{- (c) The AQUA Project, Glasgow University, 1993-1998 \section[CoreMonad]{The core pipeline monad} -} {-# LANGUAGE CPP #-} module CoreMonad ( -- * Configuration of the core-to-core passes CoreToDo(..), runWhen, runMaybe, SimplMode(..), FloatOutSwitches(..), pprPassDetails, -- * Plugins PluginPass, bindsOnlyPass, -- * Counting SimplCount, doSimplTick, doFreeSimplTick, simplCountN, pprSimplCount, plusSimplCount, zeroSimplCount, isZeroSimplCount, hasDetailedCounts, Tick(..), -- * The monad CoreM, runCoreM, -- ** Reading from the monad getHscEnv, getRuleBase, getModule, getDynFlags, getOrigNameCache, getPackageFamInstEnv, getVisibleOrphanMods, getPrintUnqualified, getSrcSpanM, -- ** Writing to the monad addSimplCount, -- ** Lifting into the monad liftIO, liftIOWithCount, liftIO1, liftIO2, liftIO3, liftIO4, -- ** Global initialization reinitializeGlobals, -- ** Dealing with annotations getAnnotations, getFirstAnnotations, -- ** Screen output putMsg, putMsgS, errorMsg, errorMsgS, warnMsg, fatalErrorMsg, fatalErrorMsgS, debugTraceMsg, debugTraceMsgS, dumpIfSet_dyn, -- * Getting 'Name's thNameToGhcName ) where import GhcPrelude hiding ( read ) import Name( Name ) import TcRnMonad ( initTcForLookup ) import CoreSyn import HscTypes import Module import DynFlags import BasicTypes ( CompilerPhase(..) ) import Annotations import IOEnv hiding ( liftIO, failM, failWithM ) import qualified IOEnv ( liftIO ) import TcEnv ( lookupGlobal ) import Var import Outputable import FastString import qualified ErrUtils as Err import ErrUtils( Severity(..) ) import UniqSupply import UniqFM ( UniqFM, mapUFM, filterUFM ) import MonadUtils import NameCache import SrcLoc import Data.List import Data.Ord import Data.Dynamic import Data.IORef import Data.Map (Map) import qualified Data.Map as Map import qualified Data.Map.Strict as MapStrict import Data.Word import Control.Monad import Control.Applicative ( Alternative(..) ) import {-# SOURCE #-} TcSplice ( lookupThName_maybe ) import qualified Language.Haskell.TH as TH {- ************************************************************************ * * The CoreToDo type and related types Abstraction of core-to-core passes to run. * * ************************************************************************ -} data CoreToDo -- These are diff core-to-core passes, -- which may be invoked in any order, -- as many times as you like. = CoreDoSimplify -- The core-to-core simplifier. Int -- Max iterations SimplMode | CoreDoPluginPass String PluginPass | CoreDoFloatInwards | CoreDoFloatOutwards FloatOutSwitches | CoreLiberateCase | CoreDoPrintCore | CoreDoStaticArgs | CoreDoCallArity | CoreDoExitify | CoreDoStrictness | CoreDoWorkerWrapper | CoreDoSpecialising | CoreDoSpecConstr | CoreCSE | CoreDoRuleCheck CompilerPhase String -- Check for non-application of rules -- matching this string | CoreDoVectorisation | CoreDoNothing -- Useful when building up | CoreDoPasses [CoreToDo] -- lists of these things | CoreDesugar -- Right after desugaring, no simple optimisation yet! | CoreDesugarOpt -- CoreDesugarXXX: Not strictly a core-to-core pass, but produces -- Core output, and hence useful to pass to endPass | CoreTidy | CorePrep | CoreOccurAnal instance Outputable CoreToDo where ppr (CoreDoSimplify _ _) = text "Simplifier" ppr (CoreDoPluginPass s _) = text "Core plugin: " <+> text s ppr CoreDoFloatInwards = text "Float inwards" ppr (CoreDoFloatOutwards f) = text "Float out" <> parens (ppr f) ppr CoreLiberateCase = text "Liberate case" ppr CoreDoStaticArgs = text "Static argument" ppr CoreDoCallArity = text "Called arity analysis" ppr CoreDoExitify = text "Exitification transformation" ppr CoreDoStrictness = text "Demand analysis" ppr CoreDoWorkerWrapper = text "Worker Wrapper binds" ppr CoreDoSpecialising = text "Specialise" ppr CoreDoSpecConstr = text "SpecConstr" ppr CoreCSE = text "Common sub-expression" ppr CoreDoVectorisation = text "Vectorisation" ppr CoreDesugar = text "Desugar (before optimization)" ppr CoreDesugarOpt = text "Desugar (after optimization)" ppr CoreTidy = text "Tidy Core" ppr CorePrep = text "CorePrep" ppr CoreOccurAnal = text "Occurrence analysis" ppr CoreDoPrintCore = text "Print core" ppr (CoreDoRuleCheck {}) = text "Rule check" ppr CoreDoNothing = text "CoreDoNothing" ppr (CoreDoPasses passes) = text "CoreDoPasses" <+> ppr passes pprPassDetails :: CoreToDo -> SDoc pprPassDetails (CoreDoSimplify n md) = vcat [ text "Max iterations =" <+> int n , ppr md ] pprPassDetails _ = Outputable.empty data SimplMode -- See comments in SimplMonad = SimplMode { sm_names :: [String] -- Name(s) of the phase , sm_phase :: CompilerPhase , sm_dflags :: DynFlags -- Just for convenient non-monadic -- access; we don't override these , sm_rules :: Bool -- Whether RULES are enabled , sm_inline :: Bool -- Whether inlining is enabled , sm_case_case :: Bool -- Whether case-of-case is enabled , sm_eta_expand :: Bool -- Whether eta-expansion is enabled } instance Outputable SimplMode where ppr (SimplMode { sm_phase = p, sm_names = ss , sm_rules = r, sm_inline = i , sm_eta_expand = eta, sm_case_case = cc }) = text "SimplMode" <+> braces ( sep [ text "Phase =" <+> ppr p <+> brackets (text (concat $ intersperse "," ss)) <> comma , pp_flag i (sLit "inline") <> comma , pp_flag r (sLit "rules") <> comma , pp_flag eta (sLit "eta-expand") <> comma , pp_flag cc (sLit "case-of-case") ]) where pp_flag f s = ppUnless f (text "no") <+> ptext s data FloatOutSwitches = FloatOutSwitches { floatOutLambdas :: Maybe Int, -- ^ Just n <=> float lambdas to top level, if -- doing so will abstract over n or fewer -- value variables -- Nothing <=> float all lambdas to top level, -- regardless of how many free variables -- Just 0 is the vanilla case: float a lambda -- iff it has no free vars floatOutConstants :: Bool, -- ^ True <=> float constants to top level, -- even if they do not escape a lambda floatOutOverSatApps :: Bool, -- ^ True <=> float out over-saturated applications -- based on arity information. -- See Note [Floating over-saturated applications] -- in SetLevels floatToTopLevelOnly :: Bool -- ^ Allow floating to the top level only. } instance Outputable FloatOutSwitches where ppr = pprFloatOutSwitches pprFloatOutSwitches :: FloatOutSwitches -> SDoc pprFloatOutSwitches sw = text "FOS" <+> (braces $ sep $ punctuate comma $ [ text "Lam =" <+> ppr (floatOutLambdas sw) , text "Consts =" <+> ppr (floatOutConstants sw) , text "OverSatApps =" <+> ppr (floatOutOverSatApps sw) ]) -- The core-to-core pass ordering is derived from the DynFlags: runWhen :: Bool -> CoreToDo -> CoreToDo runWhen True do_this = do_this runWhen False _ = CoreDoNothing runMaybe :: Maybe a -> (a -> CoreToDo) -> CoreToDo runMaybe (Just x) f = f x runMaybe Nothing _ = CoreDoNothing {- ************************************************************************ * * Types for Plugins * * ************************************************************************ -} -- | A description of the plugin pass itself type PluginPass = ModGuts -> CoreM ModGuts bindsOnlyPass :: (CoreProgram -> CoreM CoreProgram) -> ModGuts -> CoreM ModGuts bindsOnlyPass pass guts = do { binds' <- pass (mg_binds guts) ; return (guts { mg_binds = binds' }) } {- ************************************************************************ * * Counting and logging * * ************************************************************************ -} getVerboseSimplStats :: (Bool -> SDoc) -> SDoc getVerboseSimplStats = getPprDebug -- For now, anyway zeroSimplCount :: DynFlags -> SimplCount isZeroSimplCount :: SimplCount -> Bool hasDetailedCounts :: SimplCount -> Bool pprSimplCount :: SimplCount -> SDoc doSimplTick :: DynFlags -> Tick -> SimplCount -> SimplCount doFreeSimplTick :: Tick -> SimplCount -> SimplCount plusSimplCount :: SimplCount -> SimplCount -> SimplCount data SimplCount = VerySimplCount !Int -- Used when don't want detailed stats | SimplCount { ticks :: !Int, -- Total ticks details :: !TickCounts, -- How many of each type n_log :: !Int, -- N log1 :: [Tick], -- Last N events; <= opt_HistorySize, -- most recent first log2 :: [Tick] -- Last opt_HistorySize events before that -- Having log1, log2 lets us accumulate the -- recent history reasonably efficiently } type TickCounts = Map Tick Int simplCountN :: SimplCount -> Int simplCountN (VerySimplCount n) = n simplCountN (SimplCount { ticks = n }) = n zeroSimplCount dflags -- This is where we decide whether to do -- the VerySimpl version or the full-stats version | dopt Opt_D_dump_simpl_stats dflags = SimplCount {ticks = 0, details = Map.empty, n_log = 0, log1 = [], log2 = []} | otherwise = VerySimplCount 0 isZeroSimplCount (VerySimplCount n) = n==0 isZeroSimplCount (SimplCount { ticks = n }) = n==0 hasDetailedCounts (VerySimplCount {}) = False hasDetailedCounts (SimplCount {}) = True doFreeSimplTick tick sc@SimplCount { details = dts } = sc { details = dts `addTick` tick } doFreeSimplTick _ sc = sc doSimplTick dflags tick sc@(SimplCount { ticks = tks, details = dts, n_log = nl, log1 = l1 }) | nl >= historySize dflags = sc1 { n_log = 1, log1 = [tick], log2 = l1 } | otherwise = sc1 { n_log = nl+1, log1 = tick : l1 } where sc1 = sc { ticks = tks+1, details = dts `addTick` tick } doSimplTick _ _ (VerySimplCount n) = VerySimplCount (n+1) addTick :: TickCounts -> Tick -> TickCounts addTick fm tick = MapStrict.insertWith (+) tick 1 fm plusSimplCount sc1@(SimplCount { ticks = tks1, details = dts1 }) sc2@(SimplCount { ticks = tks2, details = dts2 }) = log_base { ticks = tks1 + tks2 , details = MapStrict.unionWith (+) dts1 dts2 } where -- A hackish way of getting recent log info log_base | null (log1 sc2) = sc1 -- Nothing at all in sc2 | null (log2 sc2) = sc2 { log2 = log1 sc1 } | otherwise = sc2 plusSimplCount (VerySimplCount n) (VerySimplCount m) = VerySimplCount (n+m) plusSimplCount _ _ = panic "plusSimplCount" -- We use one or the other consistently pprSimplCount (VerySimplCount n) = text "Total ticks:" <+> int n pprSimplCount (SimplCount { ticks = tks, details = dts, log1 = l1, log2 = l2 }) = vcat [text "Total ticks: " <+> int tks, blankLine, pprTickCounts dts, getVerboseSimplStats $ \dbg -> if dbg then vcat [blankLine, text "Log (most recent first)", nest 4 (vcat (map ppr l1) $$ vcat (map ppr l2))] else Outputable.empty ] pprTickCounts :: Map Tick Int -> SDoc pprTickCounts counts = vcat (map pprTickGroup groups) where groups :: [[(Tick,Int)]] -- Each group shares a comon tag -- toList returns common tags adjacent groups = groupBy same_tag (Map.toList counts) same_tag (tick1,_) (tick2,_) = tickToTag tick1 == tickToTag tick2 pprTickGroup :: [(Tick, Int)] -> SDoc pprTickGroup group@((tick1,_):_) = hang (int (sum [n | (_,n) <- group]) <+> text (tickString tick1)) 2 (vcat [ int n <+> pprTickCts tick -- flip as we want largest first | (tick,n) <- sortBy (flip (comparing snd)) group]) pprTickGroup [] = panic "pprTickGroup" data Tick = PreInlineUnconditionally Id | PostInlineUnconditionally Id | UnfoldingDone Id | RuleFired FastString -- Rule name | LetFloatFromLet | EtaExpansion Id -- LHS binder | EtaReduction Id -- Binder on outer lambda | BetaReduction Id -- Lambda binder | CaseOfCase Id -- Bndr on *inner* case | KnownBranch Id -- Case binder | CaseMerge Id -- Binder on outer case | AltMerge Id -- Case binder | CaseElim Id -- Case binder | CaseIdentity Id -- Case binder | FillInCaseDefault Id -- Case binder | BottomFound | SimplifierDone -- Ticked at each iteration of the simplifier instance Outputable Tick where ppr tick = text (tickString tick) <+> pprTickCts tick instance Eq Tick where a == b = case a `cmpTick` b of EQ -> True _ -> False instance Ord Tick where compare = cmpTick tickToTag :: Tick -> Int tickToTag (PreInlineUnconditionally _) = 0 tickToTag (PostInlineUnconditionally _) = 1 tickToTag (UnfoldingDone _) = 2 tickToTag (RuleFired _) = 3 tickToTag LetFloatFromLet = 4 tickToTag (EtaExpansion _) = 5 tickToTag (EtaReduction _) = 6 tickToTag (BetaReduction _) = 7 tickToTag (CaseOfCase _) = 8 tickToTag (KnownBranch _) = 9 tickToTag (CaseMerge _) = 10 tickToTag (CaseElim _) = 11 tickToTag (CaseIdentity _) = 12 tickToTag (FillInCaseDefault _) = 13 tickToTag BottomFound = 14 tickToTag SimplifierDone = 16 tickToTag (AltMerge _) = 17 tickString :: Tick -> String tickString (PreInlineUnconditionally _) = "PreInlineUnconditionally" tickString (PostInlineUnconditionally _)= "PostInlineUnconditionally" tickString (UnfoldingDone _) = "UnfoldingDone" tickString (RuleFired _) = "RuleFired" tickString LetFloatFromLet = "LetFloatFromLet" tickString (EtaExpansion _) = "EtaExpansion" tickString (EtaReduction _) = "EtaReduction" tickString (BetaReduction _) = "BetaReduction" tickString (CaseOfCase _) = "CaseOfCase" tickString (KnownBranch _) = "KnownBranch" tickString (CaseMerge _) = "CaseMerge" tickString (AltMerge _) = "AltMerge" tickString (CaseElim _) = "CaseElim" tickString (CaseIdentity _) = "CaseIdentity" tickString (FillInCaseDefault _) = "FillInCaseDefault" tickString BottomFound = "BottomFound" tickString SimplifierDone = "SimplifierDone" pprTickCts :: Tick -> SDoc pprTickCts (PreInlineUnconditionally v) = ppr v pprTickCts (PostInlineUnconditionally v)= ppr v pprTickCts (UnfoldingDone v) = ppr v pprTickCts (RuleFired v) = ppr v pprTickCts LetFloatFromLet = Outputable.empty pprTickCts (EtaExpansion v) = ppr v pprTickCts (EtaReduction v) = ppr v pprTickCts (BetaReduction v) = ppr v pprTickCts (CaseOfCase v) = ppr v pprTickCts (KnownBranch v) = ppr v pprTickCts (CaseMerge v) = ppr v pprTickCts (AltMerge v) = ppr v pprTickCts (CaseElim v) = ppr v pprTickCts (CaseIdentity v) = ppr v pprTickCts (FillInCaseDefault v) = ppr v pprTickCts _ = Outputable.empty cmpTick :: Tick -> Tick -> Ordering cmpTick a b = case (tickToTag a `compare` tickToTag b) of GT -> GT EQ -> cmpEqTick a b LT -> LT cmpEqTick :: Tick -> Tick -> Ordering cmpEqTick (PreInlineUnconditionally a) (PreInlineUnconditionally b) = a `compare` b cmpEqTick (PostInlineUnconditionally a) (PostInlineUnconditionally b) = a `compare` b cmpEqTick (UnfoldingDone a) (UnfoldingDone b) = a `compare` b cmpEqTick (RuleFired a) (RuleFired b) = a `compare` b cmpEqTick (EtaExpansion a) (EtaExpansion b) = a `compare` b cmpEqTick (EtaReduction a) (EtaReduction b) = a `compare` b cmpEqTick (BetaReduction a) (BetaReduction b) = a `compare` b cmpEqTick (CaseOfCase a) (CaseOfCase b) = a `compare` b cmpEqTick (KnownBranch a) (KnownBranch b) = a `compare` b cmpEqTick (CaseMerge a) (CaseMerge b) = a `compare` b cmpEqTick (AltMerge a) (AltMerge b) = a `compare` b cmpEqTick (CaseElim a) (CaseElim b) = a `compare` b cmpEqTick (CaseIdentity a) (CaseIdentity b) = a `compare` b cmpEqTick (FillInCaseDefault a) (FillInCaseDefault b) = a `compare` b cmpEqTick _ _ = EQ {- ************************************************************************ * * Monad and carried data structure definitions * * ************************************************************************ -} newtype CoreState = CoreState { cs_uniq_supply :: UniqSupply } data CoreReader = CoreReader { cr_hsc_env :: HscEnv, cr_rule_base :: RuleBase, cr_module :: Module, cr_print_unqual :: PrintUnqualified, cr_loc :: SrcSpan, -- Use this for log/error messages so they -- are at least tagged with the right source file cr_visible_orphan_mods :: !ModuleSet } -- Note: CoreWriter used to be defined with data, rather than newtype. If it -- is defined that way again, the cw_simpl_count field, at least, must be -- strict to avoid a space leak (Trac #7702). newtype CoreWriter = CoreWriter { cw_simpl_count :: SimplCount } emptyWriter :: DynFlags -> CoreWriter emptyWriter dflags = CoreWriter { cw_simpl_count = zeroSimplCount dflags } plusWriter :: CoreWriter -> CoreWriter -> CoreWriter plusWriter w1 w2 = CoreWriter { cw_simpl_count = (cw_simpl_count w1) `plusSimplCount` (cw_simpl_count w2) } type CoreIOEnv = IOEnv CoreReader -- | The monad used by Core-to-Core passes to access common state, register simplification -- statistics and so on newtype CoreM a = CoreM { unCoreM :: CoreState -> CoreIOEnv (a, CoreState, CoreWriter) } instance Functor CoreM where fmap = liftM instance Monad CoreM where mx >>= f = CoreM $ \s -> do (x, s', w1) <- unCoreM mx s (y, s'', w2) <- unCoreM (f x) s' let w = w1 `plusWriter` w2 return $ seq w (y, s'', w) -- forcing w before building the tuple avoids a space leak -- (Trac #7702) instance Applicative CoreM where pure x = CoreM $ \s -> nop s x (<*>) = ap m *> k = m >>= \_ -> k instance Alternative CoreM where empty = CoreM (const Control.Applicative.empty) m <|> n = CoreM (\rs -> unCoreM m rs <|> unCoreM n rs) instance MonadPlus CoreM instance MonadUnique CoreM where getUniqueSupplyM = do us <- getS cs_uniq_supply let (us1, us2) = splitUniqSupply us modifyS (\s -> s { cs_uniq_supply = us2 }) return us1 getUniqueM = do us <- getS cs_uniq_supply let (u,us') = takeUniqFromSupply us modifyS (\s -> s { cs_uniq_supply = us' }) return u runCoreM :: HscEnv -> RuleBase -> UniqSupply -> Module -> ModuleSet -> PrintUnqualified -> SrcSpan -> CoreM a -> IO (a, SimplCount) runCoreM hsc_env rule_base us mod orph_imps print_unqual loc m = liftM extract $ runIOEnv reader $ unCoreM m state where reader = CoreReader { cr_hsc_env = hsc_env, cr_rule_base = rule_base, cr_module = mod, cr_visible_orphan_mods = orph_imps, cr_print_unqual = print_unqual, cr_loc = loc } state = CoreState { cs_uniq_supply = us } extract :: (a, CoreState, CoreWriter) -> (a, SimplCount) extract (value, _, writer) = (value, cw_simpl_count writer) {- ************************************************************************ * * Core combinators, not exported * * ************************************************************************ -} nop :: CoreState -> a -> CoreIOEnv (a, CoreState, CoreWriter) nop s x = do r <- getEnv return (x, s, emptyWriter $ (hsc_dflags . cr_hsc_env) r) read :: (CoreReader -> a) -> CoreM a read f = CoreM (\s -> getEnv >>= (\r -> nop s (f r))) getS :: (CoreState -> a) -> CoreM a getS f = CoreM (\s -> nop s (f s)) modifyS :: (CoreState -> CoreState) -> CoreM () modifyS f = CoreM (\s -> nop (f s) ()) write :: CoreWriter -> CoreM () write w = CoreM (\s -> return ((), s, w)) -- \subsection{Lifting IO into the monad} -- | Lift an 'IOEnv' operation into 'CoreM' liftIOEnv :: CoreIOEnv a -> CoreM a liftIOEnv mx = CoreM (\s -> mx >>= (\x -> nop s x)) instance MonadIO CoreM where liftIO = liftIOEnv . IOEnv.liftIO -- | Lift an 'IO' operation into 'CoreM' while consuming its 'SimplCount' liftIOWithCount :: IO (SimplCount, a) -> CoreM a liftIOWithCount what = liftIO what >>= (\(count, x) -> addSimplCount count >> return x) {- ************************************************************************ * * Reader, writer and state accessors * * ************************************************************************ -} getHscEnv :: CoreM HscEnv getHscEnv = read cr_hsc_env getRuleBase :: CoreM RuleBase getRuleBase = read cr_rule_base getVisibleOrphanMods :: CoreM ModuleSet getVisibleOrphanMods = read cr_visible_orphan_mods getPrintUnqualified :: CoreM PrintUnqualified getPrintUnqualified = read cr_print_unqual getSrcSpanM :: CoreM SrcSpan getSrcSpanM = read cr_loc addSimplCount :: SimplCount -> CoreM () addSimplCount count = write (CoreWriter { cw_simpl_count = count }) -- Convenience accessors for useful fields of HscEnv instance HasDynFlags CoreM where getDynFlags = fmap hsc_dflags getHscEnv instance HasModule CoreM where getModule = read cr_module -- | The original name cache is the current mapping from 'Module' and -- 'OccName' to a compiler-wide unique 'Name' getOrigNameCache :: CoreM OrigNameCache getOrigNameCache = do nameCacheRef <- fmap hsc_NC getHscEnv liftIO $ fmap nsNames $ readIORef nameCacheRef getPackageFamInstEnv :: CoreM PackageFamInstEnv getPackageFamInstEnv = do hsc_env <- getHscEnv eps <- liftIO $ hscEPS hsc_env return $ eps_fam_inst_env eps {-# DEPRECATED reinitializeGlobals "It is not necessary to call reinitializeGlobals. Since GHC 8.2, this function is a no-op and will be removed in GHC 8.4" #-} reinitializeGlobals :: CoreM () reinitializeGlobals = return () {- ************************************************************************ * * Dealing with annotations * * ************************************************************************ -} -- | Get all annotations of a given type. This happens lazily, that is -- no deserialization will take place until the [a] is actually demanded and -- the [a] can also be empty (the UniqFM is not filtered). -- -- This should be done once at the start of a Core-to-Core pass that uses -- annotations. -- -- See Note [Annotations] getAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM [a]) getAnnotations deserialize guts = do hsc_env <- getHscEnv ann_env <- liftIO $ prepareAnnotations hsc_env (Just guts) return (deserializeAnns deserialize ann_env) -- | Get at most one annotation of a given type per Unique. getFirstAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM a) getFirstAnnotations deserialize guts = liftM (mapUFM head . filterUFM (not . null)) $ getAnnotations deserialize guts {- Note [Annotations] ~~~~~~~~~~~~~~~~~~ A Core-to-Core pass that wants to make use of annotations calls getAnnotations or getFirstAnnotations at the beginning to obtain a UniqFM with annotations of a specific type. This produces all annotations from interface files read so far. However, annotations from interface files read during the pass will not be visible until getAnnotations is called again. This is similar to how rules work and probably isn't too bad. The current implementation could be optimised a bit: when looking up annotations for a thing from the HomePackageTable, we could search directly in the module where the thing is defined rather than building one UniqFM which contains all annotations we know of. This would work because annotations can only be given to things defined in the same module. However, since we would only want to deserialise every annotation once, we would have to build a cache for every module in the HTP. In the end, it's probably not worth it as long as we aren't using annotations heavily. ************************************************************************ * * Direct screen output * * ************************************************************************ -} msg :: Severity -> SDoc -> CoreM () msg sev doc = do { dflags <- getDynFlags ; loc <- getSrcSpanM ; unqual <- getPrintUnqualified ; let sty = case sev of SevError -> err_sty SevWarning -> err_sty SevDump -> dump_sty _ -> user_sty err_sty = mkErrStyle dflags unqual user_sty = mkUserStyle dflags unqual AllTheWay dump_sty = mkDumpStyle dflags unqual ; liftIO $ putLogMsg dflags NoReason sev loc sty doc } -- | Output a String message to the screen putMsgS :: String -> CoreM () putMsgS = putMsg . text -- | Output a message to the screen putMsg :: SDoc -> CoreM () putMsg = msg SevInfo -- | Output an error to the screen. Does not cause the compiler to die. errorMsgS :: String -> CoreM () errorMsgS = errorMsg . text -- | Output an error to the screen. Does not cause the compiler to die. errorMsg :: SDoc -> CoreM () errorMsg = msg SevError warnMsg :: SDoc -> CoreM () warnMsg = msg SevWarning -- | Output a fatal error to the screen. Does not cause the compiler to die. fatalErrorMsgS :: String -> CoreM () fatalErrorMsgS = fatalErrorMsg . text -- | Output a fatal error to the screen. Does not cause the compiler to die. fatalErrorMsg :: SDoc -> CoreM () fatalErrorMsg = msg SevFatal -- | Output a string debugging message at verbosity level of @-v@ or higher debugTraceMsgS :: String -> CoreM () debugTraceMsgS = debugTraceMsg . text -- | Outputs a debugging message at verbosity level of @-v@ or higher debugTraceMsg :: SDoc -> CoreM () debugTraceMsg = msg SevDump -- | Show some labelled 'SDoc' if a particular flag is set or at a verbosity level of @-v -ddump-most@ or higher dumpIfSet_dyn :: DumpFlag -> String -> SDoc -> CoreM () dumpIfSet_dyn flag str doc = do { dflags <- getDynFlags ; unqual <- getPrintUnqualified ; when (dopt flag dflags) $ liftIO $ Err.dumpSDoc dflags unqual flag str doc } {- ************************************************************************ * * Finding TyThings * * ************************************************************************ -} instance MonadThings CoreM where lookupThing name = do { hsc_env <- getHscEnv ; liftIO $ lookupGlobal hsc_env name } {- ************************************************************************ * * Template Haskell interoperability * * ************************************************************************ -} -- | Attempt to convert a Template Haskell name to one that GHC can -- understand. Original TH names such as those you get when you use -- the @'foo@ syntax will be translated to their equivalent GHC name -- exactly. Qualified or unqualified TH names will be dynamically bound -- to names in the module being compiled, if possible. Exact TH names -- will be bound to the name they represent, exactly. thNameToGhcName :: TH.Name -> CoreM (Maybe Name) thNameToGhcName th_name = do hsc_env <- getHscEnv liftIO $ initTcForLookup hsc_env (lookupThName_maybe th_name)