind of ListToTuple (which indeed has a CUSK, according to the rules), we skolemize the free metavariable kappa. Note that we wouldn't skolemize kappa when generalizing the kind of ListTuple, because the solveEqualities in kcLHsQTyVars is at TcLevel 1 and so kappa[1] will unify with Type. Bottom line: as associated types should have no effect on a CUSK enclosing class, we move processing them to a separate action, run after the outer kind has been generalized. -} kcTyClGroup :: [LTyClDecl GhcRn] -> TcM [TcTyCon] -- Kind check this group, kind generalize, and return the resulting local env -- This binds the TyCons and Classes of the group, but not the DataCons -- See Note [Kind checking for type and class decls] -- Third return value is Nothing if the tycon be unsaturated; otherwise, -- the arity kcTyClGroup decls = do { mod <- getModule ; traceTc "---- kcTyClGroup ---- {" (text "module" <+> ppr mod $$ vcat (map ppr decls)) -- Kind checking; -- 1. Bind kind variables for decls -- 2. Kind-check decls -- 3. Generalise the inferred kinds -- See Note [Kind checking for type and class decls] -- Step 1: Bind kind variables for all decls ; initial_tcs <- getInitialKinds decls ; traceTc "kcTyClGroup: initial kinds" $ ppr_tc_kinds initial_tcs -- Step 2: Set extended envt, kind-check the decls -- NB: the environment extension overrides the tycon -- promotion-errors bindings -- See Note [Type environment evolution] ; solveEqualities $ tcExtendKindEnvWithTyCons initial_tcs $ mapM_ kcLTyClDecl decls -- Step 3: generalisation -- Kind checking done for this group -- Now we have to kind generalize the flexis ; poly_tcs <- mapAndReportM generalise initial_tcs ; traceTc "---- kcTyClGroup end ---- }" (ppr_tc_kinds poly_tcs) ; return poly_tcs } where ppr_tc_kinds tcs = vcat (map pp_tc tcs) pp_tc tc = ppr (tyConName tc) <+> dcolon <+> ppr (tyConKind tc) generalise :: TcTyCon -> TcM TcTyCon -- For polymorphic things this is a no-op generalise tc = setSrcSpan (getSrcSpan tc) $ addTyConCtxt tc $ do { let name = tyConName tc ; tc_binders <- mapM zonkTcTyVarBinder (tyConBinders tc) ; tc_res_kind <- zonkTcType (tyConResKind tc) ; let scoped_tvs = tcTyConScopedTyVars tc user_tyvars = tcTyConUserTyVars tc -- See Note [checkValidDependency] ; checkValidDependency tc_binders tc_res_kind -- See Note [Bad telescopes] in TcValidity ; checkValidTelescope tc_binders user_tyvars empty ; kvs <- kindGeneralize (mkTyConKind tc_binders tc_res_kind) ; let all_binders = mkNamedTyConBinders Inferred kvs ++ tc_binders ; (env, all_binders') <- zonkTyVarBindersX emptyZonkEnv all_binders ; tc_res_kind' <- zonkTcTypeToType env tc_res_kind ; scoped_tvs' <- zonkSigTyVarPairs scoped_tvs -- See Note [Check telescope again during generalisation] ; let extra = text "NB: Implicitly declared variables come before others." ; checkValidTelescope all_binders user_tyvars extra -- Make sure tc_kind' has the final, zonked kind variables ; traceTc "Generalise kind" $ vcat [ ppr name, ppr tc_binders, ppr (mkTyConKind tc_binders tc_res_kind) , ppr kvs, ppr all_binders, ppr tc_res_kind , ppr all_binders', ppr tc_res_kind' , ppr scoped_tvs ] ; return (mkTcTyCon name user_tyvars all_binders' tc_res_kind' scoped_tvs' (tyConFlavour tc)) } -------------- tcExtendKindEnvWithTyCons :: [TcTyCon] -> TcM a -> TcM a tcExtendKindEnvWithTyCons tcs = tcExtendKindEnvList [ (tyConName tc, ATcTyCon tc) | tc <- tcs ] -------------- mkPromotionErrorEnv :: [LTyClDecl GhcRn] -> TcTypeEnv -- Maps each tycon/datacon to a suitable promotion error -- tc :-> APromotionErr TyConPE -- dc :-> APromotionErr RecDataConPE -- See Note [Recursion and promoting data constructors] mkPromotionErrorEnv decls = foldr (plusNameEnv . mk_prom_err_env . unLoc) emptyNameEnv decls mk_prom_err_env :: TyClDecl GhcRn -> TcTypeEnv mk_prom_err_env (ClassDecl { tcdLName = L _ nm, tcdATs = ats }) = unitNameEnv nm (APromotionErr ClassPE) `plusNameEnv` mkNameEnv [ (name, APromotionErr TyConPE) | L _ (FamilyDecl { fdLName = L _ name }) <- ats ] mk_prom_err_env (DataDecl { tcdLName = L _ name , tcdDataDefn = HsDataDefn { dd_cons = cons } }) = unitNameEnv name (APromotionErr TyConPE) `plusNameEnv` mkNameEnv [ (con, APromotionErr RecDataConPE) | L _ con' <- cons, L _ con <- getConNames con' ] mk_prom_err_env decl = unitNameEnv (tcdName decl) (APromotionErr TyConPE) -- Works for family declarations too -------------- getInitialKinds :: [LTyClDecl GhcRn] -> TcM [TcTyCon] -- Returns a TcTyCon for each TyCon bound by the decls, -- each with its initial kind getInitialKinds decls = concatMapM (addLocM getInitialKind) decls getInitialKind :: TyClDecl GhcRn -> TcM [TcTyCon] -- Allocate a fresh kind variable for each TyCon and Class -- For each tycon, return a TcTyCon with kind k -- where k is the kind of tc, derived from the LHS -- of the definition (and probably including -- kind unification variables) -- Example: data T a b = ... -- return (T, kv1 -> kv2 -> kv3) -- -- This pass deals with (ie incorporates into the kind it produces) -- * The kind signatures on type-variable binders -- * The result kinds signature on a TyClDecl -- -- No family instances are passed to getInitialKinds getInitialKind decl@(ClassDecl { tcdLName = L _ name, tcdTyVars = ktvs, tcdATs = ats }) = do { let cusk = hsDeclHasCusk decl ; tycon <- kcLHsQTyVars name ClassFlavour cusk ktvs $ return constraintKind -- See Note [Don't process associated types in kcLHsQTyVars] ; inner_tcs <- tcExtendNameTyVarEnv (tcTyConScopedTyVars tycon) $ getFamDeclInitialKinds (Just cusk) ats ; return (tycon : inner_tcs) } getInitialKind decl@(DataDecl { tcdLName = L _ name , tcdTyVars = ktvs , tcdDataDefn = HsDataDefn { dd_kindSig = m_sig , dd_ND = new_or_data } }) = do { tycon <- kcLHsQTyVars name (newOrDataToFlavour new_or_data) (hsDeclHasCusk decl) ktvs $ case m_sig of Just ksig -> tcLHsKindSig (DataKindCtxt name) ksig Nothing -> return liftedTypeKind ; return [tycon] } getInitialKind (FamDecl { tcdFam = decl }) = do { tc <- getFamDeclInitialKind Nothing decl ; return [tc] } getInitialKind decl@(SynDecl { tcdLName = L _ name , tcdTyVars = ktvs , tcdRhs = rhs }) = do { tycon <- kcLHsQTyVars name TypeSynonymFlavour (hsDeclHasCusk decl) ktvs $ case kind_annotation rhs of Nothing -> newMetaKindVar Just ksig -> tcLHsKindSig (TySynKindCtxt name) ksig ; return [tycon] } where -- Keep this synchronized with 'hsDeclHasCusk'. kind_annotation (L _ ty) = case ty of HsParTy _ lty -> kind_annotation lty HsKindSig _ _ k -> Just k _ -> Nothing getInitialKind (DataDecl _ (L _ _) _ _ (XHsDataDefn _)) = panic "getInitialKind" getInitialKind (XTyClDecl _) = panic "getInitialKind" --------------------------------- getFamDeclInitialKinds :: Maybe Bool -- if assoc., CUSKness of assoc. class -> [LFamilyDecl GhcRn] -> TcM [TcTyCon] getFamDeclInitialKinds mb_cusk decls = mapM (addLocM (getFamDeclInitialKind mb_cusk)) decls getFamDeclInitialKind :: Maybe Bool -- if assoc., CUSKness of assoc. class -> FamilyDecl GhcRn -> TcM TcTyCon getFamDeclInitialKind mb_cusk decl@(FamilyDecl { fdLName = L _ name , fdTyVars = ktvs , fdResultSig = L _ resultSig , fdInfo = info }) = do { tycon <- kcLHsQTyVars name flav cusk ktvs $ case resultSig of KindSig _ ki -> tcLHsKindSig ctxt ki TyVarSig _ (L _ (KindedTyVar _ _ ki)) -> tcLHsKindSig ctxt ki _ -- open type families have * return kind by default | tcFlavourIsOpen flav -> return liftedTypeKind -- closed type families have their return kind inferred -- by default | otherwise -> newMetaKindVar ; return tycon } where cusk = famDeclHasCusk mb_cusk decl flav = case info of DataFamily -> DataFamilyFlavour (isJust mb_cusk) OpenTypeFamily -> OpenTypeFamilyFlavour (isJust mb_cusk) ClosedTypeFamily _ -> ClosedTypeFamilyFlavour ctxt = TyFamResKindCtxt name getFamDeclInitialKind _ (XFamilyDecl _) = panic "getFamDeclInitialKind" ------------------------------------------------------------------------ kcLTyClDecl :: LTyClDecl GhcRn -> TcM () -- See Note [Kind checking for type and class decls] kcLTyClDecl (L loc decl) | hsDeclHasCusk decl -- See Note [Skip decls with CUSKs in kcLTyClDecl] = traceTc "kcTyClDecl skipped due to cusk" (ppr tc_name) | otherwise = setSrcSpan loc $ tcAddDeclCtxt decl $ do { traceTc "kcTyClDecl {" (ppr tc_name) ; kcTyClDecl decl ; traceTc "kcTyClDecl done }" (ppr tc_name) } where tc_name = tyClDeclLName decl kcTyClDecl :: TyClDecl GhcRn -> TcM () -- This function is used solely for its side effect on kind variables -- NB kind signatures on the type variables and -- result kind signature have already been dealt with -- by getInitialKind, so we can ignore them here. kcTyClDecl (DataDecl { tcdLName = L _ name, tcdDataDefn = defn }) | HsDataDefn { dd_cons = cons@(L _ (ConDeclGADT {}) : _), dd_ctxt = L _ [] } <- defn = mapM_ (wrapLocM kcConDecl) cons -- hs_tvs and dd_kindSig already dealt with in getInitialKind -- This must be a GADT-style decl, -- (see invariants of DataDefn declaration) -- so (a) we don't need to bring the hs_tvs into scope, because the -- ConDecls bind all their own variables -- (b) dd_ctxt is not allowed for GADT-style decls, so we can ignore it | HsDataDefn { dd_ctxt = ctxt, dd_cons = cons } <- defn = kcTyClTyVars name $ do { _ <- tcHsContext ctxt ; mapM_ (wrapLocM kcConDecl) cons } kcTyClDecl (SynDecl { tcdLName = L _ name, tcdRhs = lrhs }) = kcTyClTyVars name $ do { syn_tc <- kcLookupTcTyCon name -- NB: check against the result kind that we allocated -- in getInitialKinds. ; discardResult $ tcCheckLHsType lrhs (tyConResKind syn_tc) } kcTyClDecl (ClassDecl { tcdLName = L _ name , tcdCtxt = ctxt, tcdSigs = sigs }) = kcTyClTyVars name $ do { _ <- tcHsContext ctxt ; mapM_ (wrapLocM kc_sig) sigs } where kc_sig (ClassOpSig _ _ nms op_ty) = kcHsSigType (TyConSkol ClassFlavour name) nms op_ty kc_sig _ = return () kcTyClDecl (FamDecl _ (FamilyDecl { fdLName = L _ fam_tc_name , fdInfo = fd_info })) -- closed type families look at their equations, but other families don't -- do anything here = case fd_info of ClosedTypeFamily (Just eqns) -> do { fam_tc <- kcLookupTcTyCon fam_tc_name ; mapM_ (kcTyFamInstEqn fam_tc) eqns } _ -> return () kcTyClDecl (FamDecl _ (XFamilyDecl _)) = panic "kcTyClDecl" kcTyClDecl (DataDecl _ (L _ _) _ _ (XHsDataDefn _)) = panic "kcTyClDecl" kcTyClDecl (XTyClDecl _) = panic "kcTyClDecl" ------------------- kcConDecl :: ConDecl GhcRn -> TcM () kcConDecl (ConDeclH98 { con_name = name, con_ex_tvs = ex_tvs , con_mb_cxt = ex_ctxt, con_args = args }) = addErrCtxt (dataConCtxtName [name]) $ -- See Note [Use SigTvs in kind-checking pass] kcExplicitTKBndrs ex_tvs $ do { _ <- tcHsMbContext ex_ctxt ; mapM_ (tcHsOpenType . getBangType) (hsConDeclArgTys args) } -- We don't need to check the telescope here, because that's -- done in tcConDecl kcConDecl (ConDeclGADT { con_names = names , con_qvars = qtvs, con_mb_cxt = cxt , con_args = args, con_res_ty = res_ty }) | HsQTvs { hsq_ext = HsQTvsRn { hsq_implicit = implicit_tkv_nms } , hsq_explicit = explicit_tkv_nms } <- qtvs = -- Even though the data constructor's type is closed, we -- must still kind-check the type, because that may influence -- the inferred kind of the /type/ constructor. Example: -- data T f a where -- MkT :: f a -> T f a -- If we don't look at MkT we won't get the correct kind -- for the type constructor T addErrCtxt (dataConCtxtName names) $ discardResult $ kcImplicitTKBndrs implicit_tkv_nms $ kcExplicitTKBndrs explicit_tkv_nms $ do { _ <- tcHsMbContext cxt ; mapM_ (tcHsOpenType . getBangType) (hsConDeclArgTys args) ; _ <- tcHsOpenType res_ty ; return () } kcConDecl (XConDecl _) = panic "kcConDecl" kcConDecl (ConDeclGADT _ _ _ (XLHsQTyVars _) _ _ _ _) = panic "kcConDecl" {- Note [Recursion and promoting data constructors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We don't want to allow promotion in a strongly connected component when kind checking. Consider: data T f = K (f (K Any)) When kind checking the `data T' declaration the local env contains the mappings: T -> ATcTyCon K -> APromotionErr APromotionErr is only used for DataCons, and only used during type checking in tcTyClGroup. Note [Use SigTvs in kind-checking pass] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data Proxy a where MkProxy1 :: forall k (b :: k). Proxy b MkProxy2 :: forall j (c :: j). Proxy c It seems reasonable that this should be accepted. But something very strange is going on here: when we're kind-checking this declaration, we need to unify the kind of `a` with k and j -- even though k and j's scopes are local to the type of MkProxy{1,2}. The best approach we've come up with is to use SigTvs during the kind-checking pass. First off, note that it's OK if the kind-checking pass is too permissive: we'll snag the problems in the type-checking pass later. (This extra permissiveness might happen with something like data SameKind :: k -> k -> Type data Bad a where MkBad :: forall k1 k2 (a :: k1) (b :: k2). Bad (SameKind a b) which would be accepted if k1 and k2 were SigTvs. This is correctly rejected in the second pass, though. Test case: polykinds/SigTvKinds3) Recall that the kind-checking pass exists solely to collect constraints on the kinds and to power unification. To achieve the use of SigTvs, we must be careful to use specialized functions that produce SigTvs, not ordinary skolems. This is why we need kcExplicitTKBndrs and kcImplicitTKBndrs in TcHsType, separate from their tc... variants. The drawback of this approach is sometimes it will accept a definition that a (hypothetical) declarative specification would likely reject. As a general rule, we don't want to allow polymorphic recursion without a CUSK. Indeed, the whole point of CUSKs is to allow polymorphic recursion. Yet, the SigTvs approach allows a limited form of polymorphic recursion *without* a CUSK. To wit: data T a = forall k (b :: k). MkT (T b) Int (test case: dependent/should_compile/T14066a) Note that this is polymorphically recursive, with the recursive occurrence of T used at a kind other than a's kind. The approach outlined here accepts this definition, because this kind is still a kind variable (and so the SigTvs unify). Stepping back, I (Richard) have a hard time envisioning a way to describe exactly what declarations will be accepted and which will be rejected (without a CUSK). However, the accepted definitions are indeed well-kinded and any rejected definitions would be accepted with a CUSK, and so this wrinkle need not cause anyone to lose sleep. ************************************************************************ * * \subsection{Type checking} * * ************************************************************************ Note [Type checking recursive type and class declarations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ At this point we have completed *kind-checking* of a mutually recursive group of type/class decls (done in kcTyClGroup). However, we discarded the kind-checked types (eg RHSs of data type decls); note that kcTyClDecl returns (). There are two reasons: * It's convenient, because we don't have to rebuild a kinded HsDecl (a fairly elaborate type) * It's necessary, because after kind-generalisation, the TyCons/Classes may now be kind-polymorphic, and hence need to be given kind arguments. Example: data T f a = MkT (f a) (T f a) During kind-checking, we give T the kind T :: k1 -> k2 -> * and figure out constraints on k1, k2 etc. Then we generalise to get T :: forall k. (k->*) -> k -> * So now the (T f a) in the RHS must be elaborated to (T k f a). However, during tcTyClDecl of T (above) we will be in a recursive "knot". So we aren't allowed to look at the TyCon T itself; we are only allowed to put it (lazily) in the returned structures. But when kind-checking the RHS of T's decl, we *do* need to know T's kind (so that we can correctly elaboarate (T k f a). How can we get T's kind without looking at T? Delicate answer: during tcTyClDecl, we extend *Global* env with T -> ATyCon (the (not yet built) final TyCon for T) *Local* env with T -> ATcTyCon (TcTyCon with the polymorphic kind of T) Then: * During TcHsType.tcTyVar we look in the *local* env, to get the fully-known, not knot-tied TcTyCon for T. * Then, in TcHsSyn.zonkTcTypeToType (and zonkTcTyCon in particular) we look in the *global* env to get the TyCon. This fancy footwork (with two bindings for T) is only necessary for the TyCons or Classes of this recursive group. Earlier, finished groups, live in the global env only. See also Note [Kind checking recursive type and class declarations] Note [Kind checking recursive type and class declarations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Before we can type-check the decls, we must kind check them. This is done by establishing an "initial kind", which is a rather uninformed guess at a tycon's kind (by counting arguments, mainly) and then using this initial kind for recursive occurrences. The initial kind is stored in exactly the same way during kind-checking as it is during type-checking (Note [Type checking recursive type and class declarations]): in the *local* environment, with ATcTyCon. But we still must store *something* in the *global* environment. Even though we discard the result of kind-checking, we sometimes need to produce error messages. These error messages will want to refer to the tycons being checked, except that they don't exist yet, and it would be Terribly Annoying to get the error messages to refer back to HsSyn. So we create a TcTyCon and put it in the global env. This tycon can print out its name and knows its kind, but any other action taken on it will panic. Note that TcTyCons are *not* knot-tied, unlike the rather valid but knot-tied ones that occur during type-checking. Note [Declarations for wired-in things] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For wired-in things we simply ignore the declaration and take the wired-in information. That avoids complications. e.g. the need to make the data constructor worker name for a constraint tuple match the wired-in one -} tcTyClDecl :: RolesInfo -> LTyClDecl GhcRn -> TcM TyCon tcTyClDecl roles_info (L loc decl) | Just thing <- wiredInNameTyThing_maybe (tcdName decl) = case thing of -- See Note [Declarations for wired-in things] ATyCon tc -> return tc _ -> pprPanic "tcTyClDecl" (ppr thing) | otherwise = setSrcSpan loc $ tcAddDeclCtxt decl $ do { traceTc "---- tcTyClDecl ---- {" (ppr decl) ; tc <- tcTyClDecl1 Nothing roles_info decl ; traceTc "---- tcTyClDecl end ---- }" (ppr tc) ; return tc } -- "type family" declarations tcTyClDecl1 :: Maybe Class -> RolesInfo -> TyClDecl GhcRn -> TcM TyCon tcTyClDecl1 parent _roles_info (FamDecl { tcdFam = fd }) = tcFamDecl1 parent fd -- "type" synonym declaration tcTyClDecl1 _parent roles_info (SynDecl { tcdLName = L _ tc_name, tcdRhs = rhs }) = ASSERT( isNothing _parent ) tcTyClTyVars tc_name $ \ binders res_kind -> tcTySynRhs roles_info tc_name binders res_kind rhs -- "data/newtype" declaration tcTyClDecl1 _parent roles_info (DataDecl { tcdLName = L _ tc_name , tcdDataDefn = defn }) = ASSERT( isNothing _parent ) tcTyClTyVars tc_name $ \ tycon_binders res_kind -> tcDataDefn roles_info tc_name tycon_binders res_kind defn tcTyClDecl1 _parent roles_info (ClassDecl { tcdLName = L _ class_name , tcdCtxt = ctxt, tcdMeths = meths , tcdFDs = fundeps, tcdSigs = sigs , tcdATs = ats, tcdATDefs = at_defs }) = ASSERT( isNothing _parent ) do { clas <- fixM $ \ clas -> -- We need the knot because 'clas' is passed into tcClassATs tcTyClTyVars class_name $ \ binders res_kind -> do { MASSERT2( tcIsConstraintKind res_kind , ppr class_name $$ ppr res_kind ) ; traceTc "tcClassDecl 1" (ppr class_name $$ ppr binders) ; let tycon_name = class_name -- We use the same name roles = roles_info tycon_name -- for TyCon and Class ; ctxt' <- solveEqualities $ tcHsContext ctxt ; ctxt' <- zonkTcTypeToTypes emptyZonkEnv ctxt' -- Squeeze out any kind unification variables ; fds' <- mapM (addLocM tc_fundep) fundeps ; sig_stuff <- tcClassSigs class_name sigs meths ; at_stuff <- tcClassATs class_name clas ats at_defs ; mindef <- tcClassMinimalDef class_name sigs sig_stuff -- TODO: Allow us to distinguish between abstract class, -- and concrete class with no methods (maybe by -- specifying a trailing where or not ; sig_stuff' <- mapM zonkTcMethInfoToMethInfo sig_stuff -- this zonk is really just to squeeze out the TcTyCons -- and convert, e.g., Skolems to tyvars. We won't -- see any unfilled metavariables here. ; is_boot <- tcIsHsBootOrSig ; let body | is_boot, null ctxt', null at_stuff, null sig_stuff = Nothing | otherwise = Just (ctxt', at_stuff, sig_stuff', mindef) ; clas <- buildClass class_name binders roles fds' body ; traceTc "tcClassDecl" (ppr fundeps $$ ppr binders $$ ppr fds') ; return clas } ; return (classTyCon clas) } where tc_fundep (tvs1, tvs2) = do { tvs1' <- mapM (tcLookupTyVar . unLoc) tvs1 ; ; tvs2' <- mapM (tcLookupTyVar . unLoc) tvs2 ; ; return (tvs1', tvs2') } tcTyClDecl1 _ _ (XTyClDecl _) = panic "tcTyClDecl1" tcFamDecl1 :: Maybe Class -> FamilyDecl GhcRn -> TcM TyCon tcFamDecl1 parent (FamilyDecl { fdInfo = fam_info, fdLName = tc_lname@(L _ tc_name) , fdResultSig = L _ sig, fdTyVars = user_tyvars , fdInjectivityAnn = inj }) | DataFamily <- fam_info = tcTyClTyVars tc_name $ \ binders res_kind -> do { traceTc "data family:" (ppr tc_name) ; checkFamFlag tc_name -- Check the kind signature, if any. -- Data families might have a variable return kind. -- See See Note [Arity of data families] in FamInstEnv. ; (extra_binders, final_res_kind) <- tcDataKindSig binders res_kind ; checkTc (tcIsLiftedTypeKind final_res_kind || isJust (tcGetCastedTyVar_maybe final_res_kind)) (badKindSig False res_kind) ; tc_rep_name <- newTyConRepName tc_name ; let tycon = mkFamilyTyCon tc_name (binders `chkAppend` extra_binders) final_res_kind (resultVariableName sig) (DataFamilyTyCon tc_rep_name) parent NotInjective ; return tycon } | OpenTypeFamily <- fam_info = tcTyClTyVars tc_name $ \ binders res_kind -> do { traceTc "open type family:" (ppr tc_name) ; checkFamFlag tc_name ; inj' <- tcInjectivity binders inj ; let tycon = mkFamilyTyCon tc_name binders res_kind (resultVariableName sig) OpenSynFamilyTyCon parent inj' ; return tycon } | ClosedTypeFamily mb_eqns <- fam_info = -- Closed type families are a little tricky, because they contain the definition -- of both the type family and the equations for a CoAxiom. do { traceTc "Closed type family:" (ppr tc_name) -- the variables in the header scope only over the injectivity -- declaration but this is not involved here ; (inj', binders, res_kind) <- tcTyClTyVars tc_name $ \ binders res_kind -> do { inj' <- tcInjectivity binders inj ; return (inj', binders, res_kind) } ; checkFamFlag tc_name -- make sure we have -XTypeFamilies -- If Nothing, this is an abstract family in a hs-boot file; -- but eqns might be empty in the Just case as well ; case mb_eqns of Nothing -> return $ mkFamilyTyCon tc_name binders res_kind (resultVariableName sig) AbstractClosedSynFamilyTyCon parent inj' Just eqns -> do { -- Process the equations, creating CoAxBranches ; let tc_fam_tc = mkTcTyCon tc_name (ppr user_tyvars) binders res_kind [] ClosedTypeFamilyFlavour ; branches <- mapAndReportM (tcTyFamInstEqn tc_fam_tc Nothing) eqns -- Do not attempt to drop equations dominated by earlier -- ones here; in the case of mutual recursion with a data -- type, we get a knot-tying failure. Instead we check -- for this afterwards, in TcValidity.checkValidCoAxiom -- Example: tc265 -- Create a CoAxiom, with the correct src location. ; co_ax_name <- newFamInstAxiomName tc_lname [] ; let mb_co_ax | null eqns = Nothing -- mkBranchedCoAxiom fails on empty list | otherwise = Just (mkBranchedCoAxiom co_ax_name fam_tc branches) fam_tc = mkFamilyTyCon tc_name binders res_kind (resultVariableName sig) (ClosedSynFamilyTyCon mb_co_ax) parent inj' -- We check for instance validity later, when doing validity -- checking for the tycon. Exception: checking equations -- overlap done by dropDominatedAxioms ; return fam_tc } } | otherwise = panic "tcFamInst1" -- Silence pattern-exhaustiveness checker tcFamDecl1 _ (XFamilyDecl _) = panic "tcFamDecl1" -- | Maybe return a list of Bools that say whether a type family was declared -- injective in the corresponding type arguments. Length of the list is equal to -- the number of arguments (including implicit kind/coercion arguments). -- True on position -- N means that a function is injective in its Nth argument. False means it is -- not. tcInjectivity :: [TyConBinder] -> Maybe (LInjectivityAnn GhcRn) -> TcM Injectivity tcInjectivity _ Nothing = return NotInjective -- User provided an injectivity annotation, so for each tyvar argument we -- check whether a type family was declared injective in that argument. We -- return a list of Bools, where True means that corresponding type variable -- was mentioned in lInjNames (type family is injective in that argument) and -- False means that it was not mentioned in lInjNames (type family is not -- injective in that type variable). We also extend injectivity information to -- kind variables, so if a user declares: -- -- type family F (a :: k1) (b :: k2) = (r :: k3) | r -> a -- -- then we mark both `a` and `k1` as injective. -- NB: the return kind is considered to be *input* argument to a type family. -- Since injectivity allows to infer input arguments from the result in theory -- we should always mark the result kind variable (`k3` in this example) as -- injective. The reason is that result type has always an assigned kind and -- therefore we can always infer the result kind if we know the result type. -- But this does not seem to be useful in any way so we don't do it. (Another -- reason is that the implementation would not be straightforward.) tcInjectivity tcbs (Just (L loc (InjectivityAnn _ lInjNames))) = setSrcSpan loc $ do { let tvs = binderVars tcbs ; dflags <- getDynFlags ; checkTc (xopt LangExt.TypeFamilyDependencies dflags) (text "Illegal injectivity annotation" $$ text "Use TypeFamilyDependencies to allow this") ; inj_tvs <- mapM (tcLookupTyVar . unLoc) lInjNames ; inj_tvs <- mapM zonkTcTyVarToTyVar inj_tvs -- zonk the kinds ; let inj_ktvs = filterVarSet isTyVar $ -- no injective coercion vars closeOverKinds (mkVarSet inj_tvs) ; let inj_bools = map (`elemVarSet` inj_ktvs) tvs ; traceTc "tcInjectivity" (vcat [ ppr tvs, ppr lInjNames, ppr inj_tvs , ppr inj_ktvs, ppr inj_bools ]) ; return $ Injective inj_bools } tcTySynRhs :: RolesInfo -> Name -> [TyConBinder] -> Kind -> LHsType GhcRn -> TcM TyCon tcTySynRhs roles_info tc_name binders res_kind hs_ty = do { env <- getLclEnv ; traceTc "tc-syn" (ppr tc_name $$ ppr (tcl_env env)) ; rhs_ty <- solveEqualities $ tcCheckLHsType hs_ty res_kind ; rhs_ty <- zonkTcTypeToType emptyZonkEnv rhs_ty ; let roles = roles_info tc_name tycon = buildSynTyCon tc_name binders res_kind roles rhs_ty ; return tycon } tcDataDefn :: RolesInfo -> Name -> [TyConBinder] -> Kind -> HsDataDefn GhcRn -> TcM TyCon -- NB: not used for newtype/data instances (whether associated or not) tcDataDefn roles_info tc_name tycon_binders res_kind (HsDataDefn { dd_ND = new_or_data, dd_cType = cType , dd_ctxt = ctxt, dd_kindSig = mb_ksig , dd_cons = cons }) = do { tcg_env <- getGblEnv ; let hsc_src = tcg_src tcg_env ; (extra_bndrs, final_res_kind) <- tcDataKindSig tycon_binders res_kind ; unless (mk_permissive_kind hsc_src cons) $ checkTc (tcIsLiftedTypeKind final_res_kind) (badKindSig True res_kind) ; let final_bndrs = tycon_binders `chkAppend` extra_bndrs roles = roles_info tc_name ; stupid_tc_theta <- solveEqualities $ tcHsContext ctxt ; stupid_theta <- zonkTcTypeToTypes emptyZonkEnv stupid_tc_theta ; kind_signatures <- xoptM LangExt.KindSignatures -- Check that we don't use kind signatures without Glasgow extensions ; when (isJust mb_ksig) $ checkTc (kind_signatures) (badSigTyDecl tc_name) ; gadt_syntax <- dataDeclChecks tc_name new_or_data stupid_theta cons ; tycon <- fixM $ \ tycon -> do { let res_ty = mkTyConApp tycon (mkTyVarTys (binderVars final_bndrs)) ; data_cons <- tcConDecls tycon (final_bndrs, res_ty) cons ; tc_rhs <- mk_tc_rhs hsc_src tycon data_cons ; tc_rep_nm <- newTyConRepName tc_name ; return (mkAlgTyCon tc_name final_bndrs final_res_kind roles (fmap unLoc cType) stupid_theta tc_rhs (VanillaAlgTyCon tc_rep_nm) gadt_syntax) } ; traceTc "tcDataDefn" (ppr tc_name $$ ppr tycon_binders $$ ppr extra_bndrs) ; return tycon } where -- Abstract data types in hsig files can have arbitrary kinds, -- because they may be implemented by type synonyms -- (which themselves can have arbitrary kinds, not just *) mk_permissive_kind HsigFile [] = True mk_permissive_kind _ _ = False -- In hs-boot, a 'data' declaration with no constructors -- indicates a nominally distinct abstract data type. mk_tc_rhs HsBootFile _ [] = return AbstractTyCon mk_tc_rhs HsigFile _ [] -- ditto = return AbstractTyCon mk_tc_rhs _ tycon data_cons = case new_or_data of DataType -> return (mkDataTyConRhs data_cons) NewType -> ASSERT( not (null data_cons) ) mkNewTyConRhs tc_name tycon (head data_cons) tcDataDefn _ _ _ _ (XHsDataDefn _) = panic "tcDataDefn" {- ************************************************************************ * * Typechecking associated types (in class decls) (including the associated-type defaults) * * ************************************************************************ Note [Associated type defaults] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following is an example of associated type defaults: class C a where data D a type F a b :: * type F a b = [a] -- Default Note that we can get default definitions only for type families, not data families. -} tcClassATs :: Name -- The class name (not knot-tied) -> Class -- The class parent of this associated type -> [LFamilyDecl GhcRn] -- Associated types. -> [LTyFamDefltEqn GhcRn] -- Associated type defaults. -> TcM [ClassATItem] tcClassATs class_name cls ats at_defs = do { -- Complain about associated type defaults for non associated-types sequence_ [ failWithTc (badATErr class_name n) | n <- map at_def_tycon at_defs , not (n `elemNameSet` at_names) ] ; mapM tc_at ats } where at_def_tycon :: LTyFamDefltEqn GhcRn -> Name at_def_tycon (L _ eqn) = unLoc (feqn_tycon eqn) at_fam_name :: LFamilyDecl GhcRn -> Name at_fam_name (L _ decl) = unLoc (fdLName decl) at_names = mkNameSet (map at_fam_name ats) at_defs_map :: NameEnv [LTyFamDefltEqn GhcRn] -- Maps an AT in 'ats' to a list of all its default defs in 'at_defs' at_defs_map = foldr (\at_def nenv -> extendNameEnv_C (++) nenv (at_def_tycon at_def) [at_def]) emptyNameEnv at_defs tc_at at = do { fam_tc <- addLocM (tcFamDecl1 (Just cls)) at ; let at_defs = lookupNameEnv at_defs_map (at_fam_name at) `orElse` [] ; atd <- tcDefaultAssocDecl fam_tc at_defs ; return (ATI fam_tc atd) } ------------------------- tcDefaultAssocDecl :: TyCon -- ^ Family TyCon (not knot-tied) -> [LTyFamDefltEqn GhcRn] -- ^ Defaults -> TcM (Maybe (KnotTied Type, SrcSpan)) -- ^ Type checked RHS tcDefaultAssocDecl _ [] = return Nothing -- No default declaration tcDefaultAssocDecl _ (d1:_:_) = failWithTc (text "More than one default declaration for" <+> ppr (feqn_tycon (unLoc d1))) tcDefaultAssocDecl fam_tc [L loc (FamEqn { feqn_tycon = L _ tc_name , feqn_pats = hs_tvs , feqn_rhs = rhs })] | HsQTvs { hsq_ext = HsQTvsRn { hsq_implicit = imp_vars} , hsq_explicit = exp_vars } <- hs_tvs = -- See Note [Type-checking default assoc decls] setSrcSpan loc $ tcAddFamInstCtxt (text "default type instance") tc_name $ do { traceTc "tcDefaultAssocDecl" (ppr tc_name) ; let fam_tc_name = tyConName fam_tc fam_arity = length (tyConVisibleTyVars fam_tc) -- Kind of family check ; ASSERT( fam_tc_name == tc_name ) checkTc (isTypeFamilyTyCon fam_tc) (wrongKindOfFamily fam_tc) -- Arity check ; checkTc (exp_vars `lengthIs` fam_arity) (wrongNumberOfParmsErr fam_arity) -- Typecheck RHS ; let all_vars = imp_vars ++ map hsLTyVarName exp_vars pats = map hsLTyVarBndrToType exp_vars -- NB: Use tcFamTyPats, not tcTyClTyVars. The latter expects to get -- the LHsQTyVars used for declaring a tycon, but the names here -- are different. -- You might think we should pass in some ClsInstInfo, as we're looking -- at an associated type. But this would be wrong, because an associated -- type default LHS can mention *different* type variables than the -- enclosing class. So it's treated more as a freestanding beast. ; (pats', rhs_ty) <- tcFamTyPats fam_tc Nothing all_vars pats (kcTyFamEqnRhs Nothing rhs) $ \tvs pats rhs_kind -> do { rhs_ty <- solveEqualities $ tcCheckLHsType rhs rhs_kind -- Zonk the patterns etc into the Type world ; (ze, _) <- zonkTyBndrsX emptyZonkEnv tvs ; pats' <- zonkTcTypeToTypes ze pats ; rhs_ty' <- zonkTcTypeToType ze rhs_ty ; return (pats', rhs_ty') } -- See Note [Type-checking default assoc decls] ; case tcMatchTys pats' (mkTyVarTys (tyConTyVars fam_tc)) of Just subst -> return (Just (substTyUnchecked subst rhs_ty, loc) ) Nothing -> failWithTc (defaultAssocKindErr fam_tc) -- We check for well-formedness and validity later, -- in checkValidClass } tcDefaultAssocDecl _ [L _ (XFamEqn _)] = panic "tcDefaultAssocDecl" tcDefaultAssocDecl _ [L _ (FamEqn _ (L _ _) (XLHsQTyVars _) _ _)] = panic "tcDefaultAssocDecl" {- Note [Type-checking default assoc decls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this default declaration for an associated type class C a where type F (a :: k) b :: * type F x y = Proxy x -> y Note that the class variable 'a' doesn't scope over the default assoc decl (rather oddly I think), and (less oddly) neither does the second argument 'b' of the associated type 'F', or the kind variable 'k'. Instead, the default decl is treated more like a top-level type instance. However we store the default rhs (Proxy x -> y) in F's TyCon, using F's own type variables, so we need to convert it to (Proxy a -> b). We do this by calling tcMatchTys to match them up. This also ensures that x's kind matches a's and similarly for y and b. The error message isn't great, mind you. (Trac #11361 was caused by not doing a proper tcMatchTys here.) Recall also that the left-hand side of an associated type family default is always just variables -- no tycons here. Accordingly, the patterns used in the tcMatchTys won't actually be knot-tied, even though we're in the knot. This is too delicate for my taste, but it works. -} ------------------------- kcTyFamInstEqn :: TcTyCon -> LTyFamInstEqn GhcRn -> TcM () kcTyFamInstEqn tc_fam_tc (L loc (HsIB { hsib_ext = HsIBRn { hsib_vars = tv_names } , hsib_body = FamEqn { feqn_tycon = L _ eqn_tc_name , feqn_pats = pats , feqn_rhs = hs_ty }})) = setSrcSpan loc $ do { traceTc "kcTyFamInstEqn" (vcat [ text "tc_name =" <+> ppr eqn_tc_name , text "fam_tc =" <+> ppr tc_fam_tc <+> dcolon <+> ppr (tyConKind tc_fam_tc) , text "hsib_vars =" <+> ppr tv_names , text "feqn_pats =" <+> ppr pats ]) ; checkTc (fam_name == eqn_tc_name) (wrongTyFamName fam_name eqn_tc_name) -- this check reports an arity error instead of a kind error; easier for user ; checkTc (pats `lengthIs` vis_arity) $ wrongNumberOfParmsErr vis_arity ; kcFamTyPats tc_fam_tc tv_names pats $ \ rhs_kind -> discardResult $ kcTyFamEqnRhs Nothing hs_ty rhs_kind } where fam_name = tyConName tc_fam_tc vis_arity = length (tyConVisibleTyVars tc_fam_tc) kcTyFamInstEqn _ (L _ (XHsImplicitBndrs _)) = panic "kcTyFamInstEqn" kcTyFamInstEqn _ (L _ (HsIB _ (XFamEqn _))) = panic "kcTyFamInstEqn" -- Infer the kind of the type on the RHS of a type family eqn. Then use -- this kind to check the kind of the LHS of the equation. This is useful -- as the callback to tcFamTyPats. kcTyFamEqnRhs :: Maybe ClsInstInfo -> LHsType GhcRn -- ^ Eqn RHS -> TcKind -- ^ Inferred kind of left-hand side -> TcM ([TcType], TcKind) -- ^ New pats, inst'ed kind of left-hand side kcTyFamEqnRhs mb_clsinfo rhs_hs_ty lhs_ki = do { -- It's still possible the lhs_ki has some foralls. Instantiate these away. (new_pats, insted_lhs_ki) <- instantiateTyUntilN mb_kind_env 0 lhs_ki ; traceTc "kcTyFamEqnRhs" (vcat [ text "rhs_hs_ty =" <+> ppr rhs_hs_ty , text "lhs_ki =" <+> ppr lhs_ki , text "insted_lhs_ki =" <+> ppr insted_lhs_ki , text "new_pats =" <+> ppr new_pats ]) ; _ <- tcCheckLHsType rhs_hs_ty insted_lhs_ki ; return (new_pats, insted_lhs_ki) } where mb_kind_env = thdOf3 <$> mb_clsinfo tcTyFamInstEqn :: TcTyCon -> Maybe ClsInstInfo -> LTyFamInstEqn GhcRn -> TcM (KnotTied CoAxBranch) -- Needs to be here, not in TcInstDcls, because closed families -- (typechecked here) have TyFamInstEqns tcTyFamInstEqn fam_tc mb_clsinfo (L loc (HsIB { hsib_ext = HsIBRn { hsib_vars = tv_names } , hsib_body = FamEqn { feqn_tycon = L _ eqn_tc_name , feqn_pats = pats , feqn_rhs = hs_ty }})) = ASSERT( getName fam_tc == eqn_tc_name ) setSrcSpan loc $ tcFamTyPats fam_tc mb_clsinfo tv_names pats (kcTyFamEqnRhs mb_clsinfo hs_ty) $ \tvs pats res_kind -> do { rhs_ty <- solveEqualities $ tcCheckLHsType hs_ty res_kind ; (ze, tvs') <- zonkTyBndrsX emptyZonkEnv tvs ; pats' <- zonkTcTypeToTypes ze pats ; rhs_ty' <- zonkTcTypeToType ze rhs_ty ; traceTc "tcTyFamInstEqn" (ppr fam_tc <+> pprTyVars tvs') ; return (mkCoAxBranch tvs' [] pats' rhs_ty' (map (const Nominal) tvs') loc) } tcTyFamInstEqn _ _ (L _ (XHsImplicitBndrs _)) = panic "tcTyFamInstEqn" tcTyFamInstEqn _ _ (L _ (HsIB _ (XFamEqn _))) = panic "tcTyFamInstEqn" kcDataDefn :: Maybe (VarEnv Kind) -- ^ Possibly, instantiations for vars -- (associated types only) -> DataFamInstDecl GhcRn -> TcKind -- ^ the kind of the tycon applied to pats -> TcM ([TcType], TcKind) -- ^ the kind signature might force instantiation -- of the tycon; this returns any extra args and the inst'ed kind -- See Note [Instantiating a family tycon] -- Used for 'data instance' only -- Ordinary 'data' is handled by kcTyClDec kcDataDefn mb_kind_env (DataFamInstDecl { dfid_eqn = HsIB { hsib_body = FamEqn { feqn_tycon = fam_name , feqn_pats = pats , feqn_fixity = fixity , feqn_rhs = HsDataDefn { dd_ctxt = ctxt , dd_cons = cons , dd_kindSig = mb_kind } }}}) res_k = do { _ <- tcHsContext ctxt ; checkNoErrs $ mapM_ (wrapLocM kcConDecl) cons -- See Note [Failing early in kcDataDefn] ; exp_res_kind <- case mb_kind of Nothing -> return liftedTypeKind Just k -> tcLHsKindSig (DataKindCtxt (unLoc fam_name)) k -- The expected type might have a forall at the type. Normally, we -- can't skolemise in kinds because we don't have type-level lambda. -- But here, we're at the top-level of an instance declaration, so -- we actually have a place to put the regeneralised variables. -- Thus: skolemise away. cf. Inst.deeplySkolemise and TcUnify.tcSkolemise -- Examples in indexed-types/should_compile/T12369 ; let (tvs_to_skolemise, inner_res_kind) = tcSplitForAllTys exp_res_kind ; (skol_subst, tvs') <- tcInstSkolTyVars tvs_to_skolemise -- we don't need to do anything substantive with the tvs' because the -- quantifyTyVars in tcFamTyPats will catch them. ; let inner_res_kind' = substTyAddInScope skol_subst inner_res_kind tv_prs = zip (map tyVarName tvs_to_skolemise) tvs' skol_info = SigSkol InstDeclCtxt exp_res_kind tv_prs ; (ev_binds, (_, new_args, co)) <- solveEqualities $ checkConstraints skol_info tvs' [] $ checkExpectedKindX mb_kind_env pp_fam_app bogus_ty res_k inner_res_kind' ; let Pair lhs_ki rhs_ki = tcCoercionKind co ; when debugIsOn $ do { (_, ev_binds) <- zonkTcEvBinds emptyZonkEnv ev_binds ; MASSERT( isEmptyTcEvBinds ev_binds ) ; lhs_ki <- zonkTcType lhs_ki ; rhs_ki <- zonkTcType rhs_ki ; MASSERT( lhs_ki `tcEqType` rhs_ki ) } ; return (new_args, lhs_ki) } where bogus_ty = pprPanic "kcDataDefn" (ppr fam_name <+> ppr pats) pp_fam_app = pprFamInstLHS fam_name pats fixity (unLoc ctxt) mb_kind kcDataDefn _ (DataFamInstDecl (XHsImplicitBndrs _)) _ = panic "kcDataDefn" kcDataDefn _ (DataFamInstDecl (HsIB _ (FamEqn _ _ _ _ (XHsDataDefn _)))) _ = panic "kcDataDefn" kcDataDefn _ (DataFamInstDecl (HsIB _ (XFamEqn _))) _ = panic "kcDataDefn" {- Kind check type patterns and kind annotate the embedded type variables. type instance F [a] = rhs * Here we check that a type instance matches its kind signature, but we do not check whether there is a pattern for each type index; the latter check is only required for type synonym instances. Note [Instantiating a family tycon] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's possible that kind-checking the result of a family tycon applied to its patterns will instantiate the tycon further. For example, we might have type family F :: k where F = Int F = Maybe After checking (F :: forall k. k) (with no visible patterns), we still need to instantiate the k. With data family instances, this problem can be even more intricate, due to Note [Arity of data families] in FamInstEnv. See indexed-types/should_compile/T12369 for an example. So, the kind-checker must return both the new args (that is, Type (Type -> Type) for the equations above) and the instantiated kind. Because we don't need this information in the kind-checking phase of checking closed type families, we don't require these extra pieces of information in tc_fam_ty_pats. Note [Failing early in kcDataDefn] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We need to use checkNoErrs when calling kcConDecl. This is because kcConDecl calls tcConDecl, which checks that the return type of a GADT-like constructor is actually an instance of the type head. Without the checkNoErrs, potentially two bad things could happen: 1) Duplicate error messages, because tcConDecl will be called again during *type* checking (as opposed to kind checking) 2) If we just keep blindly forging forward after both kind checking and type checking, we can get a panic in rejigConRes. See Trac #8368. -} ----------------- kcFamTyPats :: TcTyCon -> [Name] -> HsTyPats GhcRn -> (TcKind -> TcM ()) -> TcM () kcFamTyPats tc_fam_tc tv_names arg_pats kind_checker = discardResult $ kcImplicitTKBndrs tv_names $ do { let loc = nameSrcSpan name lhs_fun = L loc (HsTyVar noExt NotPromoted (L loc name)) -- lhs_fun is for error messages only no_fun = pprPanic "kcFamTyPats" (ppr name) fun_kind = tyConKind tc_fam_tc ; (_, _, res_kind_out) <- tcInferApps typeLevelMode Nothing lhs_fun no_fun fun_kind arg_pats ; kind_checker res_kind_out } where name = tyConName tc_fam_tc tcFamTyPats :: TyCon -> Maybe ClsInstInfo -> [Name] -- Implicitly bound kind/type variable names -> HsTyPats GhcRn -- Type patterns -> (TcKind -> TcM ([TcType], TcKind)) -- kind-checker for RHS -- See Note [Instantiating a family tycon] -> ( [TcTyVar] -- Kind and type variables -> [TcType] -- Kind and type arguments -> TcKind -> TcM a) -- NB: You can use solveEqualities here. -> TcM a -- Check the type patterns of a type or data family instance -- type instance F = -- The 'tyvars' are the free type variables of pats -- -- NB: The family instance declaration may be an associated one, -- nested inside an instance decl, thus -- instance C [a] where -- type F [a] = ... -- In that case, the type variable 'a' will *already be in scope* -- (and, if C is poly-kinded, so will its kind parameter). tcFamTyPats fam_tc mb_clsinfo tv_names arg_pats kind_checker thing_inside = do { -- First, check the arity. -- If we wait until validity checking, we'll get kind -- errors below when an arity error will be much easier to -- understand. let should_check_arity | DataFamilyFlavour _ <- flav = False -- why not check data families? See [Arity of data families] in FamInstEnv | otherwise = True ; when should_check_arity $ checkTc (arg_pats `lengthIs` vis_arity) $ wrongNumberOfParmsErr vis_arity -- report only explicit arguments ; (fam_used_tvs, (typats, (more_typats, res_kind))) <- solveEqualities $ -- See Note [Constraints in patterns] tcImplicitQTKBndrs FamInstSkol tv_names $ -- See Note [Kind-checking tyvar binders for associated types] do { let loc = nameSrcSpan fam_name lhs_fun = L loc (HsTyVar noExt NotPromoted (L loc fam_name)) fun_ty = mkTyConApp fam_tc [] fun_kind = tyConKind fam_tc mb_kind_env = thdOf3 <$> mb_clsinfo ; (_, args, res_kind_out) <- tcInferApps typeLevelMode mb_kind_env lhs_fun fun_ty fun_kind arg_pats ; stuff <- kind_checker res_kind_out ; return (args, stuff) } {- TODO (RAE): This should be cleverer. Consider this: type family F a data G a where MkG :: F a ~ Bool => G a type family Foo (x :: G a) :: F a type instance Foo MkG = False This should probably be accepted. Yet the solveEqualities will fail, unable to solve (F a ~ Bool) We want to quantify over that proof. But see Note [Constraints in patterns] below, which is missing this piece. -} -- Find free variables (after zonking) and turn -- them into skolems, so that we don't subsequently -- replace a meta kind var with (Any *) -- Very like kindGeneralize ; let all_pats = typats `chkAppend` more_typats ; vars <- zonkTcTypesAndSplitDepVars all_pats ; qtkvs <- quantifyTyVars emptyVarSet vars ; when debugIsOn $ do { all_pats <- mapM zonkTcType all_pats ; MASSERT2( isEmptyVarSet $ coVarsOfTypes all_pats, ppr all_pats ) } -- This should be the case, because otherwise the solveEqualities -- above would fail. TODO (RAE): Update once the solveEqualities -- bit is cleverer. ; traceTc "tcFamTyPats" (ppr (getName fam_tc) $$ ppr all_pats $$ ppr qtkvs) -- See Note [Free-floating kind vars] in TcHsType ; let all_mentioned_tvs = mkVarSet qtkvs -- qtkvs has all the tyvars bound by LHS -- type patterns unmentioned_tvs = filterOut (`elemVarSet` all_mentioned_tvs) fam_used_tvs -- If there are tyvars left over, we can -- assume they're free-floating, since they -- aren't bound by a type pattern ; checkNoErrs $ reportFloatingKvs fam_name flav qtkvs unmentioned_tvs ; scopeTyVars FamInstSkol qtkvs $ -- Extend envt with TcTyVars not TyVars, because the -- kind checking etc done by thing_inside does not expect -- to encounter TyVars; it expects TcTyVars thing_inside qtkvs all_pats res_kind } where fam_name = tyConName fam_tc flav = tyConFlavour fam_tc vis_arity = length (tyConVisibleTyVars fam_tc) {- Note [Constraints in patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NB: This isn't the whole story. See comment in tcFamTyPats. At first glance, it seems there is a complicated story to tell in tcFamTyPats around constraint solving. After all, type family patterns can now do GADT pattern-matching, which is jolly complicated. But, there's a key fact which makes this all simple: everything is at top level! There cannot be untouchable type variables. There can't be weird interaction between case branches. There can't be global skolems. This means that the semantics of type-level GADT matching is a little different than term level. If we have data G a where MkGBool :: G Bool And then type family F (a :: G k) :: k type instance F MkGBool = True we get axF : F Bool (MkGBool ) ~ True Simple! No casting on the RHS, because we can affect the kind parameter to F. If we ever introduce local type families, this all gets a lot more complicated, and will end up looking awfully like term-level GADT pattern-matching. ** The new story ** Here is really what we want: The matcher really can't deal with covars in arbitrary spots in coercions. But it can deal with covars that are arguments to GADT data constructors. So we somehow want to allow covars only in precisely those spots, then use them as givens when checking the RHS. TODO (RAE): Implement plan. Note [Quantifying over family patterns] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We need to quantify over two different lots of kind variables: First, the ones that come from the kinds of the tyvar args of tcTyVarBndrsKindGen, as usual data family Dist a -- Proxy :: forall k. k -> * data instance Dist (Proxy a) = DP -- Generates data DistProxy = DP -- ax8 k (a::k) :: Dist * (Proxy k a) ~ DistProxy k a -- The 'k' comes from the tcTyVarBndrsKindGen (a::k) Second, the ones that come from the kind argument of the type family which we pick up using the (tyCoVarsOfTypes typats) in the result of the thing_inside of tcHsTyvarBndrsGen. -- Any :: forall k. k data instance Dist Any = DA -- Generates data DistAny k = DA -- ax7 k :: Dist k (Any k) ~ DistAny k -- The 'k' comes from kindGeneralizeKinds (Any k) Note [Quantified kind variables of a family pattern] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider type family KindFam (p :: k1) (q :: k1) data T :: Maybe k1 -> k2 -> * type instance KindFam (a :: Maybe k) b = T a b -> Int The HsBSig for the family patterns will be ([k], [a]) Then in the family instance we want to * Bring into scope [ "k" -> k:*, "a" -> a:k ] * Kind-check the RHS * Quantify the type instance over k and k', as well as a,b, thus type instance [k, k', a:Maybe k, b:k'] KindFam (Maybe k) k' a b = T k k' a b -> Int Notice that in the third step we quantify over all the visibly-mentioned type variables (a,b), but also over the implicitly mentioned kind variables (k, k'). In this case one is bound explicitly but often there will be none. The role of the kind signature (a :: Maybe k) is to add a constraint that 'a' must have that kind, and to bring 'k' into scope. ************************************************************************ * * Data types * * ************************************************************************ -} dataDeclChecks :: Name -> NewOrData -> ThetaType -> [LConDecl GhcRn] -> TcM Bool dataDeclChecks tc_name new_or_data stupid_theta cons = do { -- Check that we don't use GADT syntax in H98 world gadtSyntax_ok <- xoptM LangExt.GADTSyntax ; let gadt_syntax = consUseGadtSyntax cons ; checkTc (gadtSyntax_ok || not gadt_syntax) (badGadtDecl tc_name) -- Check that the stupid theta is empty for a GADT-style declaration ; checkTc (null stupid_theta || not gadt_syntax) (badStupidTheta tc_name) -- Check that a newtype has exactly one constructor -- Do this before checking for empty data decls, so that -- we don't suggest -XEmptyDataDecls for newtypes ; checkTc (new_or_data == DataType || isSingleton cons) (newtypeConError tc_name (length cons)) -- Check that there's at least one condecl, -- or else we're reading an hs-boot file, or -XEmptyDataDecls ; empty_data_decls <- xoptM LangExt.EmptyDataDecls ; is_boot <- tcIsHsBootOrSig -- Are we compiling an hs-boot file? ; checkTc (not (null cons) || empty_data_decls || is_boot) (emptyConDeclsErr tc_name) ; return gadt_syntax } ----------------------------------- consUseGadtSyntax :: [LConDecl a] -> Bool consUseGadtSyntax (L _ (ConDeclGADT { }) : _) = True consUseGadtSyntax _ = False -- All constructors have same shape ----------------------------------- tcConDecls :: KnotTied TyCon -> ([KnotTied TyConBinder], KnotTied Type) -> [LConDecl GhcRn] -> TcM [DataCon] -- Why both the tycon tyvars and binders? Because the tyvars -- have all the names and the binders have the visibilities. tcConDecls rep_tycon (tmpl_bndrs, res_tmpl) = concatMapM $ addLocM $ tcConDecl rep_tycon (mkTyConTagMap rep_tycon) tmpl_bndrs res_tmpl -- It's important that we pay for tag allocation here, once per TyCon, -- See Note [Constructor tag allocation], fixes #14657 tcConDecl :: KnotTied TyCon -- Representation tycon. Knot-tied! -> NameEnv ConTag -> [KnotTied TyConBinder] -> KnotTied Type -- Return type template (with its template tyvars) -- (tvs, T tys), where T is the family TyCon -> ConDecl GhcRn -> TcM [DataCon] tcConDecl rep_tycon tag_map tmpl_bndrs res_tmpl (ConDeclH98 { con_name = name , con_ex_tvs = explicit_tkv_nms , con_mb_cxt = hs_ctxt , con_args = hs_args }) = addErrCtxt (dataConCtxtName [name]) $ do { -- Get hold of the existential type variables -- e.g. data T a = forall k (b::k) f. MkT a (f b) -- Here tmpl_bndrs = {a} -- hs_qvars = HsQTvs { hsq_implicit = {k} -- , hsq_explicit = {f,b} } ; traceTc "tcConDecl 1" (vcat [ ppr name, ppr explicit_tkv_nms ]) ; (exp_tvs, (ctxt, arg_tys, field_lbls, stricts)) <- solveEqualities $ tcExplicitTKBndrs skol_info explicit_tkv_nms $ do { ctxt <- tcHsMbContext hs_ctxt ; btys <- tcConArgs hs_args ; field_lbls <- lookupConstructorFields (unLoc name) ; let (arg_tys, stricts) = unzip btys ; return (ctxt, arg_tys, field_lbls, stricts) } -- exp_tvs have explicit, user-written binding sites -- the kvs below are those kind variables entirely unmentioned by the user -- and discovered only by generalization ; kvs <- quantifyConDecl (mkVarSet (binderVars tmpl_bndrs)) (mkSpecForAllTys exp_tvs $ mkFunTys ctxt $ mkFunTys arg_tys $ unitTy) -- That type is a lie, of course. (It shouldn't end in ()!) -- And we could construct a proper result type from the info -- at hand. But the result would mention only the tmpl_tvs, -- and so it just creates more work to do it right. Really, -- we're doing this to get the right behavior around removing -- any vars bound in exp_binders. -- Zonk to Types ; (ze, qkvs) <- zonkTyBndrsX emptyZonkEnv kvs ; (ze, user_qtvs) <- zonkTyBndrsX ze exp_tvs ; arg_tys <- zonkTcTypeToTypes ze arg_tys ; ctxt <- zonkTcTypeToTypes ze ctxt ; fam_envs <- tcGetFamInstEnvs -- Can't print univ_tvs, arg_tys etc, because we are inside the knot here ; traceTc "tcConDecl 2" (ppr name $$ ppr field_lbls) ; let univ_tvbs = tyConTyVarBinders tmpl_bndrs univ_tvs = binderVars univ_tvbs ex_tvbs = mkTyVarBinders Inferred qkvs ++ mkTyVarBinders Specified user_qtvs ex_tvs = qkvs ++ user_qtvs -- For H98 datatypes, the user-written tyvar binders are precisely -- the universals followed by the existentials. -- See Note [DataCon user type variable binders] in DataCon. user_tvbs = univ_tvbs ++ ex_tvbs buildOneDataCon (L _ name) = do { is_infix <- tcConIsInfixH98 name hs_args ; rep_nm <- newTyConRepName name ; buildDataCon fam_envs name is_infix rep_nm stricts Nothing field_lbls univ_tvs ex_tvs user_tvbs [{- no eq_preds -}] ctxt arg_tys res_tmpl rep_tycon tag_map -- NB: we put data_tc, the type constructor gotten from the -- constructor type signature into the data constructor; -- that way checkValidDataCon can complain if it's wrong. } ; traceTc "tcConDecl 2" (ppr name) ; mapM buildOneDataCon [name] } where skol_info = SigTypeSkol (ConArgCtxt (unLoc name)) tcConDecl rep_tycon tag_map tmpl_bndrs res_tmpl (ConDeclGADT { con_names = names , con_qvars = qtvs , con_mb_cxt = cxt, con_args = hs_args , con_res_ty = res_ty }) | HsQTvs { hsq_ext = HsQTvsRn { hsq_implicit = implicit_tkv_nms } , hsq_explicit = explicit_tkv_nms } <- qtvs = addErrCtxt (dataConCtxtName names) $ do { traceTc "tcConDecl 1" (ppr names) ; let (L _ name : _) = names skol_info = DataConSkol name ; (imp_tvs, (exp_tvs, (ctxt, arg_tys, res_ty, field_lbls, stricts))) <- solveEqualities $ tcImplicitTKBndrs skol_info implicit_tkv_nms $ tcExplicitTKBndrs skol_info explicit_tkv_nms $ do { ctxt <- tcHsMbContext cxt ; btys <- tcConArgs hs_args ; res_ty' <- tcHsLiftedType res_ty ; field_lbls <- lookupConstructorFields name ; let (arg_tys, stricts) = unzip btys ; return (ctxt, arg_tys, res_ty', field_lbls, stricts) } ; let user_tvs = imp_tvs ++ exp_tvs ; tkvs <- quantifyConDecl emptyVarSet (mkSpecForAllTys user_tvs $ mkFunTys ctxt $ mkFunTys arg_tys $ res_ty) -- Zonk to Types ; (ze, tkvs) <- zonkTyBndrsX emptyZonkEnv tkvs ; (ze, user_tvs) <- zonkTyBndrsX ze user_tvs ; arg_tys <- zonkTcTypeToTypes ze arg_tys ; ctxt <- zonkTcTypeToTypes ze ctxt ; res_ty <- zonkTcTypeToType ze res_ty ; let (univ_tvs, ex_tvs, tkvs', user_tvs', eq_preds, arg_subst) = rejigConRes tmpl_bndrs res_tmpl tkvs user_tvs res_ty -- NB: this is a /lazy/ binding, so we pass six thunks to -- buildDataCon without yet forcing the guards in rejigConRes -- See Note [Checking GADT return types] -- Compute the user-written tyvar binders. These have the same -- tyvars as univ_tvs/ex_tvs, but perhaps in a different order. -- See Note [DataCon user type variable binders] in DataCon. tkv_bndrs = mkTyVarBinders Inferred tkvs' user_tv_bndrs = mkTyVarBinders Specified user_tvs' all_user_bndrs = tkv_bndrs ++ user_tv_bndrs ctxt' = substTys arg_subst ctxt arg_tys' = substTys arg_subst arg_tys res_ty' = substTy arg_subst res_ty ; fam_envs <- tcGetFamInstEnvs -- Can't print univ_tvs, arg_tys etc, because we are inside the knot here ; traceTc "tcConDecl 2" (ppr names $$ ppr field_lbls) ; let buildOneDataCon (L _ name) = do { is_infix <- tcConIsInfixGADT name hs_args ; rep_nm <- newTyConRepName name ; buildDataCon fam_envs name is_infix rep_nm stricts Nothing field_lbls univ_tvs ex_tvs all_user_bndrs eq_preds ctxt' arg_tys' res_ty' rep_tycon tag_map -- NB: we put data_tc, the type constructor gotten from the -- constructor type signature into the data constructor; -- that way checkValidDataCon can complain if it's wrong. } ; traceTc "tcConDecl 2" (ppr names) ; mapM buildOneDataCon names } tcConDecl _ _ _ _ (ConDeclGADT _ _ _ (XLHsQTyVars _) _ _ _ _) = panic "tcConDecl" tcConDecl _ _ _ _ (XConDecl _) = panic "tcConDecl" -- | Produce the telescope of kind variables that this datacon is -- implicitly quantified over. Incoming type need not be zonked. quantifyConDecl :: TcTyCoVarSet -- outer tvs, not to be quantified over; zonked -> TcType -> TcM [TcTyVar] quantifyConDecl gbl_tvs ty = do { ty <- zonkTcType ty ; let fvs = candidateQTyVarsOfType ty ; quantifyTyVars gbl_tvs fvs } tcConIsInfixH98 :: Name -> HsConDetails (LHsType GhcRn) (Located [LConDeclField GhcRn]) -> TcM Bool tcConIsInfixH98 _ details = case details of InfixCon {} -> return True _ -> return False tcConIsInfixGADT :: Name -> HsConDetails (LHsType GhcRn) (Located [LConDeclField GhcRn]) -> TcM Bool tcConIsInfixGADT con details = case details of InfixCon {} -> return True RecCon {} -> return False PrefixCon arg_tys -- See Note [Infix GADT constructors] | isSymOcc (getOccName con) , [_ty1,_ty2] <- arg_tys -> do { fix_env <- getFixityEnv ; return (con `elemNameEnv` fix_env) } | otherwise -> return False tcConArgs :: HsConDeclDetails GhcRn -> TcM [(TcType, HsSrcBang)] tcConArgs (PrefixCon btys) = mapM tcConArg btys tcConArgs (InfixCon bty1 bty2) = do { bty1' <- tcConArg bty1 ; bty2' <- tcConArg bty2 ; return [bty1', bty2'] } tcConArgs (RecCon fields) = mapM tcConArg btys where -- We need a one-to-one mapping from field_names to btys combined = map (\(L _ f) -> (cd_fld_names f,cd_fld_type f)) (unLoc fields) explode (ns,ty) = zip ns (repeat ty) exploded = concatMap explode combined (_,btys) = unzip exploded tcConArg :: LHsType GhcRn -> TcM (TcType, HsSrcBang) tcConArg bty = do { traceTc "tcConArg 1" (ppr bty) ; arg_ty <- tcHsOpenType (getBangType bty) -- Newtypes can't have unboxed types, but we check -- that in checkValidDataCon; this tcConArg stuff -- doesn't happen for GADT-style declarations ; traceTc "tcConArg 2" (ppr bty) ; return (arg_ty, getBangStrictness bty) } {- Note [Infix GADT constructors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We do not currently have syntax to declare an infix constructor in GADT syntax, but it makes a (small) difference to the Show instance. So as a slightly ad-hoc solution, we regard a GADT data constructor as infix if a) it is an operator symbol b) it has two arguments c) there is a fixity declaration for it For example: infix 6 (:--:) data T a where (:--:) :: t1 -> t2 -> T Int Note [Checking GADT return types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There is a delicacy around checking the return types of a datacon. The central problem is dealing with a declaration like data T a where MkT :: T a -> Q a Note that the return type of MkT is totally bogus. When creating the T tycon, we also need to create the MkT datacon, which must have a "rejigged" return type. That is, the MkT datacon's type must be transformed to have a uniform return type with explicit coercions for GADT-like type parameters. This rejigging is what rejigConRes does. The problem is, though, that checking that the return type is appropriate is much easier when done over *Type*, not *HsType*, and doing a call to tcMatchTy will loop because T isn't fully defined yet. So, we want to make rejigConRes lazy and then check the validity of the return type in checkValidDataCon. To do this we /always/ return a 6-tuple from rejigConRes (so that we can compute the return type from it, which checkValidDataCon needs), but the first three fields may be bogus if the return type isn't valid (the last equation for rejigConRes). This is better than an earlier solution which reduced the number of errors reported in one pass. See Trac #7175, and #10836. -} -- Example -- data instance T (b,c) where -- TI :: forall e. e -> T (e,e) -- -- The representation tycon looks like this: -- data :R7T b c where -- TI :: forall b1 c1. (b1 ~ c1) => b1 -> :R7T b1 c1 -- In this case orig_res_ty = T (e,e) rejigConRes :: [KnotTied TyConBinder] -> KnotTied Type -- Template for result type; e.g. -- data instance T [a] b c ... -- gives template ([a,b,c], T [a] b c) -- Type must be of kind *! -> [TyVar] -- The constructor's user-written, inferred -- type variables -> [TyVar] -- The constructor's user-written, specified -- type variables -> KnotTied Type -- res_ty type must be of kind * -> ([TyVar], -- Universal [TyVar], -- Existential (distinct OccNames from univs) [TyVar], -- The constructor's rejigged, user-written, -- inferred type variables [TyVar], -- The constructor's rejigged, user-written, -- specified type variables [EqSpec], -- Equality predicates TCvSubst) -- Substitution to apply to argument types -- We don't check that the TyCon given in the ResTy is -- the same as the parent tycon, because checkValidDataCon will do it -- NB: All arguments may potentially be knot-tied rejigConRes tmpl_bndrs res_tmpl dc_inferred_tvs dc_specified_tvs res_ty -- E.g. data T [a] b c where -- MkT :: forall x y z. T [(x,y)] z z -- The {a,b,c} are the tmpl_tvs, and the {x,y,z} are the dc_tvs -- (NB: unlike the H98 case, the dc_tvs are not all existential) -- Then we generate -- Univ tyvars Eq-spec -- a a~(x,y) -- b b~z -- z -- Existentials are the leftover type vars: [x,y] -- The user-written type variables are what is listed in the forall: -- [x, y, z] (all specified). We must rejig these as well. -- See Note [DataCon user type variable binders] in DataCon. -- So we return ( [a,b,z], [x,y] -- , [], [x,y,z] -- , [a~(x,y),b~z], ) | Just subst <- ASSERT( isLiftedTypeKind (typeKind res_ty) ) ASSERT( isLiftedTypeKind (typeKind res_tmpl) ) tcMatchTy res_tmpl res_ty = let (univ_tvs, raw_eqs, kind_subst) = mkGADTVars tmpl_tvs dc_tvs subst raw_ex_tvs = dc_tvs `minusList` univ_tvs (arg_subst, substed_ex_tvs) = substTyVarBndrs kind_subst raw_ex_tvs -- After rejigging the existential tyvars, the resulting substitution -- gives us exactly what we need to rejig the user-written tyvars, -- since the dcUserTyVarBinders invariant guarantees that the -- substitution has *all* the tyvars in its domain. -- See Note [DataCon user type variable binders] in DataCon. subst_user_tvs = map (getTyVar "rejigConRes" . substTyVar arg_subst) substed_inferred_tvs = subst_user_tvs dc_inferred_tvs substed_specified_tvs = subst_user_tvs dc_specified_tvs substed_eqs = map (substEqSpec arg_subst) raw_eqs in (univ_tvs, substed_ex_tvs, substed_inferred_tvs, substed_specified_tvs, substed_eqs, arg_subst) | otherwise -- If the return type of the data constructor doesn't match the parent -- type constructor, or the arity is wrong, the tcMatchTy will fail -- e.g data T a b where -- T1 :: Maybe a -- Wrong tycon -- T2 :: T [a] -- Wrong arity -- We are detect that later, in checkValidDataCon, but meanwhile -- we must do *something*, not just crash. So we do something simple -- albeit bogus, relying on checkValidDataCon to check the -- bad-result-type error before seeing that the other fields look odd -- See Note [Checking GADT return types] = (tmpl_tvs, dc_tvs `minusList` tmpl_tvs, dc_inferred_tvs, dc_specified_tvs, [], emptyTCvSubst) where dc_tvs = dc_inferred_tvs ++ dc_specified_tvs tmpl_tvs = binderVars tmpl_bndrs {- Note [mkGADTVars] ~~~~~~~~~~~~~~~~~~~~ Running example: data T (k1 :: *) (k2 :: *) (a :: k2) (b :: k2) where MkT :: forall (x1 : *) (y :: x1) (z :: *). T x1 * (Proxy (y :: x1), z) z We need the rejigged type to be MkT :: forall (x1 :: *) (k2 :: *) (a :: k2) (b :: k2). forall (y :: x1) (z :: *). (k2 ~ *, a ~ (Proxy x1 y, z), b ~ z) => T x1 k2 a b You might naively expect that z should become a universal tyvar, not an existential. (After all, x1 becomes a universal tyvar.) But z has kind * while b has kind k2, so the return type T x1 k2 a z is ill-kinded. Another way to say it is this: the universal tyvars must have exactly the same kinds as the tyConTyVars. So we need an existential tyvar and a heterogeneous equality constraint. (The b ~ z is a bit redundant with the k2 ~ * that comes before in that b ~ z implies k2 ~ *. I'm sure we could do some analysis that could eliminate k2 ~ *. But we don't do this yet.) The data con signature has already been fully kind-checked. The return type T x1 * (Proxy (y :: x1), z) z becomes qtkvs = [x1 :: *, y :: x1, z :: *] res_tmpl = T x1 * (Proxy x1 y, z) z We start off by matching (T k1 k2 a b) with (T x1 * (Proxy x1 y, z) z). We know this match will succeed because of the validity check (actually done later, but laziness saves us -- see Note [Checking GADT return types]). Thus, we get subst := { k1 |-> x1, k2 |-> *, a |-> (Proxy x1 y, z), b |-> z } Now, we need to figure out what the GADT equalities should be. In this case, we *don't* want (k1 ~ x1) to be a GADT equality: it should just be a renaming. The others should be GADT equalities. We also need to make sure that the universally-quantified variables of the datacon match up with the tyvars of the tycon, as required for Core context well-formedness. (This last bit is why we have to rejig at all!) `choose` walks down the tycon tyvars, figuring out what to do with each one. It carries two substitutions: - t_sub's domain is *template* or *tycon* tyvars, mapping them to variables mentioned in the datacon signature. - r_sub's domain is *result* tyvars, names written by the programmer in the datacon signature. The final rejigged type will use these names, but the subst is still needed because sometimes the printed name of these variables is different. (See choose_tv_name, below.) Before explaining the details of `choose`, let's just look at its operation on our example: choose [] [] {} {} [k1, k2, a, b] --> -- first branch of `case` statement choose univs: [x1 :: *] eq_spec: [] t_sub: {k1 |-> x1} r_sub: {x1 |-> x1} t_tvs: [k2, a, b] --> -- second branch of `case` statement choose univs: [k2 :: *, x1 :: *] eq_spec: [k2 ~ *] t_sub: {k1 |-> x1, k2 |-> k2} r_sub: {x1 |-> x1} t_tvs: [a, b] --> -- second branch of `case` statement choose univs: [a :: k2, k2 :: *, x1 :: *] eq_spec: [ a ~ (Proxy x1 y, z) , k2 ~ * ] t_sub: {k1 |-> x1, k2 |-> k2, a |-> a} r_sub: {x1 |-> x1} t_tvs: [b] --> -- second branch of `case` statement choose univs: [b :: k2, a :: k2, k2 :: *, x1 :: *] eq_spec: [ b ~ z , a ~ (Proxy x1 y, z) , k2 ~ * ] t_sub: {k1 |-> x1, k2 |-> k2, a |-> a, b |-> z} r_sub: {x1 |-> x1} t_tvs: [] --> -- end of recursion ( [x1 :: *, k2 :: *, a :: k2, b :: k2] , [k2 ~ *, a ~ (Proxy x1 y, z), b ~ z] , {x1 |-> x1} ) `choose` looks up each tycon tyvar in the matching (it *must* be matched!). * If it finds a bare result tyvar (the first branch of the `case` statement), it checks to make sure that the result tyvar isn't yet in the list of univ_tvs. If it is in that list, then we have a repeated variable in the return type, and we in fact need a GADT equality. * It then checks to make sure that the kind of the result tyvar matches the kind of the template tyvar. This check is what forces `z` to be existential, as it should be, explained above. * Assuming no repeated variables or kind-changing, we wish to use the variable name given in the datacon signature (that is, `x1` not `k1`), not the tycon signature (which may have been made up by GHC). So, we add a mapping from the tycon tyvar to the result tyvar to t_sub. * If we discover that a mapping in `subst` gives us a non-tyvar (the second branch of the `case` statement), then we have a GADT equality to create. We create a fresh equality, but we don't extend any substitutions. The template variable substitution is meant for use in universal tyvar kinds, and these shouldn't be affected by any GADT equalities. This whole algorithm is quite delicate, indeed. I (Richard E.) see two ways of simplifying it: 1) The first branch of the `case` statement is really an optimization, used in order to get fewer GADT equalities. It might be possible to make a GADT equality for *every* univ. tyvar, even if the equality is trivial, and then either deal with the bigger type or somehow reduce it later. 2) This algorithm strives to use the names for type variables as specified by the user in the datacon signature. If we always used the tycon tyvar names, for example, this would be simplified. This change would almost certainly degrade error messages a bit, though. -} -- ^ From information about a source datacon definition, extract out -- what the universal variables and the GADT equalities should be. -- See Note [mkGADTVars]. mkGADTVars :: [TyVar] -- ^ The tycon vars -> [TyVar] -- ^ The datacon vars -> TCvSubst -- ^ The matching between the template result type -- and the actual result type -> ( [TyVar] , [EqSpec] , TCvSubst ) -- ^ The univ. variables, the GADT equalities, -- and a subst to apply to the GADT equalities -- and existentials. mkGADTVars tmpl_tvs dc_tvs subst = choose [] [] empty_subst empty_subst tmpl_tvs where in_scope = mkInScopeSet (mkVarSet tmpl_tvs `unionVarSet` mkVarSet dc_tvs) `unionInScope` getTCvInScope subst empty_subst = mkEmptyTCvSubst in_scope choose :: [TyVar] -- accumulator of univ tvs, reversed -> [EqSpec] -- accumulator of GADT equalities, reversed -> TCvSubst -- template substitution -> TCvSubst -- res. substitution -> [TyVar] -- template tvs (the univ tvs passed in) -> ( [TyVar] -- the univ_tvs , [EqSpec] -- GADT equalities , TCvSubst ) -- a substitution to fix kinds in ex_tvs choose univs eqs _t_sub r_sub [] = (reverse univs, reverse eqs, r_sub) choose univs eqs t_sub r_sub (t_tv:t_tvs) | Just r_ty <- lookupTyVar subst t_tv = case getTyVar_maybe r_ty of Just r_tv | not (r_tv `elem` univs) , tyVarKind r_tv `eqType` (substTy t_sub (tyVarKind t_tv)) -> -- simple, well-kinded variable substitution. choose (r_tv:univs) eqs (extendTvSubst t_sub t_tv r_ty') (extendTvSubst r_sub r_tv r_ty') t_tvs where r_tv1 = setTyVarName r_tv (choose_tv_name r_tv t_tv) r_ty' = mkTyVarTy r_tv1 -- Not a simple substitution: make an equality predicate _ -> choose (t_tv':univs) (mkEqSpec t_tv' r_ty : eqs) (extendTvSubst t_sub t_tv (mkTyVarTy t_tv')) -- We've updated the kind of t_tv, -- so add it to t_sub (Trac #14162) r_sub t_tvs where t_tv' = updateTyVarKind (substTy t_sub) t_tv | otherwise = pprPanic "mkGADTVars" (ppr tmpl_tvs $$ ppr subst) -- choose an appropriate name for a univ tyvar. -- This *must* preserve the Unique of the result tv, so that we -- can detect repeated variables. It prefers user-specified names -- over system names. A result variable with a system name can -- happen with GHC-generated implicit kind variables. choose_tv_name :: TyVar -> TyVar -> Name choose_tv_name r_tv t_tv | isSystemName r_tv_name = setNameUnique t_tv_name (getUnique r_tv_name) | otherwise = r_tv_name where r_tv_name = getName r_tv t_tv_name = getName t_tv {- Note [Substitution in template variables kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ data G (a :: Maybe k) where MkG :: G Nothing With explicit kind variables data G k (a :: Maybe k) where MkG :: G k1 (Nothing k1) Note how k1 is distinct from k. So, when we match the template `G k a` against `G k1 (Nothing k1)`, we get a subst [ k |-> k1, a |-> Nothing k1 ]. Even though this subst has two mappings, we surely don't want to add (k, k1) to the list of GADT equalities -- that would be overly complex and would create more untouchable variables than we need. So, when figuring out which tyvars are GADT-like and which aren't (the fundamental job of `choose`), we want to treat `k` as *not* GADT-like. Instead, we wish to substitute in `a`'s kind, to get (a :: Maybe k1) instead of (a :: Maybe k). This is the reason for dealing with a substitution in here. However, we do not *always* want to substitute. Consider data H (a :: k) where MkH :: H Int With explicit kind variables: data H k (a :: k) where MkH :: H * Int Here, we have a kind-indexed GADT. The subst in question is [ k |-> *, a |-> Int ]. Now, we *don't* want to substitute in `a`'s kind, because that would give a constructor with the type MkH :: forall (k :: *) (a :: *). (k ~ *) -> (a ~ Int) -> H k a The problem here is that a's kind is wrong -- it needs to be k, not *! So, if the matching for a variable is anything but another bare variable, we drop the mapping from the substitution before proceeding. This was not an issue before kind-indexed GADTs because this case could never happen. ************************************************************************ * * Validity checking * * ************************************************************************ Validity checking is done once the mutually-recursive knot has been tied, so we can look at things freely. -} checkValidTyCl :: TyCon -> TcM [TyCon] -- The returned list is either a singleton (if valid) -- or a list of "fake tycons" (if not); the fake tycons -- include any implicits, like promoted data constructors -- See Note [Recover from validity error] checkValidTyCl tc = setSrcSpan (getSrcSpan tc) $ addTyConCtxt tc $ recoverM recovery_code (do { traceTc "Starting validity for tycon" (ppr tc) ; checkValidTyCon tc ; traceTc "Done validity for tycon" (ppr tc) ; return [tc] }) where recovery_code -- See Note [Recover from validity error] = do { traceTc "Aborted validity for tycon" (ppr tc) ; return (concatMap mk_fake_tc $ ATyCon tc : implicitTyConThings tc) } mk_fake_tc (ATyCon tc) | isClassTyCon tc = [tc] -- Ugh! Note [Recover from validity error] | otherwise = [makeRecoveryTyCon tc] mk_fake_tc (AConLike (RealDataCon dc)) = [makeRecoveryTyCon (promoteDataCon dc)] mk_fake_tc _ = [] {- Note [Recover from validity error] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We recover from a validity error in a type or class, which allows us to report multiple validity errors. In the failure case we return a TyCon of the right kind, but with no interesting behaviour (makeRecoveryTyCon). Why? Suppose we have type T a = Fun where Fun is a type family of arity 1. The RHS is invalid, but we want to go on checking validity of subsequent type declarations. So we replace T with an abstract TyCon which will do no harm. See indexed-types/should_fail/BadSock and Trac #10896 Some notes: * We must make fakes for promoted DataCons too. Consider (Trac #15215) data T a = MkT ... data S a = ...T...MkT.... If there is an error in the definition of 'T' we add a "fake type constructor" to the type environment, so that we can continue to typecheck 'S'. But we /were not/ adding a fake anything for 'MkT' and so there was an internal error when we met 'MkT' in the body of 'S'. * Painfully, we *don't* want to do this for classes. Consider tcfail041: class (?x::Int) => C a where ... instance C Int The class is invalid because of the superclass constraint. But we still want it to look like a /class/, else the instance bleats that the instance is mal-formed because it hasn't got a class in the head. This is really bogus; now we have in scope a Class that is invalid in some way, with unknown downstream consequences. A better alterantive might be to make a fake class TyCon. A job for another day. -} ------------------------- -- For data types declared with record syntax, we require -- that each constructor that has a field 'f' -- (a) has the same result type -- (b) has the same type for 'f' -- module alpha conversion of the quantified type variables -- of the constructor. -- -- Note that we allow existentials to match because the -- fields can never meet. E.g -- data T where -- T1 { f1 :: b, f2 :: a, f3 ::Int } :: T -- T2 { f1 :: c, f2 :: c, f3 ::Int } :: T -- Here we do not complain about f1,f2 because they are existential checkValidTyCon :: TyCon -> TcM () checkValidTyCon tc | isPrimTyCon tc -- Happens when Haddock'ing GHC.Prim = return () | otherwise = do { traceTc "checkValidTyCon" (ppr tc $$ ppr (tyConClass_maybe tc)) ; if | Just cl <- tyConClass_maybe tc -> checkValidClass cl | Just syn_rhs <- synTyConRhs_maybe tc -> do { checkValidType syn_ctxt syn_rhs ; checkTySynRhs syn_ctxt syn_rhs } | Just fam_flav <- famTyConFlav_maybe tc -> case fam_flav of { ClosedSynFamilyTyCon (Just ax) -> tcAddClosedTypeFamilyDeclCtxt tc $ checkValidCoAxiom ax ; ClosedSynFamilyTyCon Nothing -> return () ; AbstractClosedSynFamilyTyCon -> do { hsBoot <- tcIsHsBootOrSig ; checkTc hsBoot $ text "You may define an abstract closed type family" $$ text "only in a .hs-boot file" } ; DataFamilyTyCon {} -> return () ; OpenSynFamilyTyCon -> return () ; BuiltInSynFamTyCon _ -> return () } | otherwise -> do { -- Check the context on the data decl traceTc "cvtc1" (ppr tc) ; checkValidTheta (DataTyCtxt name) (tyConStupidTheta tc) ; traceTc "cvtc2" (ppr tc) ; dflags <- getDynFlags ; existential_ok <- xoptM LangExt.ExistentialQuantification ; gadt_ok <- xoptM LangExt.GADTs ; let ex_ok = existential_ok || gadt_ok -- Data cons can have existential context ; mapM_ (checkValidDataCon dflags ex_ok tc) data_cons ; mapM_ (checkPartialRecordField data_cons) (tyConFieldLabels tc) -- Check that fields with the same name share a type ; mapM_ check_fields groups }} where syn_ctxt = TySynCtxt name name = tyConName tc data_cons = tyConDataCons tc groups = equivClasses cmp_fld (concatMap get_fields data_cons) cmp_fld (f1,_) (f2,_) = flLabel f1 `compare` flLabel f2 get_fields con = dataConFieldLabels con `zip` repeat con -- dataConFieldLabels may return the empty list, which is fine -- See Note [GADT record selectors] in TcTyDecls -- We must check (a) that the named field has the same -- type in each constructor -- (b) that those constructors have the same result type -- -- However, the constructors may have differently named type variable -- and (worse) we don't know how the correspond to each other. E.g. -- C1 :: forall a b. { f :: a, g :: b } -> T a b -- C2 :: forall d c. { f :: c, g :: c } -> T c d -- -- So what we do is to ust Unify.tcMatchTys to compare the first candidate's -- result type against other candidates' types BOTH WAYS ROUND. -- If they magically agrees, take the substitution and -- apply them to the latter ones, and see if they match perfectly. check_fields ((label, con1) :| other_fields) -- These fields all have the same name, but are from -- different constructors in the data type = recoverM (return ()) $ mapM_ checkOne other_fields -- Check that all the fields in the group have the same type -- NB: this check assumes that all the constructors of a given -- data type use the same type variables where (_, _, _, res1) = dataConSig con1 fty1 = dataConFieldType con1 lbl lbl = flLabel label checkOne (_, con2) -- Do it both ways to ensure they are structurally identical = do { checkFieldCompat lbl con1 con2 res1 res2 fty1 fty2 ; checkFieldCompat lbl con2 con1 res2 res1 fty2 fty1 } where (_, _, _, res2) = dataConSig con2 fty2 = dataConFieldType con2 lbl checkPartialRecordField :: [DataCon] -> FieldLabel -> TcM () -- Checks the partial record field selector, and warns. -- See Note [Checking partial record field] checkPartialRecordField all_cons fld = setSrcSpan loc $ warnIfFlag Opt_WarnPartialFields (not is_exhaustive && not (startsWithUnderscore occ_name)) (sep [text "Use of partial record field selector" <> colon, nest 2 $ quotes (ppr occ_name)]) where sel_name = flSelector fld loc = getSrcSpan sel_name occ_name = getOccName sel_name (cons_with_field, cons_without_field) = partition has_field all_cons has_field con = fld `elem` (dataConFieldLabels con) is_exhaustive = all (dataConCannotMatch inst_tys) cons_without_field con1 = ASSERT( not (null cons_with_field) ) head cons_with_field (univ_tvs, _, eq_spec, _, _, _) = dataConFullSig con1 eq_subst = mkTvSubstPrs (map eqSpecPair eq_spec) inst_tys = substTyVars eq_subst univ_tvs checkFieldCompat :: FieldLabelString -> DataCon -> DataCon -> Type -> Type -> Type -> Type -> TcM () checkFieldCompat fld con1 con2 res1 res2 fty1 fty2 = do { checkTc (isJust mb_subst1) (resultTypeMisMatch fld con1 con2) ; checkTc (isJust mb_subst2) (fieldTypeMisMatch fld con1 con2) } where mb_subst1 = tcMatchTy res1 res2 mb_subst2 = tcMatchTyX (expectJust "checkFieldCompat" mb_subst1) fty1 fty2 ------------------------------- checkValidDataCon :: DynFlags -> Bool -> TyCon -> DataCon -> TcM () checkValidDataCon dflags existential_ok tc con = setSrcSpan (getSrcSpan con) $ addErrCtxt (dataConCtxt con) $ do { -- Check that the return type of the data constructor -- matches the type constructor; eg reject this: -- data T a where { MkT :: Bogus a } -- It's important to do this first: -- see Note [Checking GADT return types] -- and c.f. Note [Check role annotations in a second pass] let tc_tvs = tyConTyVars tc res_ty_tmpl = mkFamilyTyConApp tc (mkTyVarTys tc_tvs) orig_res_ty = dataConOrigResTy con ; traceTc "checkValidDataCon" (vcat [ ppr con, ppr tc, ppr tc_tvs , ppr res_ty_tmpl <+> dcolon <+> ppr (typeKind res_ty_tmpl) , ppr orig_res_ty <+> dcolon <+> ppr (typeKind orig_res_ty)]) ; checkTc (isJust (tcMatchTy res_ty_tmpl orig_res_ty)) (badDataConTyCon con res_ty_tmpl orig_res_ty) -- Note that checkTc aborts if it finds an error. This is -- critical to avoid panicking when we call dataConUserType -- on an un-rejiggable datacon! ; traceTc "checkValidDataCon 2" (ppr (dataConUserType con)) -- Check that the result type is a *monotype* -- e.g. reject this: MkT :: T (forall a. a->a) -- Reason: it's really the argument of an equality constraint ; checkValidMonoType orig_res_ty -- Check all argument types for validity ; checkValidType ctxt (dataConUserType con) ; mapM_ (checkForLevPoly empty) (dataConOrigArgTys con) -- Extra checks for newtype data constructors ; when (isNewTyCon tc) (checkNewDataCon con) -- Check that existentials are allowed if they are used ; checkTc (existential_ok || isVanillaDataCon con) (badExistential con) -- Check that UNPACK pragmas and bangs work out -- E.g. reject data T = MkT {-# UNPACK #-} Int -- No "!" -- data T = MkT {-# UNPACK #-} !a -- Can't unpack ; zipWith3M_ check_bang (dataConSrcBangs con) (dataConImplBangs con) [1..] ; traceTc "Done validity of data con" $ vcat [ ppr con , text "Datacon user type:" <+> ppr (dataConUserType con) , text "Datacon rep type:" <+> ppr (dataConRepType con) , text "Rep typcon binders:" <+> ppr (tyConBinders (dataConTyCon con)) , case tyConFamInst_maybe (dataConTyCon con) of Nothing -> text "not family" Just (f, _) -> ppr (tyConBinders f) ] } where ctxt = ConArgCtxt (dataConName con) check_bang :: HsSrcBang -> HsImplBang -> Int -> TcM () check_bang (HsSrcBang _ _ SrcLazy) _ n | not (xopt LangExt.StrictData dflags) = addErrTc (bad_bang n (text "Lazy annotation (~) without StrictData")) check_bang (HsSrcBang _ want_unpack strict_mark) rep_bang n | isSrcUnpacked want_unpack, not is_strict = addWarnTc NoReason (bad_bang n (text "UNPACK pragma lacks '!'")) | isSrcUnpacked want_unpack , case rep_bang of { HsUnpack {} -> False; _ -> True } -- If not optimising, we don't unpack (rep_bang is never -- HsUnpack), so don't complain! This happens, e.g., in Haddock. -- See dataConSrcToImplBang. , not (gopt Opt_OmitInterfacePragmas dflags) -- When typechecking an indefinite package in Backpack, we -- may attempt to UNPACK an abstract type. The test here will -- conclude that this is unusable, but it might become usable -- when we actually fill in the abstract type. As such, don't -- warn in this case (it gives users the wrong idea about whether -- or not UNPACK on abstract types is supported; it is!) , unitIdIsDefinite (thisPackage dflags) = addWarnTc NoReason (bad_bang n (text "Ignoring unusable UNPACK pragma")) where is_strict = case strict_mark of NoSrcStrict -> xopt LangExt.StrictData dflags bang -> isSrcStrict bang check_bang _ _ _ = return () bad_bang n herald = hang herald 2 (text "on the" <+> speakNth n <+> text "argument of" <+> quotes (ppr con)) ------------------------------- checkNewDataCon :: DataCon -> TcM () -- Further checks for the data constructor of a newtype checkNewDataCon con = do { checkTc (isSingleton arg_tys) (newtypeFieldErr con (length arg_tys)) -- One argument ; checkTc (not (isUnliftedType arg_ty1)) $ text "A newtype cannot have an unlifted argument type" ; check_con (null eq_spec) $ text "A newtype constructor must have a return type of form T a1 ... an" -- Return type is (T a b c) ; check_con (null theta) $ text "A newtype constructor cannot have a context in its type" ; check_con (null ex_tvs) $ text "A newtype constructor cannot have existential type variables" -- No existentials ; checkTc (all ok_bang (dataConSrcBangs con)) (newtypeStrictError con) -- No strictness annotations } where (_univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty) = dataConFullSig con check_con what msg = checkTc what (msg $$ ppr con <+> dcolon <+> ppr (dataConUserType con)) (arg_ty1 : _) = arg_tys ok_bang (HsSrcBang _ _ SrcStrict) = False ok_bang (HsSrcBang _ _ SrcLazy) = False ok_bang _ = True ------------------------------- checkValidClass :: Class -> TcM () checkValidClass cls = do { constrained_class_methods <- xoptM LangExt.ConstrainedClassMethods ; multi_param_type_classes <- xoptM LangExt.MultiParamTypeClasses ; nullary_type_classes <- xoptM LangExt.NullaryTypeClasses ; fundep_classes <- xoptM LangExt.FunctionalDependencies ; undecidable_super_classes <- xoptM LangExt.UndecidableSuperClasses -- Check that the class is unary, unless multiparameter type classes -- are enabled; also recognize deprecated nullary type classes -- extension (subsumed by multiparameter type classes, Trac #8993) ; checkTc (multi_param_type_classes || cls_arity == 1 || (nullary_type_classes && cls_arity == 0)) (classArityErr cls_arity cls) ; checkTc (fundep_classes || null fundeps) (classFunDepsErr cls) -- Check the super-classes ; checkValidTheta (ClassSCCtxt (className cls)) theta -- Now check for cyclic superclasses -- If there are superclass cycles, checkClassCycleErrs bails. ; unless undecidable_super_classes $ case checkClassCycles cls of Just err -> setSrcSpan (getSrcSpan cls) $ addErrTc err Nothing -> return () -- Check the class operations. -- But only if there have been no earlier errors -- See Note [Abort when superclass cycle is detected] ; whenNoErrs $ mapM_ (check_op constrained_class_methods) op_stuff -- Check the associated type defaults are well-formed and instantiated ; mapM_ check_at at_stuff } where (tyvars, fundeps, theta, _, at_stuff, op_stuff) = classExtraBigSig cls cls_arity = length (tyConVisibleTyVars (classTyCon cls)) -- Ignore invisible variables cls_tv_set = mkVarSet tyvars mini_env = zipVarEnv tyvars (mkTyVarTys tyvars) mb_cls = Just (cls, tyvars, mini_env) check_op constrained_class_methods (sel_id, dm) = setSrcSpan (getSrcSpan sel_id) $ addErrCtxt (classOpCtxt sel_id op_ty) $ do { traceTc "class op type" (ppr op_ty) ; checkValidType ctxt op_ty -- This implements the ambiguity check, among other things -- Example: tc223 -- class Error e => Game b mv e | b -> mv e where -- newBoard :: MonadState b m => m () -- Here, MonadState has a fundep m->b, so newBoard is fine -- a method cannot be levity polymorphic, as we have to store the -- method in a dictionary -- example of what this prevents: -- class BoundedX (a :: TYPE r) where minBound :: a -- See Note [Levity polymorphism checking] in DsMonad ; checkForLevPoly empty tau1 ; unless constrained_class_methods $ mapM_ check_constraint (tail (cls_pred:op_theta)) ; check_dm ctxt sel_id cls_pred tau2 dm } where ctxt = FunSigCtxt op_name True -- Report redundant class constraints op_name = idName sel_id op_ty = idType sel_id (_,cls_pred,tau1) = tcSplitMethodTy op_ty -- See Note [Splitting nested sigma types in class type signatures] (_,op_theta,tau2) = tcSplitNestedSigmaTys tau1 check_constraint :: TcPredType -> TcM () check_constraint pred -- See Note [Class method constraints] = when (not (isEmptyVarSet pred_tvs) && pred_tvs `subVarSet` cls_tv_set) (addErrTc (badMethPred sel_id pred)) where pred_tvs = tyCoVarsOfType pred check_at (ATI fam_tc m_dflt_rhs) = do { checkTc (cls_arity == 0 || any (`elemVarSet` cls_tv_set) fam_tvs) (noClassTyVarErr cls fam_tc) -- Check that the associated type mentions at least -- one of the class type variables -- The check is disabled for nullary type classes, -- since there is no possible ambiguity (Trac #10020) -- Check that any default declarations for associated types are valid ; whenIsJust m_dflt_rhs $ \ (rhs, loc) -> checkValidTyFamEqn mb_cls fam_tc fam_tvs [] (mkTyVarTys fam_tvs) rhs pp_lhs loc } where fam_tvs = tyConTyVars fam_tc pp_lhs = ppr (mkTyConApp fam_tc (mkTyVarTys fam_tvs)) check_dm :: UserTypeCtxt -> Id -> PredType -> Type -> DefMethInfo -> TcM () -- Check validity of the /top-level/ generic-default type -- E.g for class C a where -- default op :: forall b. (a~b) => blah -- we do not want to do an ambiguity check on a type with -- a free TyVar 'a' (Trac #11608). See TcType -- Note [TyVars and TcTyVars during type checking] in TcType -- Hence the mkDefaultMethodType to close the type. check_dm ctxt sel_id vanilla_cls_pred vanilla_tau (Just (dm_name, dm_spec@(GenericDM dm_ty))) = setSrcSpan (getSrcSpan dm_name) $ do -- We have carefully set the SrcSpan on the generic -- default-method Name to be that of the generic -- default type signature -- First, we check that that the method's default type signature -- aligns with the non-default type signature. -- See Note [Default method type signatures must align] let cls_pred = mkClassPred cls $ mkTyVarTys $ classTyVars cls -- Note that the second field of this tuple contains the context -- of the default type signature, making it apparent that we -- ignore method contexts completely when validity-checking -- default type signatures. See the end of -- Note [Default method type signatures must align] -- to learn why this is OK. -- -- See also -- Note [Splitting nested sigma types in class type signatures] -- for an explanation of why we don't use tcSplitSigmaTy here. (_, _, dm_tau) = tcSplitNestedSigmaTys dm_ty -- Given this class definition: -- -- class C a b where -- op :: forall p q. (Ord a, D p q) -- => a -> b -> p -> (a, b) -- default op :: forall r s. E r -- => a -> b -> s -> (a, b) -- -- We want to match up two types of the form: -- -- Vanilla type sig: C aa bb => aa -> bb -> p -> (aa, bb) -- Default type sig: C a b => a -> b -> s -> (a, b) -- -- Notice that the two type signatures can be quantified over -- different class type variables! Therefore, it's important that -- we include the class predicate parts to match up a with aa and -- b with bb. vanilla_phi_ty = mkPhiTy [vanilla_cls_pred] vanilla_tau dm_phi_ty = mkPhiTy [cls_pred] dm_tau traceTc "check_dm" $ vcat [ text "vanilla_phi_ty" <+> ppr vanilla_phi_ty , text "dm_phi_ty" <+> ppr dm_phi_ty ] -- Actually checking that the types align is done with a call to -- tcMatchTys. We need to get a match in both directions to rule -- out degenerate cases like these: -- -- class Foo a where -- foo1 :: a -> b -- default foo1 :: a -> Int -- -- foo2 :: a -> Int -- default foo2 :: a -> b unless (isJust $ tcMatchTys [dm_phi_ty, vanilla_phi_ty] [vanilla_phi_ty, dm_phi_ty]) $ addErrTc $ hang (text "The default type signature for" <+> ppr sel_id <> colon) 2 (ppr dm_ty) $$ (text "does not match its corresponding" <+> text "non-default type signature") -- Now do an ambiguity check on the default type signature. checkValidType ctxt (mkDefaultMethodType cls sel_id dm_spec) check_dm _ _ _ _ _ = return () checkFamFlag :: Name -> TcM () -- Check that we don't use families without -XTypeFamilies -- The parser won't even parse them, but I suppose a GHC API -- client might have a go! checkFamFlag tc_name = do { idx_tys <- xoptM LangExt.TypeFamilies ; checkTc idx_tys err_msg } where err_msg = hang (text "Illegal family declaration for" <+> quotes (ppr tc_name)) 2 (text "Enable TypeFamilies to allow indexed type families") {- Note [Class method constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Haskell 2010 is supposed to reject class C a where op :: Eq a => a -> a where the method type constrains only the class variable(s). (The extension -XConstrainedClassMethods switches off this check.) But regardless we should not reject class C a where op :: (?x::Int) => a -> a as pointed out in Trac #11793. So the test here rejects the program if * -XConstrainedClassMethods is off * the tyvars of the constraint are non-empty * all the tyvars are class tyvars, none are locally quantified Note [Abort when superclass cycle is detected] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We must avoid doing the ambiguity check for the methods (in checkValidClass.check_op) when there are already errors accumulated. This is because one of the errors may be a superclass cycle, and superclass cycles cause canonicalization to loop. Here is a representative example: class D a => C a where meth :: D a => () class C a => D a This fixes Trac #9415, #9739 Note [Default method type signatures must align] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GHC enforces the invariant that a class method's default type signature must "align" with that of the method's non-default type signature, as per GHC Trac #12918. For instance, if you have: class Foo a where bar :: forall b. Context => a -> b Then a default type signature for bar must be alpha equivalent to (forall b. a -> b). That is, the types must be the same modulo differences in contexts. So the following would be acceptable default type signatures: default bar :: forall b. Context1 => a -> b default bar :: forall x. Context2 => a -> x But the following are NOT acceptable default type signatures: default bar :: forall b. b -> a default bar :: forall x. x default bar :: a -> Int Note that a is bound by the class declaration for Foo itself, so it is not allowed to differ in the default type signature. The default type signature (default bar :: a -> Int) deserves special mention, since (a -> Int) is a straightforward instantiation of (forall b. a -> b). To write this, you need to declare the default type signature like so: default bar :: forall b. (b ~ Int). a -> b As noted in #12918, there are several reasons to do this: 1. It would make no sense to have a type that was flat-out incompatible with the non-default type signature. For instance, if you had: class Foo a where bar :: a -> Int default bar :: a -> Bool Then that would always fail in an instance declaration. So this check nips such cases in the bud before they have the chance to produce confusing error messages. 2. Internally, GHC uses TypeApplications to instantiate the default method in an instance. See Note [Default methods in instances] in TcInstDcls. Thus, GHC needs to know exactly what the universally quantified type variables are, and when instantiated that way, the default method's type must match the expected type. 3. Aesthetically, by only allowing the default type signature to differ in its context, we are making it more explicit the ways in which the default type signature is less polymorphic than the non-default type signature. You might be wondering: why are the contexts allowed to be different, but not the rest of the type signature? That's because default implementations often rely on assumptions that the more general, non-default type signatures do not. For instance, in the Enum class declaration: class Enum a where enum :: [a] default enum :: (Generic a, GEnum (Rep a)) => [a] enum = map to genum class GEnum f where genum :: [f a] The default implementation for enum only works for types that are instances of Generic, and for which their generic Rep type is an instance of GEnum. But clearly enum doesn't _have_ to use this implementation, so naturally, the context for enum is allowed to be different to accomodate this. As a result, when we validity-check default type signatures, we ignore contexts completely. Note that when checking whether two type signatures match, we must take care to split as many foralls as it takes to retrieve the tau types we which to check. See Note [Splitting nested sigma types in class type signatures]. Note [Splitting nested sigma types in class type signatures] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this type synonym and class definition: type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t class Each s t a b where each :: Traversal s t a b default each :: (Traversable g, s ~ g a, t ~ g b) => Traversal s t a b It might seem obvious that the tau types in both type signatures for `each` are the same, but actually getting GHC to conclude this is surprisingly tricky. That is because in general, the form of a class method's non-default type signature is: forall a. C a => forall d. D d => E a b And the general form of a default type signature is: forall f. F f => E a f -- The variable `a` comes from the class So it you want to get the tau types in each type signature, you might find it reasonable to call tcSplitSigmaTy twice on the non-default type signature, and call it once on the default type signature. For most classes and methods, this will work, but Each is a bit of an exceptional case. The way `each` is written, it doesn't quantify any additional type variables besides those of the Each class itself, so the non-default type signature for `each` is actually this: forall s t a b. Each s t a b => Traversal s t a b Notice that there _appears_ to only be one forall. But there's actually another forall lurking in the Traversal type synonym, so if you call tcSplitSigmaTy twice, you'll also go under the forall in Traversal! That is, you'll end up with: (a -> f b) -> s -> f t A problem arises because you only call tcSplitSigmaTy once on the default type signature for `each`, which gives you Traversal s t a b Or, equivalently: forall f. Applicative f => (a -> f b) -> s -> f t This is _not_ the same thing as (a -> f b) -> s -> f t! So now tcMatchTy will say that the tau types for `each` are not equal. A solution to this problem is to use tcSplitNestedSigmaTys instead of tcSplitSigmaTy. tcSplitNestedSigmaTys will always split any foralls that it sees until it can't go any further, so if you called it on the default type signature for `each`, it would return (a -> f b) -> s -> f t like we desired. Note [Checking partial record field] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This check checks the partial record field selector, and warns (Trac #7169). For example: data T a = A { m1 :: a, m2 :: a } | B { m1 :: a } The function 'm2' is partial record field, and will fail when it is applied to 'B'. The warning identifies such partial fields. The check is performed at the declaration of T, not at the call-sites of m2. The warning can be suppressed by prefixing the field-name with an underscore. For example: data T a = A { m1 :: a, _m2 :: a } | B { m1 :: a } Note [checkValidDependency] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data Proxy k (a :: k) data Proxy2 k a = P (Proxy k a) (This is test dependent/should_fail/InferDependency.) While it seems GHC can figure out the dependency between the arguments to Proxy2, this case errors. The problem is that when we build the initial kind (getInitialKind) for a tycon, we need to decide whether an argument is dependent or not. At first, I thought we could just assume that *all* arguments are dependent, and then patch it up later. However, this causes problems in error messages (where tycon's have mysterious kinds "forall (a :: k) -> blah") and in unification (where we try to unify kappa ~ forall (a :: k) -> blah, failing because the RHS is not a tau-type). Perhaps a cleverer algorithm could sort this out (say, by storing the dependency flag in a mutable cell and by avoiding these fancy kinds in error messages depending on the extension in effect) but it doesn't seem worth it. So: we choose the dependency for each argument variable once and for all in getInitialKind. This means that any dependency must be lexically manifest. checkValidDependency checks to make sure that no lexically non-dependent argument actually appears in a kind. Note the example above, where the k in Proxy2 is a dependent argument, but this fact is not lexically manifest. checkValidDependency will reject. This function must be called *before* kind generalization, because kind generalization works with the result of mkTyConKind, which will think that Proxy2's kind is Type -> k -> Type, where k is unbound. (It won't use a forall for a "non-dependent" argument k.) -} -- | See Note [checkValidDependency] checkValidDependency :: [TyConBinder] -- zonked -> TcKind -- zonked (result kind) -> TcM () checkValidDependency binders res_kind = go (tyCoVarsOfType res_kind) (reverse binders) where go :: TyCoVarSet -- fvs from scope -> [TyConBinder] -- binders, in reverse order -> TcM () go _ [] = return () -- all set go fvs (tcb : tcbs) | not (isNamedTyConBinder tcb) && tcb_var `elemVarSet` fvs = do { setSrcSpan (getSrcSpan tcb_var) $ addErrTc (vcat [ text "Type constructor argument" <+> quotes (ppr tcb_var) <+> text "is used dependently." , text "Any dependent arguments must be obviously so, not inferred" , text "by the type-checker." , hang (text "Inferred argument kinds:") 2 (vcat (map pp_binder binders)) , text "Suggestion: use" <+> quotes (ppr tcb_var) <+> text "in a kind to make the dependency clearer." ]) ; go new_fvs tcbs } | otherwise = go new_fvs tcbs where new_fvs = fvs `delVarSet` tcb_var `unionVarSet` tyCoVarsOfType tcb_kind tcb_var = binderVar tcb tcb_kind = tyVarKind tcb_var pp_binder binder = ppr (binderVar binder) <+> dcolon <+> ppr (binderKind binder) {- ************************************************************************ * * Checking role validity * * ************************************************************************ -} checkValidRoleAnnots :: RoleAnnotEnv -> TyCon -> TcM () checkValidRoleAnnots role_annots tc | isTypeSynonymTyCon tc = check_no_roles | isFamilyTyCon tc = check_no_roles | isAlgTyCon tc = check_roles | otherwise = return () where -- Role annotations are given only on *explicit* variables, -- but a tycon stores roles for all variables. -- So, we drop the implicit roles (which are all Nominal, anyway). name = tyConName tc tyvars = tyConTyVars tc roles = tyConRoles tc (vis_roles, vis_vars) = unzip $ snd $ partitionInvisibles tc (mkTyVarTy . snd) $ zip roles tyvars role_annot_decl_maybe = lookupRoleAnnot role_annots name check_roles = whenIsJust role_annot_decl_maybe $ \decl@(L loc (RoleAnnotDecl _ _ the_role_annots)) -> addRoleAnnotCtxt name $ setSrcSpan loc $ do { role_annots_ok <- xoptM LangExt.RoleAnnotations ; checkTc role_annots_ok $ needXRoleAnnotations tc ; checkTc (vis_vars `equalLength` the_role_annots) (wrongNumberOfRoles vis_vars decl) ; _ <- zipWith3M checkRoleAnnot vis_vars the_role_annots vis_roles -- Representational or phantom roles for class parameters -- quickly lead to incoherence. So, we require -- IncoherentInstances to have them. See #8773, #14292 ; incoherent_roles_ok <- xoptM LangExt.IncoherentInstances ; checkTc ( incoherent_roles_ok || (not $ isClassTyCon tc) || (all (== Nominal) vis_roles)) incoherentRoles ; lint <- goptM Opt_DoCoreLinting ; when lint $ checkValidRoles tc } check_no_roles = whenIsJust role_annot_decl_maybe illegalRoleAnnotDecl checkRoleAnnot :: TyVar -> Located (Maybe Role) -> Role -> TcM () checkRoleAnnot _ (L _ Nothing) _ = return () checkRoleAnnot tv (L _ (Just r1)) r2 = when (r1 /= r2) $ addErrTc $ badRoleAnnot (tyVarName tv) r1 r2 -- This is a double-check on the role inference algorithm. It is only run when -- -dcore-lint is enabled. See Note [Role inference] in TcTyDecls checkValidRoles :: TyCon -> TcM () -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] in CoreLint checkValidRoles tc | isAlgTyCon tc -- tyConDataCons returns an empty list for data families = mapM_ check_dc_roles (tyConDataCons tc) | Just rhs <- synTyConRhs_maybe tc = check_ty_roles (zipVarEnv (tyConTyVars tc) (tyConRoles tc)) Representational rhs | otherwise = return () where check_dc_roles datacon = do { traceTc "check_dc_roles" (ppr datacon <+> ppr (tyConRoles tc)) ; mapM_ (check_ty_roles role_env Representational) $ eqSpecPreds eq_spec ++ theta ++ arg_tys } -- See Note [Role-checking data constructor arguments] in TcTyDecls where (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty) = dataConFullSig datacon univ_roles = zipVarEnv univ_tvs (tyConRoles tc) -- zipVarEnv uses zipEqual, but we don't want that for ex_tvs ex_roles = mkVarEnv (map (, Nominal) ex_tvs) role_env = univ_roles `plusVarEnv` ex_roles check_ty_roles env role ty | Just ty' <- coreView ty -- #14101 = check_ty_roles env role ty' check_ty_roles env role (TyVarTy tv) = case lookupVarEnv env tv of Just role' -> unless (role' `ltRole` role || role' == role) $ report_error $ text "type variable" <+> quotes (ppr tv) <+> text "cannot have role" <+> ppr role <+> text "because it was assigned role" <+> ppr role' Nothing -> report_error $ text "type variable" <+> quotes (ppr tv) <+> text "missing in environment" check_ty_roles env Representational (TyConApp tc tys) = let roles' = tyConRoles tc in zipWithM_ (maybe_check_ty_roles env) roles' tys check_ty_roles env Nominal (TyConApp _ tys) = mapM_ (check_ty_roles env Nominal) tys check_ty_roles _ Phantom ty@(TyConApp {}) = pprPanic "check_ty_roles" (ppr ty) check_ty_roles env role (AppTy ty1 ty2) = check_ty_roles env role ty1 >> check_ty_roles env Nominal ty2 check_ty_roles env role (FunTy ty1 ty2) = check_ty_roles env role ty1 >> check_ty_roles env role ty2 check_ty_roles env role (ForAllTy (TvBndr tv _) ty) = check_ty_roles env Nominal (tyVarKind tv) >> check_ty_roles (extendVarEnv env tv Nominal) role ty check_ty_roles _ _ (LitTy {}) = return () check_ty_roles env role (CastTy t _) = check_ty_roles env role t check_ty_roles _ role (CoercionTy co) = unless (role == Phantom) $ report_error $ text "coercion" <+> ppr co <+> text "has bad role" <+> ppr role maybe_check_ty_roles env role ty = when (role == Nominal || role == Representational) $ check_ty_roles env role ty report_error doc = addErrTc $ vcat [text "Internal error in role inference:", doc, text "Please report this as a GHC bug: http://www.haskell.org/ghc/reportabug"] {- ************************************************************************ * * Error messages * * ************************************************************************ -} tcAddTyFamInstCtxt :: TyFamInstDecl GhcRn -> TcM a -> TcM a tcAddTyFamInstCtxt decl = tcAddFamInstCtxt (text "type instance") (tyFamInstDeclName decl) tcMkDataFamInstCtxt :: DataFamInstDecl GhcRn -> SDoc tcMkDataFamInstCtxt decl@(DataFamInstDecl { dfid_eqn = HsIB { hsib_body = eqn }}) = tcMkFamInstCtxt (pprDataFamInstFlavour decl <+> text "instance") (unLoc (feqn_tycon eqn)) tcMkDataFamInstCtxt (DataFamInstDecl (XHsImplicitBndrs _)) = panic "tcMkDataFamInstCtxt" tcAddDataFamInstCtxt :: DataFamInstDecl GhcRn -> TcM a -> TcM a tcAddDataFamInstCtxt decl = addErrCtxt (tcMkDataFamInstCtxt decl) tcMkFamInstCtxt :: SDoc -> Name -> SDoc tcMkFamInstCtxt flavour tycon = hsep [ text "In the" <+> flavour <+> text "declaration for" , quotes (ppr tycon) ] tcAddFamInstCtxt :: SDoc -> Name -> TcM a -> TcM a tcAddFamInstCtxt flavour tycon thing_inside = addErrCtxt (tcMkFamInstCtxt flavour tycon) thing_inside tcAddClosedTypeFamilyDeclCtxt :: TyCon -> TcM a -> TcM a tcAddClosedTypeFamilyDeclCtxt tc = addErrCtxt ctxt where ctxt = text "In the equations for closed type family" <+> quotes (ppr tc) resultTypeMisMatch :: FieldLabelString -> DataCon -> DataCon -> SDoc resultTypeMisMatch field_name con1 con2 = vcat [sep [text "Constructors" <+> ppr con1 <+> text "and" <+> ppr con2, text "have a common field" <+> quotes (ppr field_name) <> comma], nest 2 $ text "but have different result types"] fieldTypeMisMatch :: FieldLabelString -> DataCon -> DataCon -> SDoc fieldTypeMisMatch field_name con1 con2 = sep [text "Constructors" <+> ppr con1 <+> text "and" <+> ppr con2, text "give different types for field", quotes (ppr field_name)] dataConCtxtName :: [Located Name] -> SDoc dataConCtxtName [con] = text "In the definition of data constructor" <+> quotes (ppr con) dataConCtxtName con = text "In the definition of data constructors" <+> interpp'SP con dataConCtxt :: Outputable a => a -> SDoc dataConCtxt con = text "In the definition of data constructor" <+> quotes (ppr con) classOpCtxt :: Var -> Type -> SDoc classOpCtxt sel_id tau = sep [text "When checking the class method:", nest 2 (pprPrefixOcc sel_id <+> dcolon <+> ppr tau)] classArityErr :: Int -> Class -> SDoc classArityErr n cls | n == 0 = mkErr "No" "no-parameter" | otherwise = mkErr "Too many" "multi-parameter" where mkErr howMany allowWhat = vcat [text (howMany ++ " parameters for class") <+> quotes (ppr cls), parens (text ("Enable MultiParamTypeClasses to allow " ++ allowWhat ++ " classes"))] classFunDepsErr :: Class -> SDoc classFunDepsErr cls = vcat [text "Fundeps in class" <+> quotes (ppr cls), parens (text "Enable FunctionalDependencies to allow fundeps")] badMethPred :: Id -> TcPredType -> SDoc badMethPred sel_id pred = vcat [ hang (text "Constraint" <+> quotes (ppr pred) <+> text "in the type of" <+> quotes (ppr sel_id)) 2 (text "constrains only the class type variables") , text "Enable ConstrainedClassMethods to allow it" ] noClassTyVarErr :: Class -> TyCon -> SDoc noClassTyVarErr clas fam_tc = sep [ text "The associated type" <+> quotes (ppr fam_tc) , text "mentions none of the type or kind variables of the class" <+> quotes (ppr clas <+> hsep (map ppr (classTyVars clas)))] badDataConTyCon :: DataCon -> Type -> Type -> SDoc badDataConTyCon data_con res_ty_tmpl actual_res_ty | tcIsForAllTy actual_res_ty = nested_foralls_contexts_suggestion | isJust (tcSplitPredFunTy_maybe actual_res_ty) = nested_foralls_contexts_suggestion | otherwise = hang (text "Data constructor" <+> quotes (ppr data_con) <+> text "returns type" <+> quotes (ppr actual_res_ty)) 2 (text "instead of an instance of its parent type" <+> quotes (ppr res_ty_tmpl)) where -- This suggestion is useful for suggesting how to correct code like what -- was reported in Trac #12087: -- -- data F a where -- MkF :: Ord a => Eq a => a -> F a -- -- Although nested foralls or contexts are allowed in function type -- signatures, it is much more difficult to engineer GADT constructor type -- signatures to allow something similar, so we error in the latter case. -- Nevertheless, we can at least suggest how a user might reshuffle their -- exotic GADT constructor type signature so that GHC will accept. nested_foralls_contexts_suggestion = text "GADT constructor type signature cannot contain nested" <+> quotes forAllLit <> text "s or contexts" $+$ hang (text "Suggestion: instead use this type signature:") 2 (ppr (dataConName data_con) <+> dcolon <+> ppr suggested_ty) -- To construct a type that GHC would accept (suggested_ty), we: -- -- 1) Find the existentially quantified type variables and the class -- predicates from the datacon. (NB: We don't need the universally -- quantified type variables, since rejigConRes won't substitute them in -- the result type if it fails, as in this scenario.) -- 2) Split apart the return type (which is headed by a forall or a -- context) using tcSplitNestedSigmaTys, collecting the type variables -- and class predicates we find, as well as the rho type lurking -- underneath the nested foralls and contexts. -- 3) Smash together the type variables and class predicates from 1) and -- 2), and prepend them to the rho type from 2). actual_ex_tvs = dataConExTyVars data_con actual_theta = dataConTheta data_con (actual_res_tvs, actual_res_theta, actual_res_rho) = tcSplitNestedSigmaTys actual_res_ty suggested_ty = mkSpecForAllTys (actual_ex_tvs ++ actual_res_tvs) $ mkFunTys (actual_theta ++ actual_res_theta) actual_res_rho badGadtDecl :: Name -> SDoc badGadtDecl tc_name = vcat [ text "Illegal generalised algebraic data declaration for" <+> quotes (ppr tc_name) , nest 2 (parens $ text "Enable the GADTs extension to allow this") ] badExistential :: DataCon -> SDoc badExistential con = hang (text "Data constructor" <+> quotes (ppr con) <+> text "has existential type variables, a context, or a specialised result type") 2 (vcat [ ppr con <+> dcolon <+> ppr (dataConUserType con) , parens $ text "Enable ExistentialQuantification or GADTs to allow this" ]) badStupidTheta :: Name -> SDoc badStupidTheta tc_name = text "A data type declared in GADT style cannot have a context:" <+> quotes (ppr tc_name) newtypeConError :: Name -> Int -> SDoc newtypeConError tycon n = sep [text "A newtype must have exactly one constructor,", nest 2 $ text "but" <+> quotes (ppr tycon) <+> text "has" <+> speakN n ] newtypeStrictError :: DataCon -> SDoc newtypeStrictError con = sep [text "A newtype constructor cannot have a strictness annotation,", nest 2 $ text "but" <+> quotes (ppr con) <+> text "does"] newtypeFieldErr :: DataCon -> Int -> SDoc newtypeFieldErr con_name n_flds = sep [text "The constructor of a newtype must have exactly one field", nest 2 $ text "but" <+> quotes (ppr con_name) <+> text "has" <+> speakN n_flds] badSigTyDecl :: Name -> SDoc badSigTyDecl tc_name = vcat [ text "Illegal kind signature" <+> quotes (ppr tc_name) , nest 2 (parens $ text "Use KindSignatures to allow kind signatures") ] emptyConDeclsErr :: Name -> SDoc emptyConDeclsErr tycon = sep [quotes (ppr tycon) <+> text "has no constructors", nest 2 $ text "(EmptyDataDecls permits this)"] wrongKindOfFamily :: TyCon -> SDoc wrongKindOfFamily family = text "Wrong category of family instance; declaration was for a" <+> kindOfFamily where kindOfFamily | isTypeFamilyTyCon family = text "type family" | isDataFamilyTyCon family = text "data family" | otherwise = pprPanic "wrongKindOfFamily" (ppr family) wrongNumberOfParmsErr :: Arity -> SDoc wrongNumberOfParmsErr max_args = text "Number of parameters must match family declaration; expected" <+> ppr max_args defaultAssocKindErr :: TyCon -> SDoc defaultAssocKindErr fam_tc = text "Kind mis-match on LHS of default declaration for" <+> quotes (ppr fam_tc) wrongTyFamName :: Name -> Name -> SDoc wrongTyFamName fam_tc_name eqn_tc_name = hang (text "Mismatched type name in type family instance.") 2 (vcat [ text "Expected:" <+> ppr fam_tc_name , text " Actual:" <+> ppr eqn_tc_name ]) badRoleAnnot :: Name -> Role -> Role -> SDoc badRoleAnnot var annot inferred = hang (text "Role mismatch on variable" <+> ppr var <> colon) 2 (sep [ text "Annotation says", ppr annot , text "but role", ppr inferred , text "is required" ]) wrongNumberOfRoles :: [a] -> LRoleAnnotDecl GhcRn -> SDoc wrongNumberOfRoles tyvars d@(L _ (RoleAnnotDecl _ _ annots)) = hang (text "Wrong number of roles listed in role annotation;" $$ text "Expected" <+> (ppr $ length tyvars) <> comma <+> text "got" <+> (ppr $ length annots) <> colon) 2 (ppr d) wrongNumberOfRoles _ (L _ (XRoleAnnotDecl _)) = panic "wrongNumberOfRoles" illegalRoleAnnotDecl :: LRoleAnnotDecl GhcRn -> TcM () illegalRoleAnnotDecl (L loc (RoleAnnotDecl _ tycon _)) = setErrCtxt [] $ setSrcSpan loc $ addErrTc (text "Illegal role annotation for" <+> ppr tycon <> char ';' $$ text "they are allowed only for datatypes and classes.") illegalRoleAnnotDecl (L _ (XRoleAnnotDecl _)) = panic "illegalRoleAnnotDecl" needXRoleAnnotations :: TyCon -> SDoc needXRoleAnnotations tc = text "Illegal role annotation for" <+> ppr tc <> char ';' $$ text "did you intend to use RoleAnnotations?" incoherentRoles :: SDoc incoherentRoles = (text "Roles other than" <+> quotes (text "nominal") <+> text "for class parameters can lead to incoherence.") $$ (text "Use IncoherentInstances to allow this; bad role found") addTyConCtxt :: TyCon -> TcM a -> TcM a addTyConCtxt tc = addErrCtxt ctxt where name = getName tc flav = ppr (tyConFlavour tc) ctxt = hsep [ text "In the", flav , text "declaration for", quotes (ppr name) ] addRoleAnnotCtxt :: Name -> TcM a -> TcM a addRoleAnnotCtxt name = addErrCtxt $ text "while checking a role annotation for" <+> quotes (ppr name)