{- (c) The University of Glasgow 2006 (c) The AQUA Project, Glasgow University, 1998 \section[TcForeign]{Typechecking \tr{foreign} declarations} A foreign declaration is used to either give an externally implemented function a Haskell type (and calling interface) or give a Haskell function an external calling interface. Either way, the range of argument and result types these functions can accommodate is restricted to what the outside world understands (read C), and this module checks to see if a foreign declaration has got a legal type. -} {-# LANGUAGE CPP #-} {-# LANGUAGE TypeFamilies #-} module TcForeign ( tcForeignImports , tcForeignExports -- Low-level exports for hooks , isForeignImport, isForeignExport , tcFImport, tcFExport , tcForeignImports' , tcCheckFIType, checkCTarget, checkForeignArgs, checkForeignRes , normaliseFfiType , nonIOok, mustBeIO , checkSafe, noCheckSafe , tcForeignExports' , tcCheckFEType ) where #include "HsVersions.h" import GhcPrelude import HsSyn import TcRnMonad import TcHsType import TcExpr import TcEnv import FamInst import FamInstEnv import Coercion import Type import ForeignCall import ErrUtils import Id import Name import RdrName import DataCon import TyCon import TcType import PrelNames import DynFlags import Outputable import Platform import SrcLoc import Bag import Hooks import qualified GHC.LanguageExtensions as LangExt import Control.Monad import Data.Maybe -- Defines a binding isForeignImport :: LForeignDecl name -> Bool isForeignImport (L _ (ForeignImport {})) = True isForeignImport _ = False -- Exports a binding isForeignExport :: LForeignDecl name -> Bool isForeignExport (L _ (ForeignExport {})) = True isForeignExport _ = False {- Note [Don't recur in normaliseFfiType'] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ normaliseFfiType' is the workhorse for normalising a type used in a foreign declaration. If we have newtype Age = MkAge Int we want to see that Age -> IO () is the same as Int -> IO (). But, we don't need to recur on any type parameters, because no paramaterized types (with interesting parameters) are marshalable! The full list of marshalable types is in the body of boxedMarshalableTyCon in TcType. The only members of that list not at kind * are Ptr, FunPtr, and StablePtr, all of which get marshaled the same way regardless of type parameter. So, no need to recur into parameters. Similarly, we don't need to look in AppTy's, because nothing headed by an AppTy will be marshalable. Note [FFI type roles] ~~~~~~~~~~~~~~~~~~~~~ The 'go' helper function within normaliseFfiType' always produces representational coercions. But, in the "children_only" case, we need to use these coercions in a TyConAppCo. Accordingly, the roles on the coercions must be twiddled to match the expectation of the enclosing TyCon. However, we cannot easily go from an R coercion to an N one, so we forbid N roles on FFI type constructors. Currently, only two such type constructors exist: IO and FunPtr. Thus, this is not an onerous burden. If we ever want to lift this restriction, we would need to make 'go' take the target role as a parameter. This wouldn't be hard, but it's a complication not yet necessary and so is not yet implemented. -} -- normaliseFfiType takes the type from an FFI declaration, and -- evaluates any type synonyms, type functions, and newtypes. However, -- we are only allowed to look through newtypes if the constructor is -- in scope. We return a bag of all the newtype constructors thus found. -- Always returns a Representational coercion normaliseFfiType :: Type -> TcM (Coercion, Type, Bag GlobalRdrElt) normaliseFfiType ty = do fam_envs <- tcGetFamInstEnvs normaliseFfiType' fam_envs ty normaliseFfiType' :: FamInstEnvs -> Type -> TcM (Coercion, Type, Bag GlobalRdrElt) normaliseFfiType' env ty0 = go initRecTc ty0 where go :: RecTcChecker -> Type -> TcM (Coercion, Type, Bag GlobalRdrElt) go rec_nts ty | Just ty' <- tcView ty -- Expand synonyms = go rec_nts ty' | Just (tc, tys) <- splitTyConApp_maybe ty = go_tc_app rec_nts tc tys | (bndrs, inner_ty) <- splitForAllTyVarBndrs ty , not (null bndrs) = do (coi, nty1, gres1) <- go rec_nts inner_ty return ( mkHomoForAllCos (binderVars bndrs) coi , mkForAllTys bndrs nty1, gres1 ) | otherwise -- see Note [Don't recur in normaliseFfiType'] = return (mkRepReflCo ty, ty, emptyBag) go_tc_app :: RecTcChecker -> TyCon -> [Type] -> TcM (Coercion, Type, Bag GlobalRdrElt) go_tc_app rec_nts tc tys -- We don't want to look through the IO newtype, even if it is -- in scope, so we have a special case for it: | tc_key `elem` [ioTyConKey, funPtrTyConKey, funTyConKey] -- These *must not* have nominal roles on their parameters! -- See Note [FFI type roles] = children_only | isNewTyCon tc -- Expand newtypes , Just rec_nts' <- checkRecTc rec_nts tc -- See Note [Expanding newtypes] in TyCon.hs -- We can't just use isRecursiveTyCon; sometimes recursion is ok: -- newtype T = T (Ptr T) -- Here, we don't reject the type for being recursive. -- If this is a recursive newtype then it will normally -- be rejected later as not being a valid FFI type. = do { rdr_env <- getGlobalRdrEnv ; case checkNewtypeFFI rdr_env tc of Nothing -> nothing Just gre -> do { (co', ty', gres) <- go rec_nts' nt_rhs ; return (mkTransCo nt_co co', ty', gre `consBag` gres) } } | isFamilyTyCon tc -- Expand open tycons , (co, ty) <- normaliseTcApp env Representational tc tys , not (isReflexiveCo co) = do (co', ty', gres) <- go rec_nts ty return (mkTransCo co co', ty', gres) | otherwise = nothing -- see Note [Don't recur in normaliseFfiType'] where tc_key = getUnique tc children_only = do xs <- mapM (go rec_nts) tys let (cos, tys', gres) = unzip3 xs -- the (repeat Representational) is because 'go' always -- returns R coercions cos' = zipWith3 downgradeRole (tyConRoles tc) (repeat Representational) cos return ( mkTyConAppCo Representational tc cos' , mkTyConApp tc tys', unionManyBags gres) nt_co = mkUnbranchedAxInstCo Representational (newTyConCo tc) tys [] nt_rhs = newTyConInstRhs tc tys ty = mkTyConApp tc tys nothing = return (mkRepReflCo ty, ty, emptyBag) checkNewtypeFFI :: GlobalRdrEnv -> TyCon -> Maybe GlobalRdrElt checkNewtypeFFI rdr_env tc | Just con <- tyConSingleDataCon_maybe tc , Just gre <- lookupGRE_Name rdr_env (dataConName con) = Just gre -- See Note [Newtype constructor usage in foreign declarations] | otherwise = Nothing {- Note [Newtype constructor usage in foreign declarations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GHC automatically "unwraps" newtype constructors in foreign import/export declarations. In effect that means that a newtype data constructor is used even though it is not mentioned expclitly in the source, so we don't want to report it as "defined but not used" or "imported but not used". eg newtype D = MkD Int foreign import foo :: D -> IO () Here 'MkD' us used. See Trac #7408. GHC also expands type functions during this process, so it's not enough just to look at the free variables of the declaration. eg type instance F Bool = D foreign import bar :: F Bool -> IO () Here again 'MkD' is used. So we really have wait until the type checker to decide what is used. That's why tcForeignImports and tecForeignExports return a (Bag GRE) for the newtype constructors they see. Then TcRnDriver can add them to the module's usages. ************************************************************************ * * \subsection{Imports} * * ************************************************************************ -} tcForeignImports :: [LForeignDecl GhcRn] -> TcM ([Id], [LForeignDecl GhcTc], Bag GlobalRdrElt) tcForeignImports decls = getHooked tcForeignImportsHook tcForeignImports' >>= ($ decls) tcForeignImports' :: [LForeignDecl GhcRn] -> TcM ([Id], [LForeignDecl GhcTc], Bag GlobalRdrElt) -- For the (Bag GlobalRdrElt) result, -- see Note [Newtype constructor usage in foreign declarations] tcForeignImports' decls = do { (ids, decls, gres) <- mapAndUnzip3M tcFImport $ filter isForeignImport decls ; return (ids, decls, unionManyBags gres) } tcFImport :: LForeignDecl GhcRn -> TcM (Id, LForeignDecl GhcTc, Bag GlobalRdrElt) tcFImport (L dloc fo@(ForeignImport { fd_name = L nloc nm, fd_sig_ty = hs_ty , fd_fi = imp_decl })) = setSrcSpan dloc $ addErrCtxt (foreignDeclCtxt fo) $ do { sig_ty <- tcHsSigType (ForSigCtxt nm) hs_ty ; (norm_co, norm_sig_ty, gres) <- normaliseFfiType sig_ty ; let -- Drop the foralls before inspecting the -- structure of the foreign type. (bndrs, res_ty) = tcSplitPiTys norm_sig_ty arg_tys = mapMaybe binderRelevantType_maybe bndrs id = mkLocalId nm sig_ty -- Use a LocalId to obey the invariant that locally-defined -- things are LocalIds. However, it does not need zonking, -- (so TcHsSyn.zonkForeignExports ignores it). ; imp_decl' <- tcCheckFIType arg_tys res_ty imp_decl -- Can't use sig_ty here because sig_ty :: Type and -- we need HsType Id hence the undefined ; let fi_decl = ForeignImport { fd_name = L nloc id , fd_sig_ty = undefined , fd_co = mkSymCo norm_co , fd_fi = imp_decl' } ; return (id, L dloc fi_decl, gres) } tcFImport d = pprPanic "tcFImport" (ppr d) -- ------------ Checking types for foreign import ---------------------- tcCheckFIType :: [Type] -> Type -> ForeignImport -> TcM ForeignImport tcCheckFIType arg_tys res_ty (CImport (L lc cconv) safety mh l@(CLabel _) src) -- Foreign import label = do checkCg checkCOrAsmOrLlvmOrInterp -- NB check res_ty not sig_ty! -- In case sig_ty is (forall a. ForeignPtr a) check (isFFILabelTy (mkFunTys arg_tys res_ty)) (illegalForeignTyErr Outputable.empty) cconv' <- checkCConv cconv return (CImport (L lc cconv') safety mh l src) tcCheckFIType arg_tys res_ty (CImport (L lc cconv) safety mh CWrapper src) = do -- Foreign wrapper (former f.e.d.) -- The type must be of the form ft -> IO (FunPtr ft), where ft is a valid -- foreign type. For legacy reasons ft -> IO (Ptr ft) is accepted, too. -- The use of the latter form is DEPRECATED, though. checkCg checkCOrAsmOrLlvmOrInterp cconv' <- checkCConv cconv case arg_tys of [arg1_ty] -> do checkForeignArgs isFFIExternalTy arg1_tys checkForeignRes nonIOok checkSafe isFFIExportResultTy res1_ty checkForeignRes mustBeIO checkSafe (isFFIDynTy arg1_ty) res_ty where (arg1_tys, res1_ty) = tcSplitFunTys arg1_ty _ -> addErrTc (illegalForeignTyErr Outputable.empty (text "One argument expected")) return (CImport (L lc cconv') safety mh CWrapper src) tcCheckFIType arg_tys res_ty idecl@(CImport (L lc cconv) (L ls safety) mh (CFunction target) src) | isDynamicTarget target = do -- Foreign import dynamic checkCg checkCOrAsmOrLlvmOrInterp cconv' <- checkCConv cconv case arg_tys of -- The first arg must be Ptr or FunPtr [] -> addErrTc (illegalForeignTyErr Outputable.empty (text "At least one argument expected")) (arg1_ty:arg_tys) -> do dflags <- getDynFlags let curried_res_ty = mkFunTys arg_tys res_ty check (isFFIDynTy curried_res_ty arg1_ty) (illegalForeignTyErr argument) checkForeignArgs (isFFIArgumentTy dflags safety) arg_tys checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) res_ty return $ CImport (L lc cconv') (L ls safety) mh (CFunction target) src | cconv == PrimCallConv = do dflags <- getDynFlags checkTc (xopt LangExt.GHCForeignImportPrim dflags) (text "Use GHCForeignImportPrim to allow `foreign import prim'.") checkCg checkCOrAsmOrLlvmOrInterp checkCTarget target checkTc (playSafe safety) (text "The safe/unsafe annotation should not be used with `foreign import prim'.") checkForeignArgs (isFFIPrimArgumentTy dflags) arg_tys -- prim import result is more liberal, allows (#,,#) checkForeignRes nonIOok checkSafe (isFFIPrimResultTy dflags) res_ty return idecl | otherwise = do -- Normal foreign import checkCg checkCOrAsmOrLlvmOrInterp cconv' <- checkCConv cconv checkCTarget target dflags <- getDynFlags checkForeignArgs (isFFIArgumentTy dflags safety) arg_tys checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) res_ty checkMissingAmpersand dflags arg_tys res_ty case target of StaticTarget _ _ _ False | not (null arg_tys) -> addErrTc (text "`value' imports cannot have function types") _ -> return () return $ CImport (L lc cconv') (L ls safety) mh (CFunction target) src -- This makes a convenient place to check -- that the C identifier is valid for C checkCTarget :: CCallTarget -> TcM () checkCTarget (StaticTarget _ str _ _) = do checkCg checkCOrAsmOrLlvmOrInterp checkTc (isCLabelString str) (badCName str) checkCTarget DynamicTarget = panic "checkCTarget DynamicTarget" checkMissingAmpersand :: DynFlags -> [Type] -> Type -> TcM () checkMissingAmpersand dflags arg_tys res_ty | null arg_tys && isFunPtrTy res_ty && wopt Opt_WarnDodgyForeignImports dflags = addWarn (Reason Opt_WarnDodgyForeignImports) (text "possible missing & in foreign import of FunPtr") | otherwise = return () {- ************************************************************************ * * \subsection{Exports} * * ************************************************************************ -} tcForeignExports :: [LForeignDecl GhcRn] -> TcM (LHsBinds GhcTcId, [LForeignDecl GhcTcId], Bag GlobalRdrElt) tcForeignExports decls = getHooked tcForeignExportsHook tcForeignExports' >>= ($ decls) tcForeignExports' :: [LForeignDecl GhcRn] -> TcM (LHsBinds GhcTcId, [LForeignDecl GhcTcId], Bag GlobalRdrElt) -- For the (Bag GlobalRdrElt) result, -- see Note [Newtype constructor usage in foreign declarations] tcForeignExports' decls = foldlM combine (emptyLHsBinds, [], emptyBag) (filter isForeignExport decls) where combine (binds, fs, gres1) (L loc fe) = do (b, f, gres2) <- setSrcSpan loc (tcFExport fe) return (b `consBag` binds, L loc f : fs, gres1 `unionBags` gres2) tcFExport :: ForeignDecl GhcRn -> TcM (LHsBind GhcTc, ForeignDecl GhcTc, Bag GlobalRdrElt) tcFExport fo@(ForeignExport { fd_name = L loc nm, fd_sig_ty = hs_ty, fd_fe = spec }) = addErrCtxt (foreignDeclCtxt fo) $ do sig_ty <- tcHsSigType (ForSigCtxt nm) hs_ty rhs <- tcPolyExpr (nlHsVar nm) sig_ty (norm_co, norm_sig_ty, gres) <- normaliseFfiType sig_ty spec' <- tcCheckFEType norm_sig_ty spec -- we're exporting a function, but at a type possibly more -- constrained than its declared/inferred type. Hence the need -- to create a local binding which will call the exported function -- at a particular type (and, maybe, overloading). -- We need to give a name to the new top-level binding that -- is *stable* (i.e. the compiler won't change it later), -- because this name will be referred to by the C code stub. id <- mkStableIdFromName nm sig_ty loc mkForeignExportOcc return ( mkVarBind id rhs , ForeignExport { fd_name = L loc id , fd_sig_ty = undefined , fd_co = norm_co, fd_fe = spec' } , gres) tcFExport d = pprPanic "tcFExport" (ppr d) -- ------------ Checking argument types for foreign export ---------------------- tcCheckFEType :: Type -> ForeignExport -> TcM ForeignExport tcCheckFEType sig_ty (CExport (L l (CExportStatic esrc str cconv)) src) = do checkCg checkCOrAsmOrLlvm checkTc (isCLabelString str) (badCName str) cconv' <- checkCConv cconv checkForeignArgs isFFIExternalTy arg_tys checkForeignRes nonIOok noCheckSafe isFFIExportResultTy res_ty return (CExport (L l (CExportStatic esrc str cconv')) src) where -- Drop the foralls before inspecting n -- the structure of the foreign type. (bndrs, res_ty) = tcSplitPiTys sig_ty arg_tys = mapMaybe binderRelevantType_maybe bndrs {- ************************************************************************ * * \subsection{Miscellaneous} * * ************************************************************************ -} ------------ Checking argument types for foreign import ---------------------- checkForeignArgs :: (Type -> Validity) -> [Type] -> TcM () checkForeignArgs pred tys = mapM_ go tys where go ty = check (pred ty) (illegalForeignTyErr argument) ------------ Checking result types for foreign calls ---------------------- -- | Check that the type has the form -- (IO t) or (t) , and that t satisfies the given predicate. -- When calling this function, any newtype wrappers (should) have been -- already dealt with by normaliseFfiType. -- -- We also check that the Safe Haskell condition of FFI imports having -- results in the IO monad holds. -- checkForeignRes :: Bool -> Bool -> (Type -> Validity) -> Type -> TcM () checkForeignRes non_io_result_ok check_safe pred_res_ty ty | Just (_, res_ty) <- tcSplitIOType_maybe ty = -- Got an IO result type, that's always fine! check (pred_res_ty res_ty) (illegalForeignTyErr result) -- Case for non-IO result type with FFI Import | not non_io_result_ok = addErrTc $ illegalForeignTyErr result (text "IO result type expected") | otherwise = do { dflags <- getDynFlags ; case pred_res_ty ty of -- Handle normal typecheck fail, we want to handle this first and -- only report safe haskell errors if the normal type check is OK. NotValid msg -> addErrTc $ illegalForeignTyErr result msg -- handle safe infer fail _ | check_safe && safeInferOn dflags -> recordUnsafeInfer emptyBag -- handle safe language typecheck fail _ | check_safe && safeLanguageOn dflags -> addErrTc (illegalForeignTyErr result safeHsErr) -- success! non-IO return is fine _ -> return () } where safeHsErr = text "Safe Haskell is on, all FFI imports must be in the IO monad" nonIOok, mustBeIO :: Bool nonIOok = True mustBeIO = False checkSafe, noCheckSafe :: Bool checkSafe = True noCheckSafe = False -- Checking a supported backend is in use checkCOrAsmOrLlvm :: HscTarget -> Validity checkCOrAsmOrLlvm HscC = IsValid checkCOrAsmOrLlvm HscAsm = IsValid checkCOrAsmOrLlvm HscLlvm = IsValid checkCOrAsmOrLlvm _ = NotValid (text "requires unregisterised, llvm (-fllvm) or native code generation (-fasm)") checkCOrAsmOrLlvmOrInterp :: HscTarget -> Validity checkCOrAsmOrLlvmOrInterp HscC = IsValid checkCOrAsmOrLlvmOrInterp HscAsm = IsValid checkCOrAsmOrLlvmOrInterp HscLlvm = IsValid checkCOrAsmOrLlvmOrInterp HscInterpreted = IsValid checkCOrAsmOrLlvmOrInterp _ = NotValid (text "requires interpreted, unregisterised, llvm or native code generation") checkCg :: (HscTarget -> Validity) -> TcM () checkCg check = do dflags <- getDynFlags let target = hscTarget dflags case target of HscNothing -> return () _ -> case check target of IsValid -> return () NotValid err -> addErrTc (text "Illegal foreign declaration:" <+> err) -- Calling conventions checkCConv :: CCallConv -> TcM CCallConv checkCConv CCallConv = return CCallConv checkCConv CApiConv = return CApiConv checkCConv StdCallConv = do dflags <- getDynFlags let platform = targetPlatform dflags if platformArch platform == ArchX86 then return StdCallConv else do -- This is a warning, not an error. see #3336 when (wopt Opt_WarnUnsupportedCallingConventions dflags) $ addWarnTc (Reason Opt_WarnUnsupportedCallingConventions) (text "the 'stdcall' calling convention is unsupported on this platform," $$ text "treating as ccall") return CCallConv checkCConv PrimCallConv = do addErrTc (text "The `prim' calling convention can only be used with `foreign import'") return PrimCallConv checkCConv JavaScriptCallConv = do dflags <- getDynFlags if platformArch (targetPlatform dflags) == ArchJavaScript then return JavaScriptCallConv else do addErrTc (text "The `javascript' calling convention is unsupported on this platform") return JavaScriptCallConv -- Warnings check :: Validity -> (MsgDoc -> MsgDoc) -> TcM () check IsValid _ = return () check (NotValid doc) err_fn = addErrTc (err_fn doc) illegalForeignTyErr :: SDoc -> SDoc -> SDoc illegalForeignTyErr arg_or_res extra = hang msg 2 extra where msg = hsep [ text "Unacceptable", arg_or_res , text "type in foreign declaration:"] -- Used for 'arg_or_res' argument to illegalForeignTyErr argument, result :: SDoc argument = text "argument" result = text "result" badCName :: CLabelString -> MsgDoc badCName target = sep [quotes (ppr target) <+> text "is not a valid C identifier"] foreignDeclCtxt :: ForeignDecl GhcRn -> SDoc foreignDeclCtxt fo = hang (text "When checking declaration:") 2 (ppr fo)