{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE BangPatterns #-} {-# OPTIONS_GHC -O2 -funbox-strict-fields #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- -- (c) The University of Glasgow 2002-2006 -- -- Binary I/O library, with special tweaks for GHC -- -- Based on the nhc98 Binary library, which is copyright -- (c) Malcolm Wallace and Colin Runciman, University of York, 1998. -- Under the terms of the license for that software, we must tell you -- where you can obtain the original version of the Binary library, namely -- http://www.cs.york.ac.uk/fp/nhc98/ module Binary ( {-type-} Bin, {-class-} Binary(..), {-type-} BinHandle, SymbolTable, Dictionary, openBinMem, -- closeBin, seekBin, seekBy, tellBin, castBin, isEOFBin, withBinBuffer, writeBinMem, readBinMem, putAt, getAt, -- * For writing instances putByte, getByte, -- * Variable length encodings putULEB128, getULEB128, putSLEB128, getSLEB128, -- * Lazy Binary I/O lazyGet, lazyPut, -- * User data UserData(..), getUserData, setUserData, newReadState, newWriteState, putDictionary, getDictionary, putFS, ) where #include "HsVersions.h" import GhcPrelude import {-# SOURCE #-} Name (Name) import FastString import PlainPanic import UniqFM import FastMutInt import Fingerprint import BasicTypes import SrcLoc import Foreign import Data.Array import Data.ByteString (ByteString) import qualified Data.ByteString.Internal as BS import qualified Data.ByteString.Unsafe as BS import Data.IORef import Data.Char ( ord, chr ) import Data.Time import Data.List (unfoldr) import Type.Reflection import Type.Reflection.Unsafe import Data.Kind (Type) import GHC.Exts (TYPE, RuntimeRep(..), VecCount(..), VecElem(..)) import Control.Monad ( when, (<$!>), unless ) import System.IO as IO import System.IO.Unsafe ( unsafeInterleaveIO ) import System.IO.Error ( mkIOError, eofErrorType ) import GHC.Real ( Ratio(..) ) import GHC.Serialized type BinArray = ForeignPtr Word8 --------------------------------------------------------------- -- BinHandle --------------------------------------------------------------- data BinHandle = BinMem { -- binary data stored in an unboxed array bh_usr :: UserData, -- sigh, need parameterized modules :-) _off_r :: !FastMutInt, -- the current offset _sz_r :: !FastMutInt, -- size of the array (cached) _arr_r :: !(IORef BinArray) -- the array (bounds: (0,size-1)) } -- XXX: should really store a "high water mark" for dumping out -- the binary data to a file. getUserData :: BinHandle -> UserData getUserData bh = bh_usr bh setUserData :: BinHandle -> UserData -> BinHandle setUserData bh us = bh { bh_usr = us } -- | Get access to the underlying buffer. -- -- It is quite important that no references to the 'ByteString' leak out of the -- continuation lest terrible things happen. withBinBuffer :: BinHandle -> (ByteString -> IO a) -> IO a withBinBuffer (BinMem _ ix_r _ arr_r) action = do arr <- readIORef arr_r ix <- readFastMutInt ix_r withForeignPtr arr $ \ptr -> BS.unsafePackCStringLen (castPtr ptr, ix) >>= action --------------------------------------------------------------- -- Bin --------------------------------------------------------------- newtype Bin a = BinPtr Int deriving (Eq, Ord, Show, Bounded) castBin :: Bin a -> Bin b castBin (BinPtr i) = BinPtr i --------------------------------------------------------------- -- class Binary --------------------------------------------------------------- -- | Do not rely on instance sizes for general types, -- we use variable length encoding for many of them. class Binary a where put_ :: BinHandle -> a -> IO () put :: BinHandle -> a -> IO (Bin a) get :: BinHandle -> IO a -- define one of put_, put. Use of put_ is recommended because it -- is more likely that tail-calls can kick in, and we rarely need the -- position return value. put_ bh a = do _ <- put bh a; return () put bh a = do p <- tellBin bh; put_ bh a; return p putAt :: Binary a => BinHandle -> Bin a -> a -> IO () putAt bh p x = do seekBin bh p; put_ bh x; return () getAt :: Binary a => BinHandle -> Bin a -> IO a getAt bh p = do seekBin bh p; get bh openBinMem :: Int -> IO BinHandle openBinMem size | size <= 0 = error "Data.Binary.openBinMem: size must be >= 0" | otherwise = do arr <- mallocForeignPtrBytes size arr_r <- newIORef arr ix_r <- newFastMutInt writeFastMutInt ix_r 0 sz_r <- newFastMutInt writeFastMutInt sz_r size return (BinMem noUserData ix_r sz_r arr_r) tellBin :: BinHandle -> IO (Bin a) tellBin (BinMem _ r _ _) = do ix <- readFastMutInt r; return (BinPtr ix) seekBin :: BinHandle -> Bin a -> IO () seekBin h@(BinMem _ ix_r sz_r _) (BinPtr !p) = do sz <- readFastMutInt sz_r if (p >= sz) then do expandBin h p; writeFastMutInt ix_r p else writeFastMutInt ix_r p seekBy :: BinHandle -> Int -> IO () seekBy h@(BinMem _ ix_r sz_r _) !off = do sz <- readFastMutInt sz_r ix <- readFastMutInt ix_r let ix' = ix + off if (ix' >= sz) then do expandBin h ix'; writeFastMutInt ix_r ix' else writeFastMutInt ix_r ix' isEOFBin :: BinHandle -> IO Bool isEOFBin (BinMem _ ix_r sz_r _) = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r return (ix >= sz) writeBinMem :: BinHandle -> FilePath -> IO () writeBinMem (BinMem _ ix_r _ arr_r) fn = do h <- openBinaryFile fn WriteMode arr <- readIORef arr_r ix <- readFastMutInt ix_r withForeignPtr arr $ \p -> hPutBuf h p ix hClose h readBinMem :: FilePath -> IO BinHandle -- Return a BinHandle with a totally undefined State readBinMem filename = do h <- openBinaryFile filename ReadMode filesize' <- hFileSize h let filesize = fromIntegral filesize' arr <- mallocForeignPtrBytes filesize count <- withForeignPtr arr $ \p -> hGetBuf h p filesize when (count /= filesize) $ error ("Binary.readBinMem: only read " ++ show count ++ " bytes") hClose h arr_r <- newIORef arr ix_r <- newFastMutInt writeFastMutInt ix_r 0 sz_r <- newFastMutInt writeFastMutInt sz_r filesize return (BinMem noUserData ix_r sz_r arr_r) -- expand the size of the array to include a specified offset expandBin :: BinHandle -> Int -> IO () expandBin (BinMem _ _ sz_r arr_r) !off = do !sz <- readFastMutInt sz_r let !sz' = getSize sz arr <- readIORef arr_r arr' <- mallocForeignPtrBytes sz' withForeignPtr arr $ \old -> withForeignPtr arr' $ \new -> copyBytes new old sz writeFastMutInt sz_r sz' writeIORef arr_r arr' where getSize :: Int -> Int getSize !sz | sz > off = sz | otherwise = getSize (sz * 2) -- ----------------------------------------------------------------------------- -- Low-level reading/writing of bytes -- | Takes a size and action writing up to @size@ bytes. -- After the action has run advance the index to the buffer -- by size bytes. putPrim :: BinHandle -> Int -> (Ptr Word8 -> IO ()) -> IO () putPrim h@(BinMem _ ix_r sz_r arr_r) size f = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r when (ix + size > sz) $ expandBin h (ix + size) arr <- readIORef arr_r withForeignPtr arr $ \op -> f (op `plusPtr` ix) writeFastMutInt ix_r (ix + size) -- -- | Similar to putPrim but advances the index by the actual number of -- -- bytes written. -- putPrimMax :: BinHandle -> Int -> (Ptr Word8 -> IO Int) -> IO () -- putPrimMax h@(BinMem _ ix_r sz_r arr_r) size f = do -- ix <- readFastMutInt ix_r -- sz <- readFastMutInt sz_r -- when (ix + size > sz) $ -- expandBin h (ix + size) -- arr <- readIORef arr_r -- written <- withForeignPtr arr $ \op -> f (op `plusPtr` ix) -- writeFastMutInt ix_r (ix + written) getPrim :: BinHandle -> Int -> (Ptr Word8 -> IO a) -> IO a getPrim (BinMem _ ix_r sz_r arr_r) size f = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r when (ix + size > sz) $ ioError (mkIOError eofErrorType "Data.Binary.getPrim" Nothing Nothing) arr <- readIORef arr_r w <- withForeignPtr arr $ \op -> f (op `plusPtr` ix) writeFastMutInt ix_r (ix + size) return w putWord8 :: BinHandle -> Word8 -> IO () putWord8 h !w = putPrim h 1 (\op -> poke op w) getWord8 :: BinHandle -> IO Word8 getWord8 h = getPrim h 1 peek -- putWord16 :: BinHandle -> Word16 -> IO () -- putWord16 h w = putPrim h 2 (\op -> do -- pokeElemOff op 0 (fromIntegral (w `shiftR` 8)) -- pokeElemOff op 1 (fromIntegral (w .&. 0xFF)) -- ) -- getWord16 :: BinHandle -> IO Word16 -- getWord16 h = getPrim h 2 (\op -> do -- w0 <- fromIntegral <$> peekElemOff op 0 -- w1 <- fromIntegral <$> peekElemOff op 1 -- return $! w0 `shiftL` 8 .|. w1 -- ) putWord32 :: BinHandle -> Word32 -> IO () putWord32 h w = putPrim h 4 (\op -> do pokeElemOff op 0 (fromIntegral (w `shiftR` 24)) pokeElemOff op 1 (fromIntegral ((w `shiftR` 16) .&. 0xFF)) pokeElemOff op 2 (fromIntegral ((w `shiftR` 8) .&. 0xFF)) pokeElemOff op 3 (fromIntegral (w .&. 0xFF)) ) getWord32 :: BinHandle -> IO Word32 getWord32 h = getPrim h 4 (\op -> do w0 <- fromIntegral <$> peekElemOff op 0 w1 <- fromIntegral <$> peekElemOff op 1 w2 <- fromIntegral <$> peekElemOff op 2 w3 <- fromIntegral <$> peekElemOff op 3 return $! (w0 `shiftL` 24) .|. (w1 `shiftL` 16) .|. (w2 `shiftL` 8) .|. w3 ) -- putWord64 :: BinHandle -> Word64 -> IO () -- putWord64 h w = putPrim h 8 (\op -> do -- pokeElemOff op 0 (fromIntegral (w `shiftR` 56)) -- pokeElemOff op 1 (fromIntegral ((w `shiftR` 48) .&. 0xFF)) -- pokeElemOff op 2 (fromIntegral ((w `shiftR` 40) .&. 0xFF)) -- pokeElemOff op 3 (fromIntegral ((w `shiftR` 32) .&. 0xFF)) -- pokeElemOff op 4 (fromIntegral ((w `shiftR` 24) .&. 0xFF)) -- pokeElemOff op 5 (fromIntegral ((w `shiftR` 16) .&. 0xFF)) -- pokeElemOff op 6 (fromIntegral ((w `shiftR` 8) .&. 0xFF)) -- pokeElemOff op 7 (fromIntegral (w .&. 0xFF)) -- ) -- getWord64 :: BinHandle -> IO Word64 -- getWord64 h = getPrim h 8 (\op -> do -- w0 <- fromIntegral <$> peekElemOff op 0 -- w1 <- fromIntegral <$> peekElemOff op 1 -- w2 <- fromIntegral <$> peekElemOff op 2 -- w3 <- fromIntegral <$> peekElemOff op 3 -- w4 <- fromIntegral <$> peekElemOff op 4 -- w5 <- fromIntegral <$> peekElemOff op 5 -- w6 <- fromIntegral <$> peekElemOff op 6 -- w7 <- fromIntegral <$> peekElemOff op 7 -- return $! (w0 `shiftL` 56) .|. -- (w1 `shiftL` 48) .|. -- (w2 `shiftL` 40) .|. -- (w3 `shiftL` 32) .|. -- (w4 `shiftL` 24) .|. -- (w5 `shiftL` 16) .|. -- (w6 `shiftL` 8) .|. -- w7 -- ) putByte :: BinHandle -> Word8 -> IO () putByte bh !w = putWord8 bh w getByte :: BinHandle -> IO Word8 getByte h = getWord8 h -- ----------------------------------------------------------------------------- -- Encode numbers in LEB128 encoding. -- Requires one byte of space per 7 bits of data. -- -- There are signed and unsigned variants. -- Do NOT use the unsigned one for signed values, at worst it will -- result in wrong results, at best it will lead to bad performance -- when coercing negative values to an unsigned type. -- -- We mark them as SPECIALIZE as it's extremely critical that they get specialized -- to their specific types. -- -- TODO: Each use of putByte performs a bounds check, -- we should use putPrimMax here. However it's quite hard to return -- the number of bytes written into putPrimMax without allocating an -- Int for it, while the code below does not allocate at all. -- So we eat the cost of the bounds check instead of increasing allocations -- for now. -- Unsigned numbers {-# SPECIALISE putULEB128 :: BinHandle -> Word -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Word64 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Word32 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Word16 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int64 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int32 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int16 -> IO () #-} putULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> a -> IO () putULEB128 bh w = #if defined(DEBUG) (if w < 0 then panic "putULEB128: Signed number" else id) $ #endif go w where go :: a -> IO () go w | w <= (127 :: a) = putByte bh (fromIntegral w :: Word8) | otherwise = do -- bit 7 (8th bit) indicates more to come. let !byte = setBit (fromIntegral w) 7 :: Word8 putByte bh byte go (w `unsafeShiftR` 7) {-# SPECIALISE getULEB128 :: BinHandle -> IO Word #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Word64 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Word32 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Word16 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int64 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int32 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int16 #-} getULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> IO a getULEB128 bh = go 0 0 where go :: Int -> a -> IO a go shift w = do b <- getByte bh let !hasMore = testBit b 7 let !val = w .|. ((clearBit (fromIntegral b) 7) `unsafeShiftL` shift) :: a if hasMore then do go (shift+7) val else return $! val -- Signed numbers {-# SPECIALISE putSLEB128 :: BinHandle -> Word -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Word64 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Word32 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Word16 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int64 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int32 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int16 -> IO () #-} putSLEB128 :: forall a. (Integral a, Bits a) => BinHandle -> a -> IO () putSLEB128 bh initial = go initial where go :: a -> IO () go val = do let !byte = fromIntegral (clearBit val 7) :: Word8 let !val' = val `unsafeShiftR` 7 let !signBit = testBit byte 6 let !done = -- Unsigned value, val' == 0 and and last value can -- be discriminated from a negative number. ((val' == 0 && not signBit) || -- Signed value, (val' == -1 && signBit)) let !byte' = if done then byte else setBit byte 7 putByte bh byte' unless done $ go val' {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word64 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word32 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word16 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int64 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int32 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int16 #-} getSLEB128 :: forall a. (Show a, Integral a, FiniteBits a) => BinHandle -> IO a getSLEB128 bh = do (val,shift,signed) <- go 0 0 if signed && (shift < finiteBitSize val ) then return $! ((complement 0 `unsafeShiftL` shift) .|. val) else return val where go :: Int -> a -> IO (a,Int,Bool) go shift val = do byte <- getByte bh let !byteVal = fromIntegral (clearBit byte 7) :: a let !val' = val .|. (byteVal `unsafeShiftL` shift) let !more = testBit byte 7 let !shift' = shift+7 if more then go (shift') val' else do let !signed = testBit byte 6 return (val',shift',signed) -- ----------------------------------------------------------------------------- -- Primitive Word writes instance Binary Word8 where put_ bh !w = putWord8 bh w get = getWord8 instance Binary Word16 where put_ = putULEB128 get = getULEB128 instance Binary Word32 where put_ = putULEB128 get = getULEB128 instance Binary Word64 where put_ = putULEB128 get = getULEB128 -- ----------------------------------------------------------------------------- -- Primitive Int writes instance Binary Int8 where put_ h w = put_ h (fromIntegral w :: Word8) get h = do w <- get h; return $! (fromIntegral (w::Word8)) instance Binary Int16 where put_ = putSLEB128 get = getSLEB128 instance Binary Int32 where put_ = putSLEB128 get = getSLEB128 instance Binary Int64 where put_ h w = putSLEB128 h w get h = getSLEB128 h -- ----------------------------------------------------------------------------- -- Instances for standard types instance Binary () where put_ _ () = return () get _ = return () instance Binary Bool where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x)) instance Binary Char where put_ bh c = put_ bh (fromIntegral (ord c) :: Word32) get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32))) instance Binary Int where put_ bh i = put_ bh (fromIntegral i :: Int64) get bh = do x <- get bh return $! (fromIntegral (x :: Int64)) instance Binary a => Binary [a] where put_ bh l = do let len = length l put_ bh len mapM_ (put_ bh) l get bh = do len <- get bh :: IO Int -- Int is variable length encoded so only -- one byte for small lists. let loop 0 = return [] loop n = do a <- get bh; as <- loop (n-1); return (a:as) loop len instance (Ix a, Binary a, Binary b) => Binary (Array a b) where put_ bh arr = do put_ bh $ bounds arr put_ bh $ elems arr get bh = do bounds <- get bh xs <- get bh return $ listArray bounds xs instance (Binary a, Binary b) => Binary (a,b) where put_ bh (a,b) = do put_ bh a; put_ bh b get bh = do a <- get bh b <- get bh return (a,b) instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where put_ bh (a,b,c) = do put_ bh a; put_ bh b; put_ bh c get bh = do a <- get bh b <- get bh c <- get bh return (a,b,c) instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where put_ bh (a,b,c,d) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d get bh = do a <- get bh b <- get bh c <- get bh d <- get bh return (a,b,c,d) instance (Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a,b,c,d, e) where put_ bh (a,b,c,d, e) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh return (a,b,c,d,e) instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a,b,c,d, e, f) where put_ bh (a,b,c,d, e, f) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh f <- get bh return (a,b,c,d,e,f) instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g) => Binary (a,b,c,d,e,f,g) where put_ bh (a,b,c,d,e,f,g) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; put_ bh g get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh f <- get bh g <- get bh return (a,b,c,d,e,f,g) instance Binary a => Binary (Maybe a) where put_ bh Nothing = putByte bh 0 put_ bh (Just a) = do putByte bh 1; put_ bh a get bh = do h <- getWord8 bh case h of 0 -> return Nothing _ -> do x <- get bh; return (Just x) instance (Binary a, Binary b) => Binary (Either a b) where put_ bh (Left a) = do putByte bh 0; put_ bh a put_ bh (Right b) = do putByte bh 1; put_ bh b get bh = do h <- getWord8 bh case h of 0 -> do a <- get bh ; return (Left a) _ -> do b <- get bh ; return (Right b) instance Binary UTCTime where put_ bh u = do put_ bh (utctDay u) put_ bh (utctDayTime u) get bh = do day <- get bh dayTime <- get bh return $ UTCTime { utctDay = day, utctDayTime = dayTime } instance Binary Day where put_ bh d = put_ bh (toModifiedJulianDay d) get bh = do i <- get bh return $ ModifiedJulianDay { toModifiedJulianDay = i } instance Binary DiffTime where put_ bh dt = put_ bh (toRational dt) get bh = do r <- get bh return $ fromRational r {- Finally - a reasonable portable Integer instance. We used to encode values in the Int32 range as such, falling back to a string of all things. In either case we stored a tag byte to discriminate between the two cases. This made some sense as it's highly portable but also not very efficient. However GHC stores a surprisingly large number off large Integer values. In the examples looked at between 25% and 50% of Integers serialized were outside of the Int32 range. Consider a valie like `2724268014499746065`, some sort of hash actually generated by GHC. In the old scheme this was encoded as a list of 19 chars. This gave a size of 77 Bytes, one for the length of the list and 76 since we encod chars as Word32 as well. We can easily do better. The new plan is: * Start with a tag byte * 0 => Int64 (LEB128 encoded) * 1 => Negative large interger * 2 => Positive large integer * Followed by the value: * Int64 is encoded as usual * Large integers are encoded as a list of bytes (Word8). We use Data.Bits which defines a bit order independent of the representation. Values are stored LSB first. This means our example value `2724268014499746065` is now only 10 bytes large. * One byte tag * One byte for the length of the [Word8] list. * 8 bytes for the actual date. The new scheme also does not depend in any way on architecture specific details. We still use this scheme even with LEB128 available, as it has less overhead for truely large numbers. (> maxBound :: Int64) The instance is used for in Binary Integer and Binary Rational in basicTypes/Literal.hs -} instance Binary Integer where put_ bh i | i >= lo64 && i <= hi64 = do putWord8 bh 0 put_ bh (fromIntegral i :: Int64) | otherwise = do if i < 0 then putWord8 bh 1 else putWord8 bh 2 put_ bh (unroll $ abs i) where lo64 = fromIntegral (minBound :: Int64) hi64 = fromIntegral (maxBound :: Int64) get bh = do int_kind <- getWord8 bh case int_kind of 0 -> fromIntegral <$!> (get bh :: IO Int64) -- Large integer 1 -> negate <$!> getInt 2 -> getInt _ -> panic "Binary Integer - Invalid byte" where getInt :: IO Integer getInt = roll <$!> (get bh :: IO [Word8]) unroll :: Integer -> [Word8] unroll = unfoldr step where step 0 = Nothing step i = Just (fromIntegral i, i `shiftR` 8) roll :: [Word8] -> Integer roll = foldl' unstep 0 . reverse where unstep a b = a `shiftL` 8 .|. fromIntegral b {- -- This code is currently commented out. -- See https://gitlab.haskell.org/ghc/ghc/issues/3379#note_104346 for -- discussion. put_ bh (S# i#) = do putByte bh 0; put_ bh (I# i#) put_ bh (J# s# a#) = do putByte bh 1 put_ bh (I# s#) let sz# = sizeofByteArray# a# -- in *bytes* put_ bh (I# sz#) -- in *bytes* putByteArray bh a# sz# get bh = do b <- getByte bh case b of 0 -> do (I# i#) <- get bh return (S# i#) _ -> do (I# s#) <- get bh sz <- get bh (BA a#) <- getByteArray bh sz return (J# s# a#) putByteArray :: BinHandle -> ByteArray# -> Int# -> IO () putByteArray bh a s# = loop 0# where loop n# | n# ==# s# = return () | otherwise = do putByte bh (indexByteArray a n#) loop (n# +# 1#) getByteArray :: BinHandle -> Int -> IO ByteArray getByteArray bh (I# sz) = do (MBA arr) <- newByteArray sz let loop n | n ==# sz = return () | otherwise = do w <- getByte bh writeByteArray arr n w loop (n +# 1#) loop 0# freezeByteArray arr -} {- data ByteArray = BA ByteArray# data MBA = MBA (MutableByteArray# RealWorld) newByteArray :: Int# -> IO MBA newByteArray sz = IO $ \s -> case newByteArray# sz s of { (# s, arr #) -> (# s, MBA arr #) } freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray freezeByteArray arr = IO $ \s -> case unsafeFreezeByteArray# arr s of { (# s, arr #) -> (# s, BA arr #) } writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO () writeByteArray arr i (W8# w) = IO $ \s -> case writeWord8Array# arr i w s of { s -> (# s, () #) } indexByteArray :: ByteArray# -> Int# -> Word8 indexByteArray a# n# = W8# (indexWord8Array# a# n#) -} instance (Binary a) => Binary (Ratio a) where put_ bh (a :% b) = do put_ bh a; put_ bh b get bh = do a <- get bh; b <- get bh; return (a :% b) -- Instance uses fixed-width encoding to allow inserting -- Bin placeholders in the stream. instance Binary (Bin a) where put_ bh (BinPtr i) = putWord32 bh (fromIntegral i :: Word32) get bh = do i <- getWord32 bh; return (BinPtr (fromIntegral (i :: Word32))) -- ----------------------------------------------------------------------------- -- Instances for Data.Typeable stuff instance Binary TyCon where put_ bh tc = do put_ bh (tyConPackage tc) put_ bh (tyConModule tc) put_ bh (tyConName tc) put_ bh (tyConKindArgs tc) put_ bh (tyConKindRep tc) get bh = mkTyCon <$> get bh <*> get bh <*> get bh <*> get bh <*> get bh instance Binary VecCount where put_ bh = putByte bh . fromIntegral . fromEnum get bh = toEnum . fromIntegral <$> getByte bh instance Binary VecElem where put_ bh = putByte bh . fromIntegral . fromEnum get bh = toEnum . fromIntegral <$> getByte bh instance Binary RuntimeRep where put_ bh (VecRep a b) = putByte bh 0 >> put_ bh a >> put_ bh b put_ bh (TupleRep reps) = putByte bh 1 >> put_ bh reps put_ bh (SumRep reps) = putByte bh 2 >> put_ bh reps put_ bh LiftedRep = putByte bh 3 put_ bh UnliftedRep = putByte bh 4 put_ bh IntRep = putByte bh 5 put_ bh WordRep = putByte bh 6 put_ bh Int64Rep = putByte bh 7 put_ bh Word64Rep = putByte bh 8 put_ bh AddrRep = putByte bh 9 put_ bh FloatRep = putByte bh 10 put_ bh DoubleRep = putByte bh 11 #if __GLASGOW_HASKELL__ >= 807 put_ bh Int8Rep = putByte bh 12 put_ bh Word8Rep = putByte bh 13 put_ bh Int16Rep = putByte bh 14 put_ bh Word16Rep = putByte bh 15 #endif #if __GLASGOW_HASKELL__ >= 809 put_ bh Int32Rep = putByte bh 16 put_ bh Word32Rep = putByte bh 17 #endif get bh = do tag <- getByte bh case tag of 0 -> VecRep <$> get bh <*> get bh 1 -> TupleRep <$> get bh 2 -> SumRep <$> get bh 3 -> pure LiftedRep 4 -> pure UnliftedRep 5 -> pure IntRep 6 -> pure WordRep 7 -> pure Int64Rep 8 -> pure Word64Rep 9 -> pure AddrRep 10 -> pure FloatRep 11 -> pure DoubleRep #if __GLASGOW_HASKELL__ >= 807 12 -> pure Int8Rep 13 -> pure Word8Rep 14 -> pure Int16Rep 15 -> pure Word16Rep #endif #if __GLASGOW_HASKELL__ >= 809 16 -> pure Int32Rep 17 -> pure Word32Rep #endif _ -> fail "Binary.putRuntimeRep: invalid tag" instance Binary KindRep where put_ bh (KindRepTyConApp tc k) = putByte bh 0 >> put_ bh tc >> put_ bh k put_ bh (KindRepVar bndr) = putByte bh 1 >> put_ bh bndr put_ bh (KindRepApp a b) = putByte bh 2 >> put_ bh a >> put_ bh b put_ bh (KindRepFun a b) = putByte bh 3 >> put_ bh a >> put_ bh b put_ bh (KindRepTYPE r) = putByte bh 4 >> put_ bh r put_ bh (KindRepTypeLit sort r) = putByte bh 5 >> put_ bh sort >> put_ bh r get bh = do tag <- getByte bh case tag of 0 -> KindRepTyConApp <$> get bh <*> get bh 1 -> KindRepVar <$> get bh 2 -> KindRepApp <$> get bh <*> get bh 3 -> KindRepFun <$> get bh <*> get bh 4 -> KindRepTYPE <$> get bh 5 -> KindRepTypeLit <$> get bh <*> get bh _ -> fail "Binary.putKindRep: invalid tag" instance Binary TypeLitSort where put_ bh TypeLitSymbol = putByte bh 0 put_ bh TypeLitNat = putByte bh 1 get bh = do tag <- getByte bh case tag of 0 -> pure TypeLitSymbol 1 -> pure TypeLitNat _ -> fail "Binary.putTypeLitSort: invalid tag" putTypeRep :: BinHandle -> TypeRep a -> IO () -- Special handling for TYPE, (->), and RuntimeRep due to recursive kind -- relations. -- See Note [Mutually recursive representations of primitive types] putTypeRep bh rep | Just HRefl <- rep `eqTypeRep` (typeRep :: TypeRep Type) = put_ bh (0 :: Word8) putTypeRep bh (Con' con ks) = do put_ bh (1 :: Word8) put_ bh con put_ bh ks putTypeRep bh (App f x) = do put_ bh (2 :: Word8) putTypeRep bh f putTypeRep bh x putTypeRep bh (Fun arg res) = do put_ bh (3 :: Word8) putTypeRep bh arg putTypeRep bh res getSomeTypeRep :: BinHandle -> IO SomeTypeRep getSomeTypeRep bh = do tag <- get bh :: IO Word8 case tag of 0 -> return $ SomeTypeRep (typeRep :: TypeRep Type) 1 -> do con <- get bh :: IO TyCon ks <- get bh :: IO [SomeTypeRep] return $ SomeTypeRep $ mkTrCon con ks 2 -> do SomeTypeRep f <- getSomeTypeRep bh SomeTypeRep x <- getSomeTypeRep bh case typeRepKind f of Fun arg res -> case arg `eqTypeRep` typeRepKind x of Just HRefl -> case typeRepKind res `eqTypeRep` (typeRep :: TypeRep Type) of Just HRefl -> return $ SomeTypeRep $ mkTrApp f x _ -> failure "Kind mismatch in type application" [] _ -> failure "Kind mismatch in type application" [ " Found argument of kind: " ++ show (typeRepKind x) , " Where the constructor: " ++ show f , " Expects kind: " ++ show arg ] _ -> failure "Applied non-arrow" [ " Applied type: " ++ show f , " To argument: " ++ show x ] 3 -> do SomeTypeRep arg <- getSomeTypeRep bh SomeTypeRep res <- getSomeTypeRep bh if | App argkcon _ <- typeRepKind arg , App reskcon _ <- typeRepKind res , Just HRefl <- argkcon `eqTypeRep` tYPErep , Just HRefl <- reskcon `eqTypeRep` tYPErep -> return $ SomeTypeRep $ Fun arg res | otherwise -> failure "Kind mismatch" [] _ -> failure "Invalid SomeTypeRep" [] where tYPErep :: TypeRep TYPE tYPErep = typeRep failure description info = fail $ unlines $ [ "Binary.getSomeTypeRep: "++description ] ++ map (" "++) info instance Typeable a => Binary (TypeRep (a :: k)) where put_ = putTypeRep get bh = do SomeTypeRep rep <- getSomeTypeRep bh case rep `eqTypeRep` expected of Just HRefl -> pure rep Nothing -> fail $ unlines [ "Binary: Type mismatch" , " Deserialized type: " ++ show rep , " Expected type: " ++ show expected ] where expected = typeRep :: TypeRep a instance Binary SomeTypeRep where put_ bh (SomeTypeRep rep) = putTypeRep bh rep get = getSomeTypeRep -- ----------------------------------------------------------------------------- -- Lazy reading/writing lazyPut :: Binary a => BinHandle -> a -> IO () lazyPut bh a = do -- output the obj with a ptr to skip over it: pre_a <- tellBin bh put_ bh pre_a -- save a slot for the ptr put_ bh a -- dump the object q <- tellBin bh -- q = ptr to after object putAt bh pre_a q -- fill in slot before a with ptr to q seekBin bh q -- finally carry on writing at q lazyGet :: Binary a => BinHandle -> IO a lazyGet bh = do p <- get bh -- a BinPtr p_a <- tellBin bh a <- unsafeInterleaveIO $ do -- NB: Use a fresh off_r variable in the child thread, for thread -- safety. off_r <- newFastMutInt getAt bh { _off_r = off_r } p_a seekBin bh p -- skip over the object for now return a -- ----------------------------------------------------------------------------- -- UserData -- ----------------------------------------------------------------------------- -- | Information we keep around during interface file -- serialization/deserialization. Namely we keep the functions for serializing -- and deserializing 'Name's and 'FastString's. We do this because we actually -- use serialization in two distinct settings, -- -- * When serializing interface files themselves -- -- * When computing the fingerprint of an IfaceDecl (which we computing by -- hashing its Binary serialization) -- -- These two settings have different needs while serializing Names: -- -- * Names in interface files are serialized via a symbol table (see Note -- [Symbol table representation of names] in BinIface). -- -- * During fingerprinting a binding Name is serialized as the OccName and a -- non-binding Name is serialized as the fingerprint of the thing they -- represent. See Note [Fingerprinting IfaceDecls] for further discussion. -- data UserData = UserData { -- for *deserialising* only: ud_get_name :: BinHandle -> IO Name, ud_get_fs :: BinHandle -> IO FastString, -- for *serialising* only: ud_put_nonbinding_name :: BinHandle -> Name -> IO (), -- ^ serialize a non-binding 'Name' (e.g. a reference to another -- binding). ud_put_binding_name :: BinHandle -> Name -> IO (), -- ^ serialize a binding 'Name' (e.g. the name of an IfaceDecl) ud_put_fs :: BinHandle -> FastString -> IO () } newReadState :: (BinHandle -> IO Name) -- ^ how to deserialize 'Name's -> (BinHandle -> IO FastString) -> UserData newReadState get_name get_fs = UserData { ud_get_name = get_name, ud_get_fs = get_fs, ud_put_nonbinding_name = undef "put_nonbinding_name", ud_put_binding_name = undef "put_binding_name", ud_put_fs = undef "put_fs" } newWriteState :: (BinHandle -> Name -> IO ()) -- ^ how to serialize non-binding 'Name's -> (BinHandle -> Name -> IO ()) -- ^ how to serialize binding 'Name's -> (BinHandle -> FastString -> IO ()) -> UserData newWriteState put_nonbinding_name put_binding_name put_fs = UserData { ud_get_name = undef "get_name", ud_get_fs = undef "get_fs", ud_put_nonbinding_name = put_nonbinding_name, ud_put_binding_name = put_binding_name, ud_put_fs = put_fs } noUserData :: a noUserData = undef "UserData" undef :: String -> a undef s = panic ("Binary.UserData: no " ++ s) --------------------------------------------------------- -- The Dictionary --------------------------------------------------------- type Dictionary = Array Int FastString -- The dictionary -- Should be 0-indexed putDictionary :: BinHandle -> Int -> UniqFM (Int,FastString) -> IO () putDictionary bh sz dict = do put_ bh sz mapM_ (putFS bh) (elems (array (0,sz-1) (nonDetEltsUFM dict))) -- It's OK to use nonDetEltsUFM here because the elements have indices -- that array uses to create order getDictionary :: BinHandle -> IO Dictionary getDictionary bh = do sz <- get bh elems <- sequence (take sz (repeat (getFS bh))) return (listArray (0,sz-1) elems) --------------------------------------------------------- -- The Symbol Table --------------------------------------------------------- -- On disk, the symbol table is an array of IfExtName, when -- reading it in we turn it into a SymbolTable. type SymbolTable = Array Int Name --------------------------------------------------------- -- Reading and writing FastStrings --------------------------------------------------------- putFS :: BinHandle -> FastString -> IO () putFS bh fs = putBS bh $ bytesFS fs getFS :: BinHandle -> IO FastString getFS bh = do l <- get bh :: IO Int getPrim bh l (\src -> pure $! mkFastStringBytes src l ) putBS :: BinHandle -> ByteString -> IO () putBS bh bs = BS.unsafeUseAsCStringLen bs $ \(ptr, l) -> do put_ bh l putPrim bh l (\op -> BS.memcpy op (castPtr ptr) l) getBS :: BinHandle -> IO ByteString getBS bh = do l <- get bh :: IO Int BS.create l $ \dest -> do getPrim bh l (\src -> BS.memcpy dest src l) instance Binary ByteString where put_ bh f = putBS bh f get bh = getBS bh instance Binary FastString where put_ bh f = case getUserData bh of UserData { ud_put_fs = put_fs } -> put_fs bh f get bh = case getUserData bh of UserData { ud_get_fs = get_fs } -> get_fs bh -- Here to avoid loop instance Binary LeftOrRight where put_ bh CLeft = putByte bh 0 put_ bh CRight = putByte bh 1 get bh = do { h <- getByte bh ; case h of 0 -> return CLeft _ -> return CRight } instance Binary PromotionFlag where put_ bh NotPromoted = putByte bh 0 put_ bh IsPromoted = putByte bh 1 get bh = do n <- getByte bh case n of 0 -> return NotPromoted 1 -> return IsPromoted _ -> fail "Binary(IsPromoted): fail)" instance Binary Fingerprint where put_ h (Fingerprint w1 w2) = do put_ h w1; put_ h w2 get h = do w1 <- get h; w2 <- get h; return (Fingerprint w1 w2) instance Binary FunctionOrData where put_ bh IsFunction = putByte bh 0 put_ bh IsData = putByte bh 1 get bh = do h <- getByte bh case h of 0 -> return IsFunction 1 -> return IsData _ -> panic "Binary FunctionOrData" instance Binary TupleSort where put_ bh BoxedTuple = putByte bh 0 put_ bh UnboxedTuple = putByte bh 1 put_ bh ConstraintTuple = putByte bh 2 get bh = do h <- getByte bh case h of 0 -> do return BoxedTuple 1 -> do return UnboxedTuple _ -> do return ConstraintTuple instance Binary Activation where put_ bh NeverActive = do putByte bh 0 put_ bh AlwaysActive = do putByte bh 1 put_ bh (ActiveBefore src aa) = do putByte bh 2 put_ bh src put_ bh aa put_ bh (ActiveAfter src ab) = do putByte bh 3 put_ bh src put_ bh ab get bh = do h <- getByte bh case h of 0 -> do return NeverActive 1 -> do return AlwaysActive 2 -> do src <- get bh aa <- get bh return (ActiveBefore src aa) _ -> do src <- get bh ab <- get bh return (ActiveAfter src ab) instance Binary InlinePragma where put_ bh (InlinePragma s a b c d) = do put_ bh s put_ bh a put_ bh b put_ bh c put_ bh d get bh = do s <- get bh a <- get bh b <- get bh c <- get bh d <- get bh return (InlinePragma s a b c d) instance Binary RuleMatchInfo where put_ bh FunLike = putByte bh 0 put_ bh ConLike = putByte bh 1 get bh = do h <- getByte bh if h == 1 then return ConLike else return FunLike instance Binary InlineSpec where put_ bh NoUserInline = putByte bh 0 put_ bh Inline = putByte bh 1 put_ bh Inlinable = putByte bh 2 put_ bh NoInline = putByte bh 3 get bh = do h <- getByte bh case h of 0 -> return NoUserInline 1 -> return Inline 2 -> return Inlinable _ -> return NoInline instance Binary RecFlag where put_ bh Recursive = do putByte bh 0 put_ bh NonRecursive = do putByte bh 1 get bh = do h <- getByte bh case h of 0 -> do return Recursive _ -> do return NonRecursive instance Binary OverlapMode where put_ bh (NoOverlap s) = putByte bh 0 >> put_ bh s put_ bh (Overlaps s) = putByte bh 1 >> put_ bh s put_ bh (Incoherent s) = putByte bh 2 >> put_ bh s put_ bh (Overlapping s) = putByte bh 3 >> put_ bh s put_ bh (Overlappable s) = putByte bh 4 >> put_ bh s get bh = do h <- getByte bh case h of 0 -> (get bh) >>= \s -> return $ NoOverlap s 1 -> (get bh) >>= \s -> return $ Overlaps s 2 -> (get bh) >>= \s -> return $ Incoherent s 3 -> (get bh) >>= \s -> return $ Overlapping s 4 -> (get bh) >>= \s -> return $ Overlappable s _ -> panic ("get OverlapMode" ++ show h) instance Binary OverlapFlag where put_ bh flag = do put_ bh (overlapMode flag) put_ bh (isSafeOverlap flag) get bh = do h <- get bh b <- get bh return OverlapFlag { overlapMode = h, isSafeOverlap = b } instance Binary FixityDirection where put_ bh InfixL = do putByte bh 0 put_ bh InfixR = do putByte bh 1 put_ bh InfixN = do putByte bh 2 get bh = do h <- getByte bh case h of 0 -> do return InfixL 1 -> do return InfixR _ -> do return InfixN instance Binary Fixity where put_ bh (Fixity src aa ab) = do put_ bh src put_ bh aa put_ bh ab get bh = do src <- get bh aa <- get bh ab <- get bh return (Fixity src aa ab) instance Binary WarningTxt where put_ bh (WarningTxt s w) = do putByte bh 0 put_ bh s put_ bh w put_ bh (DeprecatedTxt s d) = do putByte bh 1 put_ bh s put_ bh d get bh = do h <- getByte bh case h of 0 -> do s <- get bh w <- get bh return (WarningTxt s w) _ -> do s <- get bh d <- get bh return (DeprecatedTxt s d) instance Binary StringLiteral where put_ bh (StringLiteral st fs) = do put_ bh st put_ bh fs get bh = do st <- get bh fs <- get bh return (StringLiteral st fs) instance Binary a => Binary (Located a) where put_ bh (L l x) = do put_ bh l put_ bh x get bh = do l <- get bh x <- get bh return (L l x) instance Binary RealSrcSpan where put_ bh ss = do put_ bh (srcSpanFile ss) put_ bh (srcSpanStartLine ss) put_ bh (srcSpanStartCol ss) put_ bh (srcSpanEndLine ss) put_ bh (srcSpanEndCol ss) get bh = do f <- get bh sl <- get bh sc <- get bh el <- get bh ec <- get bh return (mkRealSrcSpan (mkRealSrcLoc f sl sc) (mkRealSrcLoc f el ec)) instance Binary SrcSpan where put_ bh (RealSrcSpan ss) = do putByte bh 0 put_ bh ss put_ bh (UnhelpfulSpan s) = do putByte bh 1 put_ bh s get bh = do h <- getByte bh case h of 0 -> do ss <- get bh return (RealSrcSpan ss) _ -> do s <- get bh return (UnhelpfulSpan s) instance Binary Serialized where put_ bh (Serialized the_type bytes) = do put_ bh the_type put_ bh bytes get bh = do the_type <- get bh bytes <- get bh return (Serialized the_type bytes) instance Binary SourceText where put_ bh NoSourceText = putByte bh 0 put_ bh (SourceText s) = do putByte bh 1 put_ bh s get bh = do h <- getByte bh case h of 0 -> return NoSourceText 1 -> do s <- get bh return (SourceText s) _ -> panic $ "Binary SourceText:" ++ show h