-- (c) The University of Glasgow, 1997-2006 {-# LANGUAGE BangPatterns, CPP, MagicHash, UnboxedTuples, GeneralizedNewtypeDeriving #-} {-# OPTIONS_GHC -O2 -funbox-strict-fields #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- | -- There are two principal string types used internally by GHC: -- -- ['FastString'] -- -- * A compact, hash-consed, representation of character strings. -- * Comparison is O(1), and you can get a 'Unique.Unique' from them. -- * Generated by 'fsLit'. -- * Turn into 'Outputable.SDoc' with 'Outputable.ftext'. -- -- ['PtrString'] -- -- * Pointer and size of a Latin-1 encoded string. -- * Practically no operations. -- * Outputing them is fast. -- * Generated by 'sLit'. -- * Turn into 'Outputable.SDoc' with 'Outputable.ptext' -- * Requires manual memory management. -- Improper use may lead to memory leaks or dangling pointers. -- * It assumes Latin-1 as the encoding, therefore it cannot represent -- arbitrary Unicode strings. -- -- Use 'PtrString' unless you want the facilities of 'FastString'. module FastString ( -- * ByteString bytesFS, -- :: FastString -> ByteString fastStringToByteString, -- = bytesFS (kept for haddock) mkFastStringByteString, fastZStringToByteString, unsafeMkByteString, -- * FastZString FastZString, hPutFZS, zString, lengthFZS, -- * FastStrings FastString(..), -- not abstract, for now. -- ** Construction fsLit, mkFastString, mkFastStringBytes, mkFastStringByteList, mkFastStringForeignPtr, mkFastString#, -- ** Deconstruction unpackFS, -- :: FastString -> String -- ** Encoding zEncodeFS, -- ** Operations uniqueOfFS, lengthFS, nullFS, appendFS, headFS, tailFS, concatFS, consFS, nilFS, isUnderscoreFS, -- ** Outputing hPutFS, -- ** Internal getFastStringTable, getFastStringZEncCounter, -- * PtrStrings PtrString (..), -- ** Construction sLit, mkPtrString#, mkPtrString, -- ** Deconstruction unpackPtrString, -- ** Operations lengthPS ) where #include "HsVersions.h" import GhcPrelude as Prelude import Encoding import FastFunctions import PlainPanic import Util import Control.Concurrent.MVar import Control.DeepSeq import Control.Monad import Data.ByteString (ByteString) import qualified Data.ByteString as BS import qualified Data.ByteString.Char8 as BSC import qualified Data.ByteString.Internal as BS import qualified Data.ByteString.Unsafe as BS import Foreign.C import GHC.Exts import System.IO import Data.Data import Data.IORef import Data.Char import Data.Semigroup as Semi import GHC.IO import Foreign #if GHC_STAGE >= 2 import GHC.Conc.Sync (sharedCAF) #endif import GHC.Base ( unpackCString#, unpackNBytes# ) -- | Gives the UTF-8 encoded bytes corresponding to a 'FastString' bytesFS :: FastString -> ByteString bytesFS f = fs_bs f {-# DEPRECATED fastStringToByteString "Use `bytesFS` instead" #-} fastStringToByteString :: FastString -> ByteString fastStringToByteString = bytesFS fastZStringToByteString :: FastZString -> ByteString fastZStringToByteString (FastZString bs) = bs -- This will drop information if any character > '\xFF' unsafeMkByteString :: String -> ByteString unsafeMkByteString = BSC.pack hashFastString :: FastString -> Int hashFastString (FastString _ _ bs _) = inlinePerformIO $ BS.unsafeUseAsCStringLen bs $ \(ptr, len) -> return $ hashStr (castPtr ptr) len -- ----------------------------------------------------------------------------- newtype FastZString = FastZString ByteString deriving NFData hPutFZS :: Handle -> FastZString -> IO () hPutFZS handle (FastZString bs) = BS.hPut handle bs zString :: FastZString -> String zString (FastZString bs) = inlinePerformIO $ BS.unsafeUseAsCStringLen bs peekCAStringLen lengthFZS :: FastZString -> Int lengthFZS (FastZString bs) = BS.length bs mkFastZStringString :: String -> FastZString mkFastZStringString str = FastZString (BSC.pack str) -- ----------------------------------------------------------------------------- {-| A 'FastString' is a UTF-8 encoded string together with a unique ID. All 'FastString's are stored in a global hashtable to support fast O(1) comparison. It is also associated with a lazy reference to the Z-encoding of this string which is used by the compiler internally. -} data FastString = FastString { uniq :: {-# UNPACK #-} !Int, -- unique id n_chars :: {-# UNPACK #-} !Int, -- number of chars fs_bs :: {-# UNPACK #-} !ByteString, fs_zenc :: FastZString -- ^ Lazily computed z-encoding of this string. -- -- Since 'FastString's are globally memoized this is computed at most -- once for any given string. } instance Eq FastString where f1 == f2 = uniq f1 == uniq f2 instance Ord FastString where -- Compares lexicographically, not by unique a <= b = case cmpFS a b of { LT -> True; EQ -> True; GT -> False } a < b = case cmpFS a b of { LT -> True; EQ -> False; GT -> False } a >= b = case cmpFS a b of { LT -> False; EQ -> True; GT -> True } a > b = case cmpFS a b of { LT -> False; EQ -> False; GT -> True } max x y | x >= y = x | otherwise = y min x y | x <= y = x | otherwise = y compare a b = cmpFS a b instance IsString FastString where fromString = fsLit instance Semi.Semigroup FastString where (<>) = appendFS instance Monoid FastString where mempty = nilFS mappend = (Semi.<>) mconcat = concatFS instance Show FastString where show fs = show (unpackFS fs) instance Data FastString where -- don't traverse? toConstr _ = abstractConstr "FastString" gunfold _ _ = error "gunfold" dataTypeOf _ = mkNoRepType "FastString" instance NFData FastString where rnf fs = seq fs () cmpFS :: FastString -> FastString -> Ordering cmpFS f1@(FastString u1 _ _ _) f2@(FastString u2 _ _ _) = if u1 == u2 then EQ else compare (bytesFS f1) (bytesFS f2) foreign import ccall unsafe "memcmp" memcmp :: Ptr a -> Ptr b -> Int -> IO Int -- ----------------------------------------------------------------------------- -- Construction {- Internally, the compiler will maintain a fast string symbol table, providing sharing and fast comparison. Creation of new @FastString@s then covertly does a lookup, re-using the @FastString@ if there was a hit. The design of the FastString hash table allows for lockless concurrent reads and updates to multiple buckets with low synchronization overhead. See Note [Updating the FastString table] on how it's updated. -} data FastStringTable = FastStringTable {-# UNPACK #-} !(IORef Int) -- the unique ID counter shared with all buckets {-# UNPACK #-} !(IORef Int) -- number of computed z-encodings for all buckets (Array# (IORef FastStringTableSegment)) -- concurrent segments data FastStringTableSegment = FastStringTableSegment {-# UNPACK #-} !(MVar ()) -- the lock for write in each segment {-# UNPACK #-} !(IORef Int) -- the number of elements (MutableArray# RealWorld [FastString]) -- buckets in this segment {- Following parameters are determined based on: * Benchmark based on testsuite/tests/utils/should_run/T14854.hs * Stats of @echo :browse | ghc --interactive -dfaststring-stats >/dev/null@: on 2018-10-24, we have 13920 entries. -} segmentBits, numSegments, segmentMask, initialNumBuckets :: Int segmentBits = 8 numSegments = 256 -- bit segmentBits segmentMask = 0xff -- bit segmentBits - 1 initialNumBuckets = 64 hashToSegment# :: Int# -> Int# hashToSegment# hash# = hash# `andI#` segmentMask# where !(I# segmentMask#) = segmentMask hashToIndex# :: MutableArray# RealWorld [FastString] -> Int# -> Int# hashToIndex# buckets# hash# = (hash# `uncheckedIShiftRL#` segmentBits#) `remInt#` size# where !(I# segmentBits#) = segmentBits size# = sizeofMutableArray# buckets# maybeResizeSegment :: IORef FastStringTableSegment -> IO FastStringTableSegment maybeResizeSegment segmentRef = do segment@(FastStringTableSegment lock counter old#) <- readIORef segmentRef let oldSize# = sizeofMutableArray# old# newSize# = oldSize# *# 2# (I# n#) <- readIORef counter if isTrue# (n# <# newSize#) -- maximum load of 1 then return segment else do resizedSegment@(FastStringTableSegment _ _ new#) <- IO $ \s1# -> case newArray# newSize# [] s1# of (# s2#, arr# #) -> (# s2#, FastStringTableSegment lock counter arr# #) forM_ [0 .. (I# oldSize#) - 1] $ \(I# i#) -> do fsList <- IO $ readArray# old# i# forM_ fsList $ \fs -> do let -- Shall we store in hash value in FastString instead? !(I# hash#) = hashFastString fs idx# = hashToIndex# new# hash# IO $ \s1# -> case readArray# new# idx# s1# of (# s2#, bucket #) -> case writeArray# new# idx# (fs: bucket) s2# of s3# -> (# s3#, () #) writeIORef segmentRef resizedSegment return resizedSegment {-# NOINLINE stringTable #-} stringTable :: FastStringTable stringTable = unsafePerformIO $ do let !(I# numSegments#) = numSegments !(I# initialNumBuckets#) = initialNumBuckets loop a# i# s1# | isTrue# (i# ==# numSegments#) = s1# | otherwise = case newMVar () `unIO` s1# of (# s2#, lock #) -> case newIORef 0 `unIO` s2# of (# s3#, counter #) -> case newArray# initialNumBuckets# [] s3# of (# s4#, buckets# #) -> case newIORef (FastStringTableSegment lock counter buckets#) `unIO` s4# of (# s5#, segment #) -> case writeArray# a# i# segment s5# of s6# -> loop a# (i# +# 1#) s6# uid <- newIORef 603979776 -- ord '$' * 0x01000000 n_zencs <- newIORef 0 tab <- IO $ \s1# -> case newArray# numSegments# (panic "string_table") s1# of (# s2#, arr# #) -> case loop arr# 0# s2# of s3# -> case unsafeFreezeArray# arr# s3# of (# s4#, segments# #) -> (# s4#, FastStringTable uid n_zencs segments# #) -- use the support wired into the RTS to share this CAF among all images of -- libHSghc #if GHC_STAGE < 2 return tab #else sharedCAF tab getOrSetLibHSghcFastStringTable -- from the RTS; thus we cannot use this mechanism when GHC_STAGE<2; the previous -- RTS might not have this symbol foreign import ccall unsafe "getOrSetLibHSghcFastStringTable" getOrSetLibHSghcFastStringTable :: Ptr a -> IO (Ptr a) #endif {- We include the FastString table in the `sharedCAF` mechanism because we'd like FastStrings created by a Core plugin to have the same uniques as corresponding strings created by the host compiler itself. For example, this allows plugins to lookup known names (eg `mkTcOcc "MySpecialType"`) in the GlobalRdrEnv or even re-invoke the parser. In particular, the following little sanity test was failing in a plugin prototyping safe newtype-coercions: GHC.NT.Type.NT was imported, but could not be looked up /by the plugin/. let rdrName = mkModuleName "GHC.NT.Type" `mkRdrQual` mkTcOcc "NT" putMsgS $ showSDoc dflags $ ppr $ lookupGRE_RdrName rdrName $ mg_rdr_env guts `mkTcOcc` involves the lookup (or creation) of a FastString. Since the plugin's FastString.string_table is empty, constructing the RdrName also allocates new uniques for the FastStrings "GHC.NT.Type" and "NT". These uniques are almost certainly unequal to the ones that the host compiler originally assigned to those FastStrings. Thus the lookup fails since the domain of the GlobalRdrEnv is affected by the RdrName's OccName's FastString's unique. Maintaining synchronization of the two instances of this global is rather difficult because of the uses of `unsafePerformIO` in this module. Not synchronizing them risks breaking the rather major invariant that two FastStrings with the same unique have the same string. Thus we use the lower-level `sharedCAF` mechanism that relies on Globals.c. -} mkFastString# :: Addr# -> FastString mkFastString# a# = mkFastStringBytes ptr (ptrStrLength ptr) where ptr = Ptr a# {- Note [Updating the FastString table] We use a concurrent hashtable which contains multiple segments, each hash value always maps to the same segment. Read is lock-free, write to the a segment should acquire a lock for that segment to avoid race condition, writes to different segments are independent. The procedure goes like this: 1. Find out which segment to operate on based on the hash value 2. Read the relevant bucket and perform a look up of the string. 3. If it exists, return it. 4. Otherwise grab a unique ID, create a new FastString and atomically attempt to update the relevant segment with this FastString: * Resize the segment by doubling the number of buckets when the number of FastStrings in this segment grows beyond the threshold. * Double check that the string is not in the bucket. Another thread may have inserted it while we were creating our string. * Return the existing FastString if it exists. The one we preemptively created will get GCed. * Otherwise, insert and return the string we created. -} mkFastStringWith :: (Int -> IORef Int-> IO FastString) -> Ptr Word8 -> Int -> IO FastString mkFastStringWith mk_fs !ptr !len = do FastStringTableSegment lock _ buckets# <- readIORef segmentRef let idx# = hashToIndex# buckets# hash# bucket <- IO $ readArray# buckets# idx# res <- bucket_match bucket len ptr case res of Just found -> return found Nothing -> do -- The withMVar below is not dupable. It can lead to deadlock if it is -- only run partially and putMVar is not called after takeMVar. noDuplicate n <- get_uid new_fs <- mk_fs n n_zencs withMVar lock $ \_ -> insert new_fs where !(FastStringTable uid n_zencs segments#) = stringTable get_uid = atomicModifyIORef' uid $ \n -> (n+1,n) !(I# hash#) = hashStr ptr len (# segmentRef #) = indexArray# segments# (hashToSegment# hash#) insert fs = do FastStringTableSegment _ counter buckets# <- maybeResizeSegment segmentRef let idx# = hashToIndex# buckets# hash# bucket <- IO $ readArray# buckets# idx# res <- bucket_match bucket len ptr case res of -- The FastString was added by another thread after previous read and -- before we acquired the write lock. Just found -> return found Nothing -> do IO $ \s1# -> case writeArray# buckets# idx# (fs: bucket) s1# of s2# -> (# s2#, () #) modifyIORef' counter succ return fs bucket_match :: [FastString] -> Int -> Ptr Word8 -> IO (Maybe FastString) bucket_match [] _ _ = return Nothing bucket_match (v@(FastString _ _ bs _):ls) len ptr | len == BS.length bs = do b <- BS.unsafeUseAsCString bs $ \buf -> cmpStringPrefix ptr (castPtr buf) len if b then return (Just v) else bucket_match ls len ptr | otherwise = bucket_match ls len ptr mkFastStringBytes :: Ptr Word8 -> Int -> FastString mkFastStringBytes !ptr !len = -- NB: Might as well use unsafeDupablePerformIO, since mkFastStringWith is -- idempotent. unsafeDupablePerformIO $ mkFastStringWith (copyNewFastString ptr len) ptr len -- | Create a 'FastString' from an existing 'ForeignPtr'; the difference -- between this and 'mkFastStringBytes' is that we don't have to copy -- the bytes if the string is new to the table. mkFastStringForeignPtr :: Ptr Word8 -> ForeignPtr Word8 -> Int -> IO FastString mkFastStringForeignPtr ptr !fp len = mkFastStringWith (mkNewFastString fp ptr len) ptr len -- | Create a 'FastString' from an existing 'ForeignPtr'; the difference -- between this and 'mkFastStringBytes' is that we don't have to copy -- the bytes if the string is new to the table. mkFastStringByteString :: ByteString -> FastString mkFastStringByteString bs = inlinePerformIO $ BS.unsafeUseAsCStringLen bs $ \(ptr, len) -> do let ptr' = castPtr ptr mkFastStringWith (mkNewFastStringByteString bs ptr' len) ptr' len -- | Creates a UTF-8 encoded 'FastString' from a 'String' mkFastString :: String -> FastString mkFastString str = inlinePerformIO $ do let l = utf8EncodedLength str buf <- mallocForeignPtrBytes l withForeignPtr buf $ \ptr -> do utf8EncodeString ptr str mkFastStringForeignPtr ptr buf l -- | Creates a 'FastString' from a UTF-8 encoded @[Word8]@ mkFastStringByteList :: [Word8] -> FastString mkFastStringByteList str = mkFastStringByteString (BS.pack str) -- | Creates a (lazy) Z-encoded 'FastString' from a 'String' and account -- the number of forced z-strings into the passed 'IORef'. mkZFastString :: IORef Int -> ByteString -> FastZString mkZFastString n_zencs bs = unsafePerformIO $ do atomicModifyIORef' n_zencs $ \n -> (n+1, ()) return $ mkFastZStringString (zEncodeString (utf8DecodeByteString bs)) mkNewFastString :: ForeignPtr Word8 -> Ptr Word8 -> Int -> Int -> IORef Int -> IO FastString mkNewFastString fp ptr len uid n_zencs = do let bs = BS.fromForeignPtr fp 0 len zstr = mkZFastString n_zencs bs n_chars <- countUTF8Chars ptr len return (FastString uid n_chars bs zstr) mkNewFastStringByteString :: ByteString -> Ptr Word8 -> Int -> Int -> IORef Int -> IO FastString mkNewFastStringByteString bs ptr len uid n_zencs = do let zstr = mkZFastString n_zencs bs n_chars <- countUTF8Chars ptr len return (FastString uid n_chars bs zstr) copyNewFastString :: Ptr Word8 -> Int -> Int -> IORef Int -> IO FastString copyNewFastString ptr len uid n_zencs = do fp <- copyBytesToForeignPtr ptr len let bs = BS.fromForeignPtr fp 0 len zstr = mkZFastString n_zencs bs n_chars <- countUTF8Chars ptr len return (FastString uid n_chars bs zstr) copyBytesToForeignPtr :: Ptr Word8 -> Int -> IO (ForeignPtr Word8) copyBytesToForeignPtr ptr len = do fp <- mallocForeignPtrBytes len withForeignPtr fp $ \ptr' -> copyBytes ptr' ptr len return fp cmpStringPrefix :: Ptr Word8 -> Ptr Word8 -> Int -> IO Bool cmpStringPrefix ptr1 ptr2 len = do r <- memcmp ptr1 ptr2 len return (r == 0) hashStr :: Ptr Word8 -> Int -> Int -- use the Addr to produce a hash value between 0 & m (inclusive) hashStr (Ptr a#) (I# len#) = loop 0# 0# where loop h n = if isTrue# (n ==# len#) then I# h else let -- DO NOT move this let binding! indexCharOffAddr# reads from the -- pointer so we need to evaluate this based on the length check -- above. Not doing this right caused #17909. !c = ord# (indexCharOffAddr# a# n) !h2 = (h *# 16777619#) `xorI#` c in loop h2 (n +# 1#) -- ----------------------------------------------------------------------------- -- Operations -- | Returns the length of the 'FastString' in characters lengthFS :: FastString -> Int lengthFS f = n_chars f -- | Returns @True@ if the 'FastString' is empty nullFS :: FastString -> Bool nullFS f = BS.null (fs_bs f) -- | Unpacks and decodes the FastString unpackFS :: FastString -> String unpackFS (FastString _ _ bs _) = utf8DecodeByteString bs -- | Returns a Z-encoded version of a 'FastString'. This might be the -- original, if it was already Z-encoded. The first time this -- function is applied to a particular 'FastString', the results are -- memoized. -- zEncodeFS :: FastString -> FastZString zEncodeFS (FastString _ _ _ ref) = ref appendFS :: FastString -> FastString -> FastString appendFS fs1 fs2 = mkFastStringByteString $ BS.append (bytesFS fs1) (bytesFS fs2) concatFS :: [FastString] -> FastString concatFS = mkFastStringByteString . BS.concat . map fs_bs headFS :: FastString -> Char headFS (FastString _ 0 _ _) = panic "headFS: Empty FastString" headFS (FastString _ _ bs _) = inlinePerformIO $ BS.unsafeUseAsCString bs $ \ptr -> return (fst (utf8DecodeChar (castPtr ptr))) tailFS :: FastString -> FastString tailFS (FastString _ 0 _ _) = panic "tailFS: Empty FastString" tailFS (FastString _ _ bs _) = inlinePerformIO $ BS.unsafeUseAsCString bs $ \ptr -> do let (_, n) = utf8DecodeChar (castPtr ptr) return $! mkFastStringByteString (BS.drop n bs) consFS :: Char -> FastString -> FastString consFS c fs = mkFastString (c : unpackFS fs) uniqueOfFS :: FastString -> Int uniqueOfFS (FastString u _ _ _) = u nilFS :: FastString nilFS = mkFastString "" isUnderscoreFS :: FastString -> Bool isUnderscoreFS fs = fs == fsLit "_" -- ----------------------------------------------------------------------------- -- Stats getFastStringTable :: IO [[[FastString]]] getFastStringTable = forM [0 .. numSegments - 1] $ \(I# i#) -> do let (# segmentRef #) = indexArray# segments# i# FastStringTableSegment _ _ buckets# <- readIORef segmentRef let bucketSize = I# (sizeofMutableArray# buckets#) forM [0 .. bucketSize - 1] $ \(I# j#) -> IO $ readArray# buckets# j# where !(FastStringTable _ _ segments#) = stringTable getFastStringZEncCounter :: IO Int getFastStringZEncCounter = readIORef n_zencs where !(FastStringTable _ n_zencs _) = stringTable -- ----------------------------------------------------------------------------- -- Outputting 'FastString's -- |Outputs a 'FastString' with /no decoding at all/, that is, you -- get the actual bytes in the 'FastString' written to the 'Handle'. hPutFS :: Handle -> FastString -> IO () hPutFS handle fs = BS.hPut handle $ bytesFS fs -- ToDo: we'll probably want an hPutFSLocal, or something, to output -- in the current locale's encoding (for error messages and suchlike). -- ----------------------------------------------------------------------------- -- PtrStrings, here for convenience only. -- | A 'PtrString' is a pointer to some array of Latin-1 encoded chars. data PtrString = PtrString !(Ptr Word8) !Int -- | Wrap an unboxed address into a 'PtrString'. mkPtrString# :: Addr# -> PtrString mkPtrString# a# = PtrString (Ptr a#) (ptrStrLength (Ptr a#)) -- | Encode a 'String' into a newly allocated 'PtrString' using Latin-1 -- encoding. The original string must not contain non-Latin-1 characters -- (above codepoint @0xff@). {-# INLINE mkPtrString #-} mkPtrString :: String -> PtrString mkPtrString s = -- we don't use `unsafeDupablePerformIO` here to avoid potential memory leaks -- and because someone might be using `eqAddr#` to check for string equality. unsafePerformIO (do let len = length s p <- mallocBytes len let loop :: Int -> String -> IO () loop !_ [] = return () loop n (c:cs) = do pokeByteOff p n (fromIntegral (ord c) :: Word8) loop (1+n) cs loop 0 s return (PtrString p len) ) -- | Decode a 'PtrString' back into a 'String' using Latin-1 encoding. -- This does not free the memory associated with 'PtrString'. unpackPtrString :: PtrString -> String unpackPtrString (PtrString (Ptr p#) (I# n#)) = unpackNBytes# p# n# -- | Return the length of a 'PtrString' lengthPS :: PtrString -> Int lengthPS (PtrString _ n) = n -- ----------------------------------------------------------------------------- -- under the carpet foreign import ccall unsafe "strlen" ptrStrLength :: Ptr Word8 -> Int {-# NOINLINE sLit #-} sLit :: String -> PtrString sLit x = mkPtrString x {-# NOINLINE fsLit #-} fsLit :: String -> FastString fsLit x = mkFastString x {-# RULES "slit" forall x . sLit (unpackCString# x) = mkPtrString# x #-} {-# RULES "fslit" forall x . fsLit (unpackCString# x) = mkFastString# x #-}