{-# LANGUAGE CPP #-} module X86.Regs ( -- squeese functions for the graph allocator virtualRegSqueeze, realRegSqueeze, -- immediates Imm(..), strImmLit, litToImm, -- addressing modes AddrMode(..), addrOffset, -- registers spRel, argRegs, allArgRegs, allIntArgRegs, callClobberedRegs, instrClobberedRegs, allMachRegNos, classOfRealReg, showReg, -- machine specific EABase(..), EAIndex(..), addrModeRegs, eax, ebx, ecx, edx, esi, edi, ebp, esp, fake0, fake1, fake2, fake3, fake4, fake5, firstfake, rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp, r8, r9, r10, r11, r12, r13, r14, r15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm, ripRel, allFPArgRegs, allocatableRegs ) where #include "nativeGen/NCG.h" #include "HsVersions.h" import GhcPrelude import CodeGen.Platform import Reg import RegClass import Cmm import CLabel ( CLabel ) import DynFlags import Outputable import Platform import qualified Data.Array as A -- | regSqueeze_class reg -- Calculate the maximum number of register colors that could be -- denied to a node of this class due to having this reg -- as a neighbour. -- {-# INLINE virtualRegSqueeze #-} virtualRegSqueeze :: RegClass -> VirtualReg -> Int virtualRegSqueeze cls vr = case cls of RcInteger -> case vr of VirtualRegI{} -> 1 VirtualRegHi{} -> 1 _other -> 0 RcDouble -> case vr of VirtualRegD{} -> 1 VirtualRegF{} -> 0 _other -> 0 RcDoubleSSE -> case vr of VirtualRegSSE{} -> 1 _other -> 0 _other -> 0 {-# INLINE realRegSqueeze #-} realRegSqueeze :: RegClass -> RealReg -> Int realRegSqueeze cls rr = case cls of RcInteger -> case rr of RealRegSingle regNo | regNo < firstfake -> 1 | otherwise -> 0 RealRegPair{} -> 0 RcDouble -> case rr of RealRegSingle regNo | regNo >= firstfake && regNo <= lastfake -> 1 | otherwise -> 0 RealRegPair{} -> 0 RcDoubleSSE -> case rr of RealRegSingle regNo | regNo >= firstxmm -> 1 _otherwise -> 0 _other -> 0 -- ----------------------------------------------------------------------------- -- Immediates data Imm = ImmInt Int | ImmInteger Integer -- Sigh. | ImmCLbl CLabel -- AbstractC Label (with baggage) | ImmLit SDoc -- Simple string | ImmIndex CLabel Int | ImmFloat Rational | ImmDouble Rational | ImmConstantSum Imm Imm | ImmConstantDiff Imm Imm strImmLit :: String -> Imm strImmLit s = ImmLit (text s) litToImm :: CmmLit -> Imm litToImm (CmmInt i w) = ImmInteger (narrowS w i) -- narrow to the width: a CmmInt might be out of -- range, but we assume that ImmInteger only contains -- in-range values. A signed value should be fine here. litToImm (CmmFloat f W32) = ImmFloat f litToImm (CmmFloat f W64) = ImmDouble f litToImm (CmmLabel l) = ImmCLbl l litToImm (CmmLabelOff l off) = ImmIndex l off litToImm (CmmLabelDiffOff l1 l2 off _) = ImmConstantSum (ImmConstantDiff (ImmCLbl l1) (ImmCLbl l2)) (ImmInt off) litToImm _ = panic "X86.Regs.litToImm: no match" -- addressing modes ------------------------------------------------------------ data AddrMode = AddrBaseIndex EABase EAIndex Displacement | ImmAddr Imm Int data EABase = EABaseNone | EABaseReg Reg | EABaseRip data EAIndex = EAIndexNone | EAIndex Reg Int type Displacement = Imm addrOffset :: AddrMode -> Int -> Maybe AddrMode addrOffset addr off = case addr of ImmAddr i off0 -> Just (ImmAddr i (off0 + off)) AddrBaseIndex r i (ImmInt n) -> Just (AddrBaseIndex r i (ImmInt (n + off))) AddrBaseIndex r i (ImmInteger n) -> Just (AddrBaseIndex r i (ImmInt (fromInteger (n + toInteger off)))) AddrBaseIndex r i (ImmCLbl lbl) -> Just (AddrBaseIndex r i (ImmIndex lbl off)) AddrBaseIndex r i (ImmIndex lbl ix) -> Just (AddrBaseIndex r i (ImmIndex lbl (ix+off))) _ -> Nothing -- in theory, shouldn't happen addrModeRegs :: AddrMode -> [Reg] addrModeRegs (AddrBaseIndex b i _) = b_regs ++ i_regs where b_regs = case b of { EABaseReg r -> [r]; _ -> [] } i_regs = case i of { EAIndex r _ -> [r]; _ -> [] } addrModeRegs _ = [] -- registers ------------------------------------------------------------------- -- @spRel@ gives us a stack relative addressing mode for volatile -- temporaries and for excess call arguments. @fpRel@, where -- applicable, is the same but for the frame pointer. spRel :: DynFlags -> Int -- ^ desired stack offset in bytes, positive or negative -> AddrMode spRel dflags n | target32Bit (targetPlatform dflags) = AddrBaseIndex (EABaseReg esp) EAIndexNone (ImmInt n) | otherwise = AddrBaseIndex (EABaseReg rsp) EAIndexNone (ImmInt n) -- The register numbers must fit into 32 bits on x86, so that we can -- use a Word32 to represent the set of free registers in the register -- allocator. firstfake, lastfake :: RegNo firstfake = 16 lastfake = 21 firstxmm :: RegNo firstxmm = 24 lastxmm :: Platform -> RegNo lastxmm platform | target32Bit platform = 31 | otherwise = 39 lastint :: Platform -> RegNo lastint platform | target32Bit platform = 7 -- not %r8..%r15 | otherwise = 15 intregnos :: Platform -> [RegNo] intregnos platform = [0 .. lastint platform] fakeregnos :: [RegNo] fakeregnos = [firstfake .. lastfake] xmmregnos :: Platform -> [RegNo] xmmregnos platform = [firstxmm .. lastxmm platform] floatregnos :: Platform -> [RegNo] floatregnos platform = fakeregnos ++ xmmregnos platform -- argRegs is the set of regs which are read for an n-argument call to C. -- For archs which pass all args on the stack (x86), is empty. -- Sparc passes up to the first 6 args in regs. argRegs :: RegNo -> [Reg] argRegs _ = panic "MachRegs.argRegs(x86): should not be used!" -- | The complete set of machine registers. allMachRegNos :: Platform -> [RegNo] allMachRegNos platform = intregnos platform ++ floatregnos platform -- | Take the class of a register. {-# INLINE classOfRealReg #-} classOfRealReg :: Platform -> RealReg -> RegClass -- On x86, we might want to have an 8-bit RegClass, which would -- contain just regs 1-4 (the others don't have 8-bit versions). -- However, we can get away without this at the moment because the -- only allocatable integer regs are also 8-bit compatible (1, 3, 4). classOfRealReg platform reg = case reg of RealRegSingle i | i <= lastint platform -> RcInteger | i <= lastfake -> RcDouble | otherwise -> RcDoubleSSE RealRegPair{} -> panic "X86.Regs.classOfRealReg: RegPairs on this arch" -- | Get the name of the register with this number. showReg :: Platform -> RegNo -> String showReg platform n | n >= firstxmm = "%xmm" ++ show (n-firstxmm) | n >= firstfake = "%fake" ++ show (n-firstfake) | n >= 8 = "%r" ++ show n | otherwise = regNames platform A.! n regNames :: Platform -> A.Array Int String regNames platform = if target32Bit platform then A.listArray (0,8) ["%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp"] else A.listArray (0,8) ["%rax", "%rbx", "%rcx", "%rdx", "%rsi", "%rdi", "%rbp", "%rsp"] -- machine specific ------------------------------------------------------------ {- Intel x86 architecture: - All registers except 7 (esp) are available for use. - Only ebx, esi, edi and esp are available across a C call (they are callee-saves). - Registers 0-7 have 16-bit counterparts (ax, bx etc.) - Registers 0-3 have 8 bit counterparts (ah, bh etc.) - Registers fake0..fake5 are fakes; we pretend x86 has 6 conventionally-addressable fp registers, and 3-operand insns for them, and we translate this into real stack-based x86 fp code after register allocation. The fp registers are all Double registers; we don't have any RcFloat class regs. @regClass@ barfs if you give it a VirtualRegF, and mkVReg above should never generate them. -} fake0, fake1, fake2, fake3, fake4, fake5, eax, ebx, ecx, edx, esp, ebp, esi, edi :: Reg eax = regSingle 0 ebx = regSingle 1 ecx = regSingle 2 edx = regSingle 3 esi = regSingle 4 edi = regSingle 5 ebp = regSingle 6 esp = regSingle 7 fake0 = regSingle 16 fake1 = regSingle 17 fake2 = regSingle 18 fake3 = regSingle 19 fake4 = regSingle 20 fake5 = regSingle 21 {- AMD x86_64 architecture: - All 16 integer registers are addressable as 8, 16, 32 and 64-bit values: 8 16 32 64 --------------------- al ax eax rax bl bx ebx rbx cl cx ecx rcx dl dx edx rdx sil si esi rsi dil si edi rdi bpl bp ebp rbp spl sp esp rsp r10b r10w r10d r10 r11b r11w r11d r11 r12b r12w r12d r12 r13b r13w r13d r13 r14b r14w r14d r14 r15b r15w r15d r15 -} rax, rbx, rcx, rdx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 :: Reg rax = regSingle 0 rbx = regSingle 1 rcx = regSingle 2 rdx = regSingle 3 rsi = regSingle 4 rdi = regSingle 5 rbp = regSingle 6 rsp = regSingle 7 r8 = regSingle 8 r9 = regSingle 9 r10 = regSingle 10 r11 = regSingle 11 r12 = regSingle 12 r13 = regSingle 13 r14 = regSingle 14 r15 = regSingle 15 xmm0 = regSingle 24 xmm1 = regSingle 25 xmm2 = regSingle 26 xmm3 = regSingle 27 xmm4 = regSingle 28 xmm5 = regSingle 29 xmm6 = regSingle 30 xmm7 = regSingle 31 xmm8 = regSingle 32 xmm9 = regSingle 33 xmm10 = regSingle 34 xmm11 = regSingle 35 xmm12 = regSingle 36 xmm13 = regSingle 37 xmm14 = regSingle 38 xmm15 = regSingle 39 ripRel :: Displacement -> AddrMode ripRel imm = AddrBaseIndex EABaseRip EAIndexNone imm -- so we can re-use some x86 code: {- eax = rax ebx = rbx ecx = rcx edx = rdx esi = rsi edi = rdi ebp = rbp esp = rsp -} xmm :: RegNo -> Reg xmm n = regSingle (firstxmm+n) -- | these are the regs which we cannot assume stay alive over a C call. callClobberedRegs :: Platform -> [Reg] -- caller-saves registers callClobberedRegs platform | target32Bit platform = [eax,ecx,edx] ++ map regSingle (floatregnos platform) | platformOS platform == OSMinGW32 = [rax,rcx,rdx,r8,r9,r10,r11] -- Only xmm0-5 are caller-saves registers on 64bit windows. -- ( https://docs.microsoft.com/en-us/cpp/build/register-usage ) -- For details check the Win64 ABI. ++ map regSingle fakeregnos ++ map xmm [0 .. 5] | otherwise -- all xmm regs are caller-saves -- caller-saves registers = [rax,rcx,rdx,rsi,rdi,r8,r9,r10,r11] ++ map regSingle (floatregnos platform) allArgRegs :: Platform -> [(Reg, Reg)] allArgRegs platform | platformOS platform == OSMinGW32 = zip [rcx,rdx,r8,r9] (map regSingle [firstxmm ..]) | otherwise = panic "X86.Regs.allArgRegs: not defined for this arch" allIntArgRegs :: Platform -> [Reg] allIntArgRegs platform | (platformOS platform == OSMinGW32) || target32Bit platform = panic "X86.Regs.allIntArgRegs: not defined for this platform" | otherwise = [rdi,rsi,rdx,rcx,r8,r9] allFPArgRegs :: Platform -> [Reg] allFPArgRegs platform | platformOS platform == OSMinGW32 = panic "X86.Regs.allFPArgRegs: not defined for this platform" | otherwise = map regSingle [firstxmm .. firstxmm+7] -- Machine registers which might be clobbered by instructions that -- generate results into fixed registers, or need arguments in a fixed -- register. instrClobberedRegs :: Platform -> [Reg] instrClobberedRegs platform | target32Bit platform = [ eax, ecx, edx ] | otherwise = [ rax, rcx, rdx ] -- -- allocatableRegs is allMachRegNos with the fixed-use regs removed. -- i.e., these are the regs for which we are prepared to allow the -- register allocator to attempt to map VRegs to. allocatableRegs :: Platform -> [RealReg] allocatableRegs platform = let isFree i = freeReg platform i in map RealRegSingle $ filter isFree (allMachRegNos platform)