{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Desugaring exporessions. -} {-# LANGUAGE CPP, MultiWayIf #-} {-# LANGUAGE TypeFamilies #-} module DsExpr ( dsExpr, dsLExpr, dsLExprNoLP, dsLocalBinds , dsValBinds, dsLit, dsSyntaxExpr ) where #include "HsVersions.h" import GhcPrelude import Match import MatchLit import DsBinds import DsGRHSs import DsListComp import DsUtils import DsArrows import DsMonad import Check ( checkGuardMatches ) import Name import NameEnv import FamInstEnv( topNormaliseType ) import DsMeta import HsSyn -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types import TcType import TcEvidence import TcRnMonad import TcHsSyn import Type import CoreSyn import CoreUtils import MkCore import DynFlags import CostCentre import Id import MkId import Module import ConLike import DataCon import TysWiredIn import PrelNames import BasicTypes import Maybes import VarEnv import SrcLoc import Util import Bag import Outputable import PatSyn import Control.Monad {- ************************************************************************ * * dsLocalBinds, dsValBinds * * ************************************************************************ -} dsLocalBinds :: LHsLocalBinds GhcTc -> CoreExpr -> DsM CoreExpr dsLocalBinds (L _ (EmptyLocalBinds _)) body = return body dsLocalBinds (L loc (HsValBinds _ binds)) body = putSrcSpanDs loc $ dsValBinds binds body dsLocalBinds (L _ (HsIPBinds _ binds)) body = dsIPBinds binds body dsLocalBinds (L _ (XHsLocalBindsLR _)) _ = panic "dsLocalBinds" ------------------------- -- caller sets location dsValBinds :: HsValBinds GhcTc -> CoreExpr -> DsM CoreExpr dsValBinds (XValBindsLR (NValBinds binds _)) body = foldrM ds_val_bind body binds dsValBinds (ValBinds {}) _ = panic "dsValBinds ValBindsIn" ------------------------- dsIPBinds :: HsIPBinds GhcTc -> CoreExpr -> DsM CoreExpr dsIPBinds (IPBinds ev_binds ip_binds) body = do { ds_binds <- dsTcEvBinds ev_binds ; let inner = mkCoreLets ds_binds body -- The dict bindings may not be in -- dependency order; hence Rec ; foldrM ds_ip_bind inner ip_binds } where ds_ip_bind (L _ (IPBind _ ~(Right n) e)) body = do e' <- dsLExpr e return (Let (NonRec n e') body) ds_ip_bind (L _ (XIPBind _)) _ = panic "dsIPBinds" dsIPBinds (XHsIPBinds _) _ = panic "dsIPBinds" ------------------------- -- caller sets location ds_val_bind :: (RecFlag, LHsBinds GhcTc) -> CoreExpr -> DsM CoreExpr -- Special case for bindings which bind unlifted variables -- We need to do a case right away, rather than building -- a tuple and doing selections. -- Silently ignore INLINE and SPECIALISE pragmas... ds_val_bind (NonRecursive, hsbinds) body | [L loc bind] <- bagToList hsbinds -- Non-recursive, non-overloaded bindings only come in ones -- ToDo: in some bizarre case it's conceivable that there -- could be dict binds in the 'binds'. (See the notes -- below. Then pattern-match would fail. Urk.) , isUnliftedHsBind bind = putSrcSpanDs loc $ -- see Note [Strict binds checks] in DsBinds if is_polymorphic bind then errDsCoreExpr (poly_bind_err bind) -- data Ptr a = Ptr Addr# -- f x = let p@(Ptr y) = ... in ... -- Here the binding for 'p' is polymorphic, but does -- not mix with an unlifted binding for 'y'. You should -- use a bang pattern. Trac #6078. else do { when (looksLazyPatBind bind) $ warnIfSetDs Opt_WarnUnbangedStrictPatterns (unlifted_must_be_bang bind) -- Complain about a binding that looks lazy -- e.g. let I# y = x in ... -- Remember, in checkStrictBinds we are going to do strict -- matching, so (for software engineering reasons) we insist -- that the strictness is manifest on each binding -- However, lone (unboxed) variables are ok ; dsUnliftedBind bind body } where is_polymorphic (AbsBinds { abs_tvs = tvs, abs_ev_vars = evs }) = not (null tvs && null evs) is_polymorphic _ = False unlifted_must_be_bang bind = hang (text "Pattern bindings containing unlifted types should use" $$ text "an outermost bang pattern:") 2 (ppr bind) poly_bind_err bind = hang (text "You can't mix polymorphic and unlifted bindings:") 2 (ppr bind) $$ text "Probable fix: add a type signature" ds_val_bind (is_rec, binds) _body | anyBag (isUnliftedHsBind . unLoc) binds -- see Note [Strict binds checks] in DsBinds = ASSERT( isRec is_rec ) errDsCoreExpr $ hang (text "Recursive bindings for unlifted types aren't allowed:") 2 (vcat (map ppr (bagToList binds))) -- Ordinary case for bindings; none should be unlifted ds_val_bind (is_rec, binds) body = do { MASSERT( isRec is_rec || isSingletonBag binds ) -- we should never produce a non-recursive list of multiple binds ; (force_vars,prs) <- dsLHsBinds binds ; let body' = foldr seqVar body force_vars ; ASSERT2( not (any (isUnliftedType . idType . fst) prs), ppr is_rec $$ ppr binds ) case prs of [] -> return body _ -> return (Let (Rec prs) body') } -- Use a Rec regardless of is_rec. -- Why? Because it allows the binds to be all -- mixed up, which is what happens in one rare case -- Namely, for an AbsBind with no tyvars and no dicts, -- but which does have dictionary bindings. -- See notes with TcSimplify.inferLoop [NO TYVARS] -- It turned out that wrapping a Rec here was the easiest solution -- -- NB The previous case dealt with unlifted bindings, so we -- only have to deal with lifted ones now; so Rec is ok ------------------ dsUnliftedBind :: HsBind GhcTc -> CoreExpr -> DsM CoreExpr dsUnliftedBind (AbsBinds { abs_tvs = [], abs_ev_vars = [] , abs_exports = exports , abs_ev_binds = ev_binds , abs_binds = lbinds }) body = do { let body1 = foldr bind_export body exports bind_export export b = bindNonRec (abe_poly export) (Var (abe_mono export)) b ; body2 <- foldlBagM (\body lbind -> dsUnliftedBind (unLoc lbind) body) body1 lbinds ; ds_binds <- dsTcEvBinds_s ev_binds ; return (mkCoreLets ds_binds body2) } dsUnliftedBind (FunBind { fun_id = L l fun , fun_matches = matches , fun_co_fn = co_fn , fun_tick = tick }) body -- Can't be a bang pattern (that looks like a PatBind) -- so must be simply unboxed = do { (args, rhs) <- matchWrapper (mkPrefixFunRhs (L l $ idName fun)) Nothing matches ; MASSERT( null args ) -- Functions aren't lifted ; MASSERT( isIdHsWrapper co_fn ) ; let rhs' = mkOptTickBox tick rhs ; return (bindNonRec fun rhs' body) } dsUnliftedBind (PatBind {pat_lhs = pat, pat_rhs = grhss , pat_ext = NPatBindTc _ ty }) body = -- let C x# y# = rhs in body -- ==> case rhs of C x# y# -> body do { rhs <- dsGuarded grhss ty ; checkGuardMatches PatBindGuards grhss ; let upat = unLoc pat eqn = EqnInfo { eqn_pats = [upat], eqn_rhs = cantFailMatchResult body } ; var <- selectMatchVar upat ; result <- matchEquations PatBindRhs [var] [eqn] (exprType body) ; return (bindNonRec var rhs result) } dsUnliftedBind bind body = pprPanic "dsLet: unlifted" (ppr bind $$ ppr body) {- ************************************************************************ * * \subsection[DsExpr-vars-and-cons]{Variables, constructors, literals} * * ************************************************************************ -} dsLExpr :: LHsExpr GhcTc -> DsM CoreExpr dsLExpr (L loc e) = putSrcSpanDs loc $ do { core_expr <- dsExpr e -- uncomment this check to test the hsExprType function in TcHsSyn -- ; MASSERT2( exprType core_expr `eqType` hsExprType e -- , ppr e <+> dcolon <+> ppr (hsExprType e) $$ -- ppr core_expr <+> dcolon <+> ppr (exprType core_expr) ) ; return core_expr } -- | Variant of 'dsLExpr' that ensures that the result is not levity -- polymorphic. This should be used when the resulting expression will -- be an argument to some other function. -- See Note [Levity polymorphism checking] in DsMonad -- See Note [Levity polymorphism invariants] in CoreSyn dsLExprNoLP :: LHsExpr GhcTc -> DsM CoreExpr dsLExprNoLP (L loc e) = putSrcSpanDs loc $ do { e' <- dsExpr e ; dsNoLevPolyExpr e' (text "In the type of expression:" <+> ppr e) ; return e' } dsExpr :: HsExpr GhcTc -> DsM CoreExpr dsExpr = ds_expr False ds_expr :: Bool -- are we directly inside an HsWrap? -- See Wrinkle in Note [Detecting forced eta expansion] -> HsExpr GhcTc -> DsM CoreExpr ds_expr _ (HsPar _ e) = dsLExpr e ds_expr _ (ExprWithTySig _ e) = dsLExpr e ds_expr w (HsVar _ (L _ var)) = dsHsVar w var ds_expr _ (HsUnboundVar {}) = panic "dsExpr: HsUnboundVar" -- Typechecker eliminates them ds_expr w (HsConLikeOut _ con) = dsConLike w con ds_expr _ (HsIPVar {}) = panic "dsExpr: HsIPVar" ds_expr _ (HsOverLabel{}) = panic "dsExpr: HsOverLabel" ds_expr _ (HsLit _ lit) = dsLit (convertLit lit) ds_expr _ (HsOverLit _ lit) = dsOverLit lit ds_expr _ (HsWrap _ co_fn e) = do { e' <- ds_expr True e -- This is the one place where we recurse to -- ds_expr (passing True), rather than dsExpr ; wrap' <- dsHsWrapper co_fn ; dflags <- getDynFlags ; let wrapped_e = wrap' e' wrapped_ty = exprType wrapped_e ; checkForcedEtaExpansion e wrapped_ty -- See Note [Detecting forced eta expansion] ; warnAboutIdentities dflags e' wrapped_ty ; return wrapped_e } ds_expr _ (NegApp _ (L loc (HsOverLit _ lit@(OverLit { ol_val = HsIntegral i}))) neg_expr) = do { expr' <- putSrcSpanDs loc $ do { dflags <- getDynFlags ; warnAboutOverflowedLiterals dflags (lit { ol_val = HsIntegral (negateIntegralLit i) }) ; dsOverLit' dflags lit } ; dsSyntaxExpr neg_expr [expr'] } ds_expr _ (NegApp _ expr neg_expr) = do { expr' <- dsLExpr expr ; dsSyntaxExpr neg_expr [expr'] } ds_expr _ (HsLam _ a_Match) = uncurry mkLams <$> matchWrapper LambdaExpr Nothing a_Match ds_expr _ (HsLamCase _ matches) = do { ([discrim_var], matching_code) <- matchWrapper CaseAlt Nothing matches ; return $ Lam discrim_var matching_code } ds_expr _ e@(HsApp _ fun arg) = do { fun' <- dsLExpr fun ; dsWhenNoErrs (dsLExprNoLP arg) (\arg' -> mkCoreAppDs (text "HsApp" <+> ppr e) fun' arg') } ds_expr _ (HsAppType _ e) -- ignore type arguments here; they're in the wrappers instead at this point = dsLExpr e {- Note [Desugaring vars] ~~~~~~~~~~~~~~~~~~~~~~ In one situation we can get a *coercion* variable in a HsVar, namely the support method for an equality superclass: class (a~b) => C a b where ... instance (blah) => C (T a) (T b) where .. Then we get $dfCT :: forall ab. blah => C (T a) (T b) $dfCT ab blah = MkC ($c$p1C a blah) ($cop a blah) $c$p1C :: forall ab. blah => (T a ~ T b) $c$p1C ab blah = let ...; g :: T a ~ T b = ... } in g That 'g' in the 'in' part is an evidence variable, and when converting to core it must become a CO. Operator sections. At first it looks as if we can convert \begin{verbatim} (expr op) \end{verbatim} to \begin{verbatim} \x -> op expr x \end{verbatim} But no! expr might be a redex, and we can lose laziness badly this way. Consider \begin{verbatim} map (expr op) xs \end{verbatim} for example. So we convert instead to \begin{verbatim} let y = expr in \x -> op y x \end{verbatim} If \tr{expr} is actually just a variable, say, then the simplifier will sort it out. -} ds_expr _ e@(OpApp _ e1 op e2) = -- for the type of y, we need the type of op's 2nd argument do { op' <- dsLExpr op ; dsWhenNoErrs (mapM dsLExprNoLP [e1, e2]) (\exprs' -> mkCoreAppsDs (text "opapp" <+> ppr e) op' exprs') } ds_expr _ (SectionL _ expr op) -- Desugar (e !) to ((!) e) = do { op' <- dsLExpr op ; dsWhenNoErrs (dsLExprNoLP expr) (\expr' -> mkCoreAppDs (text "sectionl" <+> ppr expr) op' expr') } -- dsLExpr (SectionR op expr) -- \ x -> op x expr ds_expr _ e@(SectionR _ op expr) = do core_op <- dsLExpr op -- for the type of x, we need the type of op's 2nd argument let (x_ty:y_ty:_, _) = splitFunTys (exprType core_op) -- See comment with SectionL y_core <- dsLExpr expr dsWhenNoErrs (mapM newSysLocalDsNoLP [x_ty, y_ty]) (\[x_id, y_id] -> bindNonRec y_id y_core $ Lam x_id (mkCoreAppsDs (text "sectionr" <+> ppr e) core_op [Var x_id, Var y_id])) ds_expr _ (ExplicitTuple _ tup_args boxity) = do { let go (lam_vars, args) (L _ (Missing ty)) -- For every missing expression, we need -- another lambda in the desugaring. = do { lam_var <- newSysLocalDsNoLP ty ; return (lam_var : lam_vars, Var lam_var : args) } go (lam_vars, args) (L _ (Present _ expr)) -- Expressions that are present don't generate -- lambdas, just arguments. = do { core_expr <- dsLExprNoLP expr ; return (lam_vars, core_expr : args) } go _ (L _ (XTupArg {})) = panic "ds_expr" ; dsWhenNoErrs (foldM go ([], []) (reverse tup_args)) -- The reverse is because foldM goes left-to-right (\(lam_vars, args) -> mkCoreLams lam_vars $ mkCoreTupBoxity boxity args) } ds_expr _ (ExplicitSum types alt arity expr) = do { dsWhenNoErrs (dsLExprNoLP expr) (\core_expr -> mkCoreConApps (sumDataCon alt arity) (map (Type . getRuntimeRep) types ++ map Type types ++ [core_expr]) ) } ds_expr _ (HsSCC _ _ cc expr@(L loc _)) = do dflags <- getDynFlags if gopt Opt_SccProfilingOn dflags then do mod_name <- getModule count <- goptM Opt_ProfCountEntries let nm = sl_fs cc flavour <- ExprCC <$> getCCIndexM nm Tick (ProfNote (mkUserCC nm mod_name loc flavour) count True) <$> dsLExpr expr else dsLExpr expr ds_expr _ (HsCoreAnn _ _ _ expr) = dsLExpr expr ds_expr _ (HsCase _ discrim matches) = do { core_discrim <- dsLExpr discrim ; ([discrim_var], matching_code) <- matchWrapper CaseAlt (Just discrim) matches ; return (bindNonRec discrim_var core_discrim matching_code) } -- Pepe: The binds are in scope in the body but NOT in the binding group -- This is to avoid silliness in breakpoints ds_expr _ (HsLet _ binds body) = do body' <- dsLExpr body dsLocalBinds binds body' -- We need the `ListComp' form to use `deListComp' (rather than the "do" form) -- because the interpretation of `stmts' depends on what sort of thing it is. -- ds_expr _ (HsDo res_ty ListComp (L _ stmts)) = dsListComp stmts res_ty ds_expr _ (HsDo _ DoExpr (L _ stmts)) = dsDo stmts ds_expr _ (HsDo _ GhciStmtCtxt (L _ stmts)) = dsDo stmts ds_expr _ (HsDo _ MDoExpr (L _ stmts)) = dsDo stmts ds_expr _ (HsDo _ MonadComp (L _ stmts)) = dsMonadComp stmts ds_expr _ (HsIf _ mb_fun guard_expr then_expr else_expr) = do { pred <- dsLExpr guard_expr ; b1 <- dsLExpr then_expr ; b2 <- dsLExpr else_expr ; case mb_fun of Just fun -> dsSyntaxExpr fun [pred, b1, b2] Nothing -> return $ mkIfThenElse pred b1 b2 } ds_expr _ (HsMultiIf res_ty alts) | null alts = mkErrorExpr | otherwise = do { match_result <- liftM (foldr1 combineMatchResults) (mapM (dsGRHS IfAlt res_ty) alts) ; checkGuardMatches IfAlt (GRHSs noExt alts (noLoc emptyLocalBinds)) ; error_expr <- mkErrorExpr ; extractMatchResult match_result error_expr } where mkErrorExpr = mkErrorAppDs nON_EXHAUSTIVE_GUARDS_ERROR_ID res_ty (text "multi-way if") {- \noindent \underline{\bf Various data construction things} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -} ds_expr _ (ExplicitList elt_ty wit xs) = dsExplicitList elt_ty wit xs ds_expr _ (ArithSeq expr witness seq) = case witness of Nothing -> dsArithSeq expr seq Just fl -> do { newArithSeq <- dsArithSeq expr seq ; dsSyntaxExpr fl [newArithSeq] } {- Static Pointers ~~~~~~~~~~~~~~~ See Note [Grand plan for static forms] in StaticPtrTable for an overview. g = ... static f ... ==> g = ... makeStatic loc f ... -} ds_expr _ (HsStatic _ expr@(L loc _)) = do expr_ds <- dsLExprNoLP expr let ty = exprType expr_ds makeStaticId <- dsLookupGlobalId makeStaticName dflags <- getDynFlags let (line, col) = case loc of RealSrcSpan r -> ( srcLocLine $ realSrcSpanStart r , srcLocCol $ realSrcSpanStart r ) _ -> (0, 0) srcLoc = mkCoreConApps (tupleDataCon Boxed 2) [ Type intTy , Type intTy , mkIntExprInt dflags line, mkIntExprInt dflags col ] putSrcSpanDs loc $ return $ mkCoreApps (Var makeStaticId) [ Type ty, srcLoc, expr_ds ] {- \noindent \underline{\bf Record construction and update} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For record construction we do this (assuming T has three arguments) \begin{verbatim} T { op2 = e } ==> let err = /\a -> recConErr a T (recConErr t1 "M.hs/230/op1") e (recConErr t1 "M.hs/230/op3") \end{verbatim} @recConErr@ then converts its argument string into a proper message before printing it as \begin{verbatim} M.hs, line 230: missing field op1 was evaluated \end{verbatim} We also handle @C{}@ as valid construction syntax for an unlabelled constructor @C@, setting all of @C@'s fields to bottom. -} ds_expr _ (RecordCon { rcon_flds = rbinds , rcon_ext = RecordConTc { rcon_con_expr = con_expr , rcon_con_like = con_like }}) = do { con_expr' <- dsExpr con_expr ; let (arg_tys, _) = tcSplitFunTys (exprType con_expr') -- A newtype in the corner should be opaque; -- hence TcType.tcSplitFunTys mk_arg (arg_ty, fl) = case findField (rec_flds rbinds) (flSelector fl) of (rhs:rhss) -> ASSERT( null rhss ) dsLExprNoLP rhs [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (ppr (flLabel fl)) unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty Outputable.empty labels = conLikeFieldLabels con_like ; con_args <- if null labels then mapM unlabelled_bottom arg_tys else mapM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels) ; return (mkCoreApps con_expr' con_args) } {- Record update is a little harder. Suppose we have the decl: \begin{verbatim} data T = T1 {op1, op2, op3 :: Int} | T2 {op4, op2 :: Int} | T3 \end{verbatim} Then we translate as follows: \begin{verbatim} r { op2 = e } ===> let op2 = e in case r of T1 op1 _ op3 -> T1 op1 op2 op3 T2 op4 _ -> T2 op4 op2 other -> recUpdError "M.hs/230" \end{verbatim} It's important that we use the constructor Ids for @T1@, @T2@ etc on the RHSs, and do not generate a Core constructor application directly, because the constructor might do some argument-evaluation first; and may have to throw away some dictionaries. Note [Update for GADTs] ~~~~~~~~~~~~~~~~~~~~~~~ Consider data T a b where T1 :: { f1 :: a } -> T a Int Then the wrapper function for T1 has type $WT1 :: a -> T a Int But if x::T a b, then x { f1 = v } :: T a b (not T a Int!) So we need to cast (T a Int) to (T a b). Sigh. -} ds_expr _ expr@(RecordUpd { rupd_expr = record_expr, rupd_flds = fields , rupd_ext = RecordUpdTc { rupd_cons = cons_to_upd , rupd_in_tys = in_inst_tys , rupd_out_tys = out_inst_tys , rupd_wrap = dict_req_wrap }} ) | null fields = dsLExpr record_expr | otherwise = ASSERT2( notNull cons_to_upd, ppr expr ) do { record_expr' <- dsLExpr record_expr ; field_binds' <- mapM ds_field fields ; let upd_fld_env :: NameEnv Id -- Maps field name to the LocalId of the field binding upd_fld_env = mkNameEnv [(f,l) | (f,l,_) <- field_binds'] -- It's important to generate the match with matchWrapper, -- and the right hand sides with applications of the wrapper Id -- so that everything works when we are doing fancy unboxing on the -- constructor arguments. ; alts <- mapM (mk_alt upd_fld_env) cons_to_upd ; ([discrim_var], matching_code) <- matchWrapper RecUpd Nothing (MG { mg_alts = noLoc alts , mg_ext = MatchGroupTc [in_ty] out_ty , mg_origin = FromSource }) -- FromSource is not strictly right, but we -- want incomplete pattern-match warnings ; return (add_field_binds field_binds' $ bindNonRec discrim_var record_expr' matching_code) } where ds_field :: LHsRecUpdField GhcTc -> DsM (Name, Id, CoreExpr) -- Clone the Id in the HsRecField, because its Name is that -- of the record selector, and we must not make that a local binder -- else we shadow other uses of the record selector -- Hence 'lcl_id'. Cf Trac #2735 ds_field (L _ rec_field) = do { rhs <- dsLExpr (hsRecFieldArg rec_field) ; let fld_id = unLoc (hsRecUpdFieldId rec_field) ; lcl_id <- newSysLocalDs (idType fld_id) ; return (idName fld_id, lcl_id, rhs) } add_field_binds [] expr = expr add_field_binds ((_,b,r):bs) expr = bindNonRec b r (add_field_binds bs expr) -- Awkwardly, for families, the match goes -- from instance type to family type (in_ty, out_ty) = case (head cons_to_upd) of RealDataCon data_con -> let tycon = dataConTyCon data_con in (mkTyConApp tycon in_inst_tys, mkFamilyTyConApp tycon out_inst_tys) PatSynCon pat_syn -> ( patSynInstResTy pat_syn in_inst_tys , patSynInstResTy pat_syn out_inst_tys) mk_alt upd_fld_env con = do { let (univ_tvs, ex_tvs, eq_spec, prov_theta, _req_theta, arg_tys, _) = conLikeFullSig con user_tvs = case con of RealDataCon data_con -> dataConUserTyVars data_con PatSynCon _ -> univ_tvs ++ ex_tvs -- The order here is because of the order in `TcPatSyn`. in_subst = zipTvSubst univ_tvs in_inst_tys out_subst = zipTvSubst univ_tvs out_inst_tys -- I'm not bothering to clone the ex_tvs ; eqs_vars <- mapM newPredVarDs (substTheta in_subst (eqSpecPreds eq_spec)) ; theta_vars <- mapM newPredVarDs (substTheta in_subst prov_theta) ; arg_ids <- newSysLocalsDs (substTysUnchecked in_subst arg_tys) ; let field_labels = conLikeFieldLabels con val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg field_labels arg_ids mk_val_arg fl pat_arg_id = nlHsVar (lookupNameEnv upd_fld_env (flSelector fl) `orElse` pat_arg_id) inst_con = noLoc $ mkHsWrap wrap (HsConLikeOut noExt con) -- Reconstruct with the WrapId so that unpacking happens wrap = mkWpEvVarApps theta_vars <.> dict_req_wrap <.> mkWpTyApps [ lookupTyVar out_subst tv `orElse` mkTyVarTy tv | tv <- user_tvs , not (tv `elemVarEnv` wrap_subst) ] -- Be sure to use user_tvs (which may be ordered -- differently than `univ_tvs ++ ex_tvs) above. -- See Note [DataCon user type variable binders] -- in DataCon. rhs = foldl (\a b -> nlHsApp a b) inst_con val_args -- Tediously wrap the application in a cast -- Note [Update for GADTs] wrapped_rhs = case con of RealDataCon data_con -> let wrap_co = mkTcTyConAppCo Nominal (dataConTyCon data_con) [ lookup tv ty | (tv,ty) <- univ_tvs `zip` out_inst_tys ] lookup univ_tv ty = case lookupVarEnv wrap_subst univ_tv of Just co' -> co' Nothing -> mkTcReflCo Nominal ty in if null eq_spec then rhs else mkLHsWrap (mkWpCastN wrap_co) rhs -- eq_spec is always null for a PatSynCon PatSynCon _ -> rhs wrap_subst = mkVarEnv [ (tv, mkTcSymCo (mkTcCoVarCo eq_var)) | (spec, eq_var) <- eq_spec `zip` eqs_vars , let tv = eqSpecTyVar spec ] req_wrap = dict_req_wrap <.> mkWpTyApps in_inst_tys pat = noLoc $ ConPatOut { pat_con = noLoc con , pat_tvs = ex_tvs , pat_dicts = eqs_vars ++ theta_vars , pat_binds = emptyTcEvBinds , pat_args = PrefixCon $ map nlVarPat arg_ids , pat_arg_tys = in_inst_tys , pat_wrap = req_wrap } ; return (mkSimpleMatch RecUpd [pat] wrapped_rhs) } -- Here is where we desugar the Template Haskell brackets and escapes -- Template Haskell stuff ds_expr _ (HsRnBracketOut _ _ _) = panic "dsExpr HsRnBracketOut" ds_expr _ (HsTcBracketOut _ x ps) = dsBracket x ps ds_expr _ (HsSpliceE _ s) = pprPanic "dsExpr:splice" (ppr s) -- Arrow notation extension ds_expr _ (HsProc _ pat cmd) = dsProcExpr pat cmd -- Hpc Support ds_expr _ (HsTick _ tickish e) = do e' <- dsLExpr e return (Tick tickish e') -- There is a problem here. The then and else branches -- have no free variables, so they are open to lifting. -- We need someway of stopping this. -- This will make no difference to binary coverage -- (did you go here: YES or NO), but will effect accurate -- tick counting. ds_expr _ (HsBinTick _ ixT ixF e) = do e2 <- dsLExpr e do { ASSERT(exprType e2 `eqType` boolTy) mkBinaryTickBox ixT ixF e2 } ds_expr _ (HsTickPragma _ _ _ _ expr) = do dflags <- getDynFlags if gopt Opt_Hpc dflags then panic "dsExpr:HsTickPragma" else dsLExpr expr -- HsSyn constructs that just shouldn't be here: ds_expr _ (HsBracket {}) = panic "dsExpr:HsBracket" ds_expr _ (HsArrApp {}) = panic "dsExpr:HsArrApp" ds_expr _ (HsArrForm {}) = panic "dsExpr:HsArrForm" ds_expr _ (EWildPat {}) = panic "dsExpr:EWildPat" ds_expr _ (EAsPat {}) = panic "dsExpr:EAsPat" ds_expr _ (EViewPat {}) = panic "dsExpr:EViewPat" ds_expr _ (ELazyPat {}) = panic "dsExpr:ELazyPat" ds_expr _ (HsDo {}) = panic "dsExpr:HsDo" ds_expr _ (HsRecFld {}) = panic "dsExpr:HsRecFld" ds_expr _ (XExpr {}) = panic "dsExpr: XExpr" ------------------------------ dsSyntaxExpr :: SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr dsSyntaxExpr (SyntaxExpr { syn_expr = expr , syn_arg_wraps = arg_wraps , syn_res_wrap = res_wrap }) arg_exprs = do { fun <- dsExpr expr ; core_arg_wraps <- mapM dsHsWrapper arg_wraps ; core_res_wrap <- dsHsWrapper res_wrap ; let wrapped_args = zipWith ($) core_arg_wraps arg_exprs ; dsWhenNoErrs (zipWithM_ dsNoLevPolyExpr wrapped_args [ mk_doc n | n <- [1..] ]) (\_ -> core_res_wrap (mkApps fun wrapped_args)) } where mk_doc n = text "In the" <+> speakNth n <+> text "argument of" <+> quotes (ppr expr) findField :: [LHsRecField GhcTc arg] -> Name -> [arg] findField rbinds sel = [hsRecFieldArg fld | L _ fld <- rbinds , sel == idName (unLoc $ hsRecFieldId fld) ] {- %-------------------------------------------------------------------- Note [Desugaring explicit lists] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Explicit lists are desugared in a cleverer way to prevent some fruitless allocations. Essentially, whenever we see a list literal [x_1, ..., x_n] we generate the corresponding expression in terms of build: Explicit lists (literals) are desugared to allow build/foldr fusion when beneficial. This is a bit of a trade-off, * build/foldr fusion can generate far larger code than the corresponding cons-chain (e.g. see #11707) * even when it doesn't produce more code, build can still fail to fuse, requiring that the simplifier do more work to bring the expression back into cons-chain form; this costs compile time * when it works, fusion can be a significant win. Allocations are reduced by up to 25% in some nofib programs. Specifically, Program Size Allocs Runtime CompTime rewrite +0.0% -26.3% 0.02 -1.8% ansi -0.3% -13.8% 0.00 +0.0% lift +0.0% -8.7% 0.00 -2.3% At the moment we use a simple heuristic to determine whether build will be fruitful: for small lists we assume the benefits of fusion will be worthwhile; for long lists we assume that the benefits will be outweighted by the cost of code duplication. This magic length threshold is @maxBuildLength@. Also, fusion won't work at all if rewrite rules are disabled, so we don't use the build-based desugaring in this case. We used to have a more complex heuristic which would try to break the list into "static" and "dynamic" parts and only build-desugar the dynamic part. Unfortunately, determining "static-ness" reliably is a bit tricky and the heuristic at times produced surprising behavior (see #11710) so it was dropped. -} {- | The longest list length which we will desugar using @build@. This is essentially a magic number and its setting is unfortunate rather arbitrary. The idea here, as mentioned in Note [Desugaring explicit lists], is to avoid deforesting large static data into large(r) code. Ideally we'd want a smaller threshold with larger consumers and vice-versa, but we have no way of knowing what will be consuming our list in the desugaring impossible to set generally correctly. The effect of reducing this number will be that 'build' fusion is applied less often. From a runtime performance perspective, applying 'build' more liberally on "moderately" sized lists should rarely hurt and will often it can only expose further optimization opportunities; if no fusion is possible it will eventually get rule-rewritten back to a list). We do, however, pay in compile time. -} maxBuildLength :: Int maxBuildLength = 32 dsExplicitList :: Type -> Maybe (SyntaxExpr GhcTc) -> [LHsExpr GhcTc] -> DsM CoreExpr -- See Note [Desugaring explicit lists] dsExplicitList elt_ty Nothing xs = do { dflags <- getDynFlags ; xs' <- mapM dsLExprNoLP xs ; if xs' `lengthExceeds` maxBuildLength -- Don't generate builds if the list is very long. || null xs' -- Don't generate builds when the [] constructor will do || not (gopt Opt_EnableRewriteRules dflags) -- Rewrite rules off -- Don't generate a build if there are no rules to eliminate it! -- See Note [Desugaring RULE left hand sides] in Desugar then return $ mkListExpr elt_ty xs' else mkBuildExpr elt_ty (mk_build_list xs') } where mk_build_list xs' (cons, _) (nil, _) = return (foldr (App . App (Var cons)) (Var nil) xs') dsExplicitList elt_ty (Just fln) xs = do { list <- dsExplicitList elt_ty Nothing xs ; dflags <- getDynFlags ; dsSyntaxExpr fln [mkIntExprInt dflags (length xs), list] } dsArithSeq :: PostTcExpr -> (ArithSeqInfo GhcTc) -> DsM CoreExpr dsArithSeq expr (From from) = App <$> dsExpr expr <*> dsLExprNoLP from dsArithSeq expr (FromTo from to) = do dflags <- getDynFlags warnAboutEmptyEnumerations dflags from Nothing to expr' <- dsExpr expr from' <- dsLExprNoLP from to' <- dsLExprNoLP to return $ mkApps expr' [from', to'] dsArithSeq expr (FromThen from thn) = mkApps <$> dsExpr expr <*> mapM dsLExprNoLP [from, thn] dsArithSeq expr (FromThenTo from thn to) = do dflags <- getDynFlags warnAboutEmptyEnumerations dflags from (Just thn) to expr' <- dsExpr expr from' <- dsLExprNoLP from thn' <- dsLExprNoLP thn to' <- dsLExprNoLP to return $ mkApps expr' [from', thn', to'] {- Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're handled in DsListComp). Basically does the translation given in the Haskell 98 report: -} dsDo :: [ExprLStmt GhcTc] -> DsM CoreExpr dsDo stmts = goL stmts where goL [] = panic "dsDo" goL (L loc stmt:lstmts) = putSrcSpanDs loc (go loc stmt lstmts) go _ (LastStmt _ body _ _) stmts = ASSERT( null stmts ) dsLExpr body -- The 'return' op isn't used for 'do' expressions go _ (BodyStmt _ rhs then_expr _) stmts = do { rhs2 <- dsLExpr rhs ; warnDiscardedDoBindings rhs (exprType rhs2) ; rest <- goL stmts ; dsSyntaxExpr then_expr [rhs2, rest] } go _ (LetStmt _ binds) stmts = do { rest <- goL stmts ; dsLocalBinds binds rest } go _ (BindStmt res1_ty pat rhs bind_op fail_op) stmts = do { body <- goL stmts ; rhs' <- dsLExpr rhs ; var <- selectSimpleMatchVarL pat ; match <- matchSinglePatVar var (StmtCtxt DoExpr) pat res1_ty (cantFailMatchResult body) ; match_code <- handle_failure pat match fail_op ; dsSyntaxExpr bind_op [rhs', Lam var match_code] } go _ (ApplicativeStmt body_ty args mb_join) stmts = do { let (pats, rhss) = unzip (map (do_arg . snd) args) do_arg (ApplicativeArgOne _ pat expr _) = (pat, dsLExpr expr) do_arg (ApplicativeArgMany _ stmts ret pat) = (pat, dsDo (stmts ++ [noLoc $ mkLastStmt (noLoc ret)])) do_arg (XApplicativeArg _) = panic "dsDo" arg_tys = map hsLPatType pats ; rhss' <- sequence rhss ; let body' = noLoc $ HsDo body_ty DoExpr (noLoc stmts) ; let fun = L noSrcSpan $ HsLam noExt $ MG { mg_alts = noLoc [mkSimpleMatch LambdaExpr pats body'] , mg_ext = MatchGroupTc arg_tys body_ty , mg_origin = Generated } ; fun' <- dsLExpr fun ; let mk_ap_call l (op,r) = dsSyntaxExpr op [l,r] ; expr <- foldlM mk_ap_call fun' (zip (map fst args) rhss') ; case mb_join of Nothing -> return expr Just join_op -> dsSyntaxExpr join_op [expr] } go loc (RecStmt { recS_stmts = rec_stmts, recS_later_ids = later_ids , recS_rec_ids = rec_ids, recS_ret_fn = return_op , recS_mfix_fn = mfix_op, recS_bind_fn = bind_op , recS_ext = RecStmtTc { recS_bind_ty = bind_ty , recS_rec_rets = rec_rets , recS_ret_ty = body_ty} }) stmts = goL (new_bind_stmt : stmts) -- rec_ids can be empty; eg rec { print 'x' } where new_bind_stmt = L loc $ BindStmt bind_ty (mkBigLHsPatTupId later_pats) mfix_app bind_op noSyntaxExpr -- Tuple cannot fail tup_ids = rec_ids ++ filterOut (`elem` rec_ids) later_ids tup_ty = mkBigCoreTupTy (map idType tup_ids) -- Deals with singleton case rec_tup_pats = map nlVarPat tup_ids later_pats = rec_tup_pats rets = map noLoc rec_rets mfix_app = nlHsSyntaxApps mfix_op [mfix_arg] mfix_arg = noLoc $ HsLam noExt (MG { mg_alts = noLoc [mkSimpleMatch LambdaExpr [mfix_pat] body] , mg_ext = MatchGroupTc [tup_ty] body_ty , mg_origin = Generated }) mfix_pat = noLoc $ LazyPat noExt $ mkBigLHsPatTupId rec_tup_pats body = noLoc $ HsDo body_ty DoExpr (noLoc (rec_stmts ++ [ret_stmt])) ret_app = nlHsSyntaxApps return_op [mkBigLHsTupId rets] ret_stmt = noLoc $ mkLastStmt ret_app -- This LastStmt will be desugared with dsDo, -- which ignores the return_op in the LastStmt, -- so we must apply the return_op explicitly go _ (ParStmt {}) _ = panic "dsDo ParStmt" go _ (TransStmt {}) _ = panic "dsDo TransStmt" go _ (XStmtLR {}) _ = panic "dsDo XStmtLR" handle_failure :: LPat GhcTc -> MatchResult -> SyntaxExpr GhcTc -> DsM CoreExpr -- In a do expression, pattern-match failure just calls -- the monadic 'fail' rather than throwing an exception handle_failure pat match fail_op | matchCanFail match = do { dflags <- getDynFlags ; fail_msg <- mkStringExpr (mk_fail_msg dflags pat) ; fail_expr <- dsSyntaxExpr fail_op [fail_msg] ; extractMatchResult match fail_expr } | otherwise = extractMatchResult match (error "It can't fail") mk_fail_msg :: DynFlags -> Located e -> String mk_fail_msg dflags pat = "Pattern match failure in do expression at " ++ showPpr dflags (getLoc pat) {- ************************************************************************ * * Desugaring Variables * * ************************************************************************ -} dsHsVar :: Bool -- are we directly inside an HsWrap? -- See Wrinkle in Note [Detecting forced eta expansion] -> Id -> DsM CoreExpr dsHsVar w var | not w , let bad_tys = badUseOfLevPolyPrimop var ty , not (null bad_tys) = do { levPolyPrimopErr var ty bad_tys ; return unitExpr } -- return something eminently safe | otherwise = return (varToCoreExpr var) -- See Note [Desugaring vars] where ty = idType var dsConLike :: Bool -- as in dsHsVar -> ConLike -> DsM CoreExpr dsConLike w (RealDataCon dc) = dsHsVar w (dataConWrapId dc) dsConLike _ (PatSynCon ps) = return $ case patSynBuilder ps of Just (id, add_void) | add_void -> mkCoreApp (text "dsConLike" <+> ppr ps) (Var id) (Var voidPrimId) | otherwise -> Var id _ -> pprPanic "dsConLike" (ppr ps) {- ************************************************************************ * * \subsection{Errors and contexts} * * ************************************************************************ -} -- Warn about certain types of values discarded in monadic bindings (#3263) warnDiscardedDoBindings :: LHsExpr GhcTc -> Type -> DsM () warnDiscardedDoBindings rhs rhs_ty | Just (m_ty, elt_ty) <- tcSplitAppTy_maybe rhs_ty = do { warn_unused <- woptM Opt_WarnUnusedDoBind ; warn_wrong <- woptM Opt_WarnWrongDoBind ; when (warn_unused || warn_wrong) $ do { fam_inst_envs <- dsGetFamInstEnvs ; let norm_elt_ty = topNormaliseType fam_inst_envs elt_ty -- Warn about discarding non-() things in 'monadic' binding ; if warn_unused && not (isUnitTy norm_elt_ty) then warnDs (Reason Opt_WarnUnusedDoBind) (badMonadBind rhs elt_ty) else -- Warn about discarding m a things in 'monadic' binding of the same type, -- but only if we didn't already warn due to Opt_WarnUnusedDoBind when warn_wrong $ do { case tcSplitAppTy_maybe norm_elt_ty of Just (elt_m_ty, _) | m_ty `eqType` topNormaliseType fam_inst_envs elt_m_ty -> warnDs (Reason Opt_WarnWrongDoBind) (badMonadBind rhs elt_ty) _ -> return () } } } | otherwise -- RHS does have type of form (m ty), which is weird = return () -- but at lesat this warning is irrelevant badMonadBind :: LHsExpr GhcTc -> Type -> SDoc badMonadBind rhs elt_ty = vcat [ hang (text "A do-notation statement discarded a result of type") 2 (quotes (ppr elt_ty)) , hang (text "Suppress this warning by saying") 2 (quotes $ text "_ <-" <+> ppr rhs) ] {- ************************************************************************ * * Forced eta expansion and levity polymorphism * * ************************************************************************ Note [Detecting forced eta expansion] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We cannot have levity polymorphic function arguments. See Note [Levity polymorphism invariants] in CoreSyn. But we *can* have functions that take levity polymorphism arguments, as long as these functions are eta-reduced. (See #12708 for an example.) However, we absolutely cannot do this for functions that have no binding (i.e., say True to Id.hasNoBinding), like primops and unboxed tuple constructors. These get eta-expanded in CorePrep.maybeSaturate. Detecting when this is about to happen is a bit tricky, though. When the desugarer is looking at the Id itself (let's be concrete and suppose we have (#,#)), we don't know whether it will be levity polymorphic. So the right spot seems to be to look after the Id has been applied to its type arguments. To make the algorithm efficient, it's important to be able to spot ((#,#) @a @b @c @d) without looking past all the type arguments. We thus require that * The body of an HsWrap is not an HsWrap. With that representation invariant, we simply look inside every HsWrap to see if its body is an HsVar whose Id hasNoBinding. Then, we look at the wrapped type. If it has any levity polymorphic arguments, reject. Interestingly, this approach does not look to see whether the Id in question will be eta expanded. The logic is this: * Either the Id in question is saturated or not. * If it is, then it surely can't have levity polymorphic arguments. If its wrapped type contains levity polymorphic arguments, reject. * If it's not, then it can't be eta expanded with levity polymorphic argument. If its wrapped type contains levity polymorphic arguments, reject. So, either way, we're good to reject. Wrinkle ~~~~~~~ Not all polymorphic Ids are wrapped in HsWrap, due to the lazy instantiation of TypeApplications. (See "Visible type application", ESOP '16.) But if we spot a levity-polymorphic hasNoBinding Id without a wrapper, then that is surely problem and we can reject. We thus have a parameter to `dsExpr` that tracks whether or not we are directly in an HsWrap. If we find a levity-polymorphic hasNoBinding Id when we're not directly in an HsWrap, reject. -} -- | Takes an expression and its instantiated type. If the expression is an -- HsVar with a hasNoBinding primop and the type has levity-polymorphic arguments, -- issue an error. See Note [Detecting forced eta expansion] checkForcedEtaExpansion :: HsExpr GhcTc -> Type -> DsM () checkForcedEtaExpansion expr ty | Just var <- case expr of HsVar _ (L _ var) -> Just var HsConLikeOut _ (RealDataCon dc) -> Just (dataConWrapId dc) _ -> Nothing , let bad_tys = badUseOfLevPolyPrimop var ty , not (null bad_tys) = levPolyPrimopErr var ty bad_tys checkForcedEtaExpansion _ _ = return () -- | Is this a hasNoBinding Id with a levity-polymorphic type? -- Returns the arguments that are levity polymorphic if they are bad; -- or an empty list otherwise -- See Note [Detecting forced eta expansion] badUseOfLevPolyPrimop :: Id -> Type -> [Type] badUseOfLevPolyPrimop id ty | hasNoBinding id = filter isTypeLevPoly arg_tys | otherwise = [] where (binders, _) = splitPiTys ty arg_tys = mapMaybe binderRelevantType_maybe binders levPolyPrimopErr :: Id -> Type -> [Type] -> DsM () levPolyPrimopErr primop ty bad_tys = errDs $ vcat [ hang (text "Cannot use primitive with levity-polymorphic arguments:") 2 (ppr primop <+> dcolon <+> pprWithTYPE ty) , hang (text "Levity-polymorphic arguments:") 2 (vcat (map (\t -> pprWithTYPE t <+> dcolon <+> pprWithTYPE (typeKind t)) bad_tys)) ]