module TyCoFVs ( tyCoVarsOfType, tyCoVarsOfTypeDSet, tyCoVarsOfTypes, tyCoVarsOfTypesDSet, exactTyCoVarsOfType, exactTyCoVarsOfTypes, tyCoFVsBndr, tyCoFVsVarBndr, tyCoFVsVarBndrs, tyCoFVsOfType, tyCoVarsOfTypeList, tyCoFVsOfTypes, tyCoVarsOfTypesList, tyCoVarsOfTypesSet, tyCoVarsOfCosSet, coVarsOfType, coVarsOfTypes, coVarsOfCo, coVarsOfCos, tyCoVarsOfCo, tyCoVarsOfCos, tyCoVarsOfCoDSet, tyCoFVsOfCo, tyCoFVsOfCos, tyCoVarsOfCoList, tyCoVarsOfProv, almostDevoidCoVarOfCo, injectiveVarsOfType, injectiveVarsOfTypes, invisibleVarsOfType, invisibleVarsOfTypes, noFreeVarsOfType, noFreeVarsOfTypes, noFreeVarsOfCo, mkTyCoInScopeSet, -- * Welll-scoped free variables scopedSort, tyCoVarsOfTypeWellScoped, tyCoVarsOfTypesWellScoped, ) where import GhcPrelude import {-# SOURCE #-} Type (coreView, tcView, partitionInvisibleTypes) import TyCoRep import TyCon import Var import FV import UniqFM import VarSet import VarEnv import Util import Panic {- %************************************************************************ %* * Free variables of types and coercions %* * %************************************************************************ -} {- Note [Free variables of types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The family of functions tyCoVarsOfType, tyCoVarsOfTypes etc, returns a VarSet that is closed over the types of its variables. More precisely, if S = tyCoVarsOfType( t ) and (a:k) is in S then tyCoVarsOftype( k ) is a subset of S Example: The tyCoVars of this ((a:* -> k) Int) is {a, k}. We could /not/ close over the kinds of the variable occurrences, and instead do so at call sites, but it seems that we always want to do so, so it's easiest to do it here. It turns out that getting the free variables of types is performance critical, so we profiled several versions, exploring different implementation strategies. 1. Baseline version: uses FV naively. Essentially: tyCoVarsOfType ty = fvVarSet $ tyCoFVsOfType ty This is not nice, because FV introduces some overhead to implement determinism, and throught its "interesting var" function, neither of which we need here, so they are a complete waste. 2. UnionVarSet version: instead of reusing the FV-based code, we simply used VarSets directly, trying to avoid the overhead of FV. E.g.: -- FV version: tyCoFVsOfType (AppTy fun arg) a b c = (tyCoFVsOfType fun `unionFV` tyCoFVsOfType arg) a b c -- UnionVarSet version: tyCoVarsOfType (AppTy fun arg) = (tyCoVarsOfType fun `unionVarSet` tyCoVarsOfType arg) This looks deceptively similar, but while FV internally builds a list- and set-generating function, the VarSet functions manipulate sets directly, and the latter peforms a lot worse than the naive FV version. 3. Accumulator-style VarSet version: this is what we use now. We do use VarSet as our data structure, but delegate the actual work to a new ty_co_vars_of_... family of functions, which use accumulator style and the "in-scope set" filter found in the internals of FV, but without the determinism overhead. See #14880. Note [Closing over free variable kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tyCoVarsOfType and tyCoFVsOfType, while traversing a type, will also close over free variable kinds. In previous GHC versions, this happened naively: whenever we would encounter an occurrence of a free type variable, we would close over its kind. This, however is wrong for two reasons (see #14880): 1. Efficiency. If we have Proxy (a::k) -> Proxy (a::k) -> Proxy (a::k), then we don't want to have to traverse k more than once. 2. Correctness. Imagine we have forall k. b -> k, where b has kind k, for some k bound in an outer scope. If we look at b's kind inside the forall, we'll collect that k is free and then remove k from the set of free variables. This is plain wrong. We must instead compute that b is free and then conclude that b's kind is free. An obvious first approach is to move the closing-over-kinds from the occurrences of a type variable to after finding the free vars - however, this turns out to introduce performance regressions, and isn't even entirely correct. In fact, it isn't even important *when* we close over kinds; what matters is that we handle each type var exactly once, and that we do it in the right context. So the next approach we tried was to use the "in-scope set" part of FV or the equivalent argument in the accumulator-style `ty_co_vars_of_type` function, to say "don't bother with variables we have already closed over". This should work fine in theory, but the code is complicated and doesn't perform well. But there is a simpler way, which is implemented here. Consider the two points above: 1. Efficiency: we now have an accumulator, so the second time we encounter 'a', we'll ignore it, certainly not looking at its kind - this is why pre-checking set membership before inserting ends up not only being faster, but also being correct. 2. Correctness: we have an "in-scope set" (I think we should call it it a "bound-var set"), specifying variables that are bound by a forall in the type we are traversing; we simply ignore these variables, certainly not looking at their kind. So now consider: forall k. b -> k where b :: k->Type is free; but of course, it's a different k! When looking at b -> k we'll have k in the bound-var set. So we'll ignore the k. But suppose this is our first encounter with b; we want the free vars of its kind. But we want to behave as if we took the free vars of its kind at the end; that is, with no bound vars in scope. So the solution is easy. The old code was this: ty_co_vars_of_type (TyVarTy v) is acc | v `elemVarSet` is = acc | v `elemVarSet` acc = acc | otherwise = ty_co_vars_of_type (tyVarKind v) is (extendVarSet acc v) Now all we need to do is take the free vars of tyVarKind v *with an empty bound-var set*, thus: ty_co_vars_of_type (TyVarTy v) is acc | v `elemVarSet` is = acc | v `elemVarSet` acc = acc | otherwise = ty_co_vars_of_type (tyVarKind v) emptyVarSet (extendVarSet acc v) ^^^^^^^^^^^ And that's it. This works because a variable is either bound or free. If it is bound, then we won't look at it at all. If it is free, then all the variables free in its kind are free -- regardless of whether some local variable has the same Unique. So if we're looking at a variable occurrence at all, then all variables in its kind are free. -} tyCoVarsOfType :: Type -> TyCoVarSet -- See Note [Free variables of types] tyCoVarsOfType ty = ty_co_vars_of_type ty emptyVarSet emptyVarSet tyCoVarsOfTypes :: [Type] -> TyCoVarSet tyCoVarsOfTypes tys = ty_co_vars_of_types tys emptyVarSet emptyVarSet ty_co_vars_of_type :: Type -> TyCoVarSet -> TyCoVarSet -> TyCoVarSet ty_co_vars_of_type (TyVarTy v) is acc | v `elemVarSet` is = acc | v `elemVarSet` acc = acc | otherwise = ty_co_vars_of_type (tyVarKind v) emptyVarSet -- See Note [Closing over free variable kinds] (extendVarSet acc v) ty_co_vars_of_type (TyConApp _ tys) is acc = ty_co_vars_of_types tys is acc ty_co_vars_of_type (LitTy {}) _ acc = acc ty_co_vars_of_type (AppTy fun arg) is acc = ty_co_vars_of_type fun is (ty_co_vars_of_type arg is acc) ty_co_vars_of_type (FunTy _ arg res) is acc = ty_co_vars_of_type arg is (ty_co_vars_of_type res is acc) ty_co_vars_of_type (ForAllTy (Bndr tv _) ty) is acc = ty_co_vars_of_type (varType tv) is $ ty_co_vars_of_type ty (extendVarSet is tv) acc ty_co_vars_of_type (CastTy ty co) is acc = ty_co_vars_of_type ty is (ty_co_vars_of_co co is acc) ty_co_vars_of_type (CoercionTy co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_types :: [Type] -> TyCoVarSet -> TyCoVarSet -> TyCoVarSet ty_co_vars_of_types [] _ acc = acc ty_co_vars_of_types (ty:tys) is acc = ty_co_vars_of_type ty is (ty_co_vars_of_types tys is acc) tyCoVarsOfCo :: Coercion -> TyCoVarSet -- See Note [Free variables of types] tyCoVarsOfCo co = ty_co_vars_of_co co emptyVarSet emptyVarSet tyCoVarsOfCos :: [Coercion] -> TyCoVarSet tyCoVarsOfCos cos = ty_co_vars_of_cos cos emptyVarSet emptyVarSet ty_co_vars_of_co :: Coercion -> TyCoVarSet -> TyCoVarSet -> TyCoVarSet ty_co_vars_of_co (Refl ty) is acc = ty_co_vars_of_type ty is acc ty_co_vars_of_co (GRefl _ ty mco) is acc = ty_co_vars_of_type ty is $ ty_co_vars_of_mco mco is acc ty_co_vars_of_co (TyConAppCo _ _ cos) is acc = ty_co_vars_of_cos cos is acc ty_co_vars_of_co (AppCo co arg) is acc = ty_co_vars_of_co co is $ ty_co_vars_of_co arg is acc ty_co_vars_of_co (ForAllCo tv kind_co co) is acc = ty_co_vars_of_co kind_co is $ ty_co_vars_of_co co (extendVarSet is tv) acc ty_co_vars_of_co (FunCo _ co1 co2) is acc = ty_co_vars_of_co co1 is $ ty_co_vars_of_co co2 is acc ty_co_vars_of_co (CoVarCo v) is acc = ty_co_vars_of_co_var v is acc ty_co_vars_of_co (HoleCo h) is acc = ty_co_vars_of_co_var (coHoleCoVar h) is acc -- See Note [CoercionHoles and coercion free variables] ty_co_vars_of_co (AxiomInstCo _ _ cos) is acc = ty_co_vars_of_cos cos is acc ty_co_vars_of_co (UnivCo p _ t1 t2) is acc = ty_co_vars_of_prov p is $ ty_co_vars_of_type t1 is $ ty_co_vars_of_type t2 is acc ty_co_vars_of_co (SymCo co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_co (TransCo co1 co2) is acc = ty_co_vars_of_co co1 is $ ty_co_vars_of_co co2 is acc ty_co_vars_of_co (NthCo _ _ co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_co (LRCo _ co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_co (InstCo co arg) is acc = ty_co_vars_of_co co is $ ty_co_vars_of_co arg is acc ty_co_vars_of_co (KindCo co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_co (SubCo co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_co (AxiomRuleCo _ cs) is acc = ty_co_vars_of_cos cs is acc ty_co_vars_of_mco :: MCoercion -> TyCoVarSet -> TyCoVarSet -> TyCoVarSet ty_co_vars_of_mco MRefl _is acc = acc ty_co_vars_of_mco (MCo co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_co_var :: CoVar -> TyCoVarSet -> TyCoVarSet -> TyCoVarSet ty_co_vars_of_co_var v is acc | v `elemVarSet` is = acc | v `elemVarSet` acc = acc | otherwise = ty_co_vars_of_type (varType v) emptyVarSet -- See Note [Closing over free variable kinds] (extendVarSet acc v) ty_co_vars_of_cos :: [Coercion] -> TyCoVarSet -> TyCoVarSet -> TyCoVarSet ty_co_vars_of_cos [] _ acc = acc ty_co_vars_of_cos (co:cos) is acc = ty_co_vars_of_co co is (ty_co_vars_of_cos cos is acc) tyCoVarsOfProv :: UnivCoProvenance -> TyCoVarSet tyCoVarsOfProv prov = ty_co_vars_of_prov prov emptyVarSet emptyVarSet ty_co_vars_of_prov :: UnivCoProvenance -> TyCoVarSet -> TyCoVarSet -> TyCoVarSet ty_co_vars_of_prov (PhantomProv co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_prov (ProofIrrelProv co) is acc = ty_co_vars_of_co co is acc ty_co_vars_of_prov UnsafeCoerceProv _ acc = acc ty_co_vars_of_prov (PluginProv _) _ acc = acc -- | Generates an in-scope set from the free variables in a list of types -- and a list of coercions mkTyCoInScopeSet :: [Type] -> [Coercion] -> InScopeSet mkTyCoInScopeSet tys cos = mkInScopeSet (ty_co_vars_of_types tys emptyVarSet $ ty_co_vars_of_cos cos emptyVarSet emptyVarSet) -- | `tyCoFVsOfType` that returns free variables of a type in a deterministic -- set. For explanation of why using `VarSet` is not deterministic see -- Note [Deterministic FV] in FV. tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet -- See Note [Free variables of types] tyCoVarsOfTypeDSet ty = fvDVarSet $ tyCoFVsOfType ty -- | `tyCoFVsOfType` that returns free variables of a type in deterministic -- order. For explanation of why using `VarSet` is not deterministic see -- Note [Deterministic FV] in FV. tyCoVarsOfTypeList :: Type -> [TyCoVar] -- See Note [Free variables of types] tyCoVarsOfTypeList ty = fvVarList $ tyCoFVsOfType ty -- | Returns free variables of types, including kind variables as -- a non-deterministic set. For type synonyms it does /not/ expand the -- synonym. tyCoVarsOfTypesSet :: TyVarEnv Type -> TyCoVarSet -- See Note [Free variables of types] tyCoVarsOfTypesSet tys = tyCoVarsOfTypes $ nonDetEltsUFM tys -- It's OK to use nonDetEltsUFM here because we immediately forget the -- ordering by returning a set -- | Returns free variables of types, including kind variables as -- a deterministic set. For type synonyms it does /not/ expand the -- synonym. tyCoVarsOfTypesDSet :: [Type] -> DTyCoVarSet -- See Note [Free variables of types] tyCoVarsOfTypesDSet tys = fvDVarSet $ tyCoFVsOfTypes tys -- | Returns free variables of types, including kind variables as -- a deterministically ordered list. For type synonyms it does /not/ expand the -- synonym. tyCoVarsOfTypesList :: [Type] -> [TyCoVar] -- See Note [Free variables of types] tyCoVarsOfTypesList tys = fvVarList $ tyCoFVsOfTypes tys {- ************************************************************************ * * The "exact" free variables of a type * * ************************************************************************ Note [Silly type synonym] ~~~~~~~~~~~~~~~~~~~~~~~~~ Consider type T a = Int What are the free tyvars of (T x)? Empty, of course! exactTyCoVarsOfType is used by the type checker to figure out exactly which type variables are mentioned in a type. It only matters occasionally -- see the calls to exactTyCoVarsOfType. -} exactTyCoVarsOfType :: Type -> TyCoVarSet -- Find the free type variables (of any kind) -- but *expand* type synonyms. See Note [Silly type synonym] above. exactTyCoVarsOfType ty = go ty where go ty | Just ty' <- tcView ty = go ty' -- This is the key line go (TyVarTy tv) = goVar tv go (TyConApp _ tys) = exactTyCoVarsOfTypes tys go (LitTy {}) = emptyVarSet go (AppTy fun arg) = go fun `unionVarSet` go arg go (FunTy _ arg res) = go arg `unionVarSet` go res go (ForAllTy bndr ty) = delBinderVar (go ty) bndr `unionVarSet` go (binderType bndr) go (CastTy ty co) = go ty `unionVarSet` goCo co go (CoercionTy co) = goCo co goMCo MRefl = emptyVarSet goMCo (MCo co) = goCo co goCo (Refl ty) = go ty goCo (GRefl _ ty mco) = go ty `unionVarSet` goMCo mco goCo (TyConAppCo _ _ args)= goCos args goCo (AppCo co arg) = goCo co `unionVarSet` goCo arg goCo (ForAllCo tv k_co co) = goCo co `delVarSet` tv `unionVarSet` goCo k_co goCo (FunCo _ co1 co2) = goCo co1 `unionVarSet` goCo co2 goCo (CoVarCo v) = goVar v goCo (HoleCo h) = goVar (coHoleCoVar h) goCo (AxiomInstCo _ _ args) = goCos args goCo (UnivCo p _ t1 t2) = goProv p `unionVarSet` go t1 `unionVarSet` go t2 goCo (SymCo co) = goCo co goCo (TransCo co1 co2) = goCo co1 `unionVarSet` goCo co2 goCo (NthCo _ _ co) = goCo co goCo (LRCo _ co) = goCo co goCo (InstCo co arg) = goCo co `unionVarSet` goCo arg goCo (KindCo co) = goCo co goCo (SubCo co) = goCo co goCo (AxiomRuleCo _ c) = goCos c goCos cos = foldr (unionVarSet . goCo) emptyVarSet cos goProv UnsafeCoerceProv = emptyVarSet goProv (PhantomProv kco) = goCo kco goProv (ProofIrrelProv kco) = goCo kco goProv (PluginProv _) = emptyVarSet goVar v = unitVarSet v `unionVarSet` go (varType v) exactTyCoVarsOfTypes :: [Type] -> TyVarSet exactTyCoVarsOfTypes tys = mapUnionVarSet exactTyCoVarsOfType tys -- | The worker for `tyCoFVsOfType` and `tyCoFVsOfTypeList`. -- The previous implementation used `unionVarSet` which is O(n+m) and can -- make the function quadratic. -- It's exported, so that it can be composed with -- other functions that compute free variables. -- See Note [FV naming conventions] in FV. -- -- Eta-expanded because that makes it run faster (apparently) -- See Note [FV eta expansion] in FV for explanation. tyCoFVsOfType :: Type -> FV -- See Note [Free variables of types] tyCoFVsOfType (TyVarTy v) f bound_vars (acc_list, acc_set) | not (f v) = (acc_list, acc_set) | v `elemVarSet` bound_vars = (acc_list, acc_set) | v `elemVarSet` acc_set = (acc_list, acc_set) | otherwise = tyCoFVsOfType (tyVarKind v) f emptyVarSet -- See Note [Closing over free variable kinds] (v:acc_list, extendVarSet acc_set v) tyCoFVsOfType (TyConApp _ tys) f bound_vars acc = tyCoFVsOfTypes tys f bound_vars acc tyCoFVsOfType (LitTy {}) f bound_vars acc = emptyFV f bound_vars acc tyCoFVsOfType (AppTy fun arg) f bound_vars acc = (tyCoFVsOfType fun `unionFV` tyCoFVsOfType arg) f bound_vars acc tyCoFVsOfType (FunTy _ arg res) f bound_vars acc = (tyCoFVsOfType arg `unionFV` tyCoFVsOfType res) f bound_vars acc tyCoFVsOfType (ForAllTy bndr ty) f bound_vars acc = tyCoFVsBndr bndr (tyCoFVsOfType ty) f bound_vars acc tyCoFVsOfType (CastTy ty co) f bound_vars acc = (tyCoFVsOfType ty `unionFV` tyCoFVsOfCo co) f bound_vars acc tyCoFVsOfType (CoercionTy co) f bound_vars acc = tyCoFVsOfCo co f bound_vars acc tyCoFVsBndr :: TyCoVarBinder -> FV -> FV -- Free vars of (forall b. ) tyCoFVsBndr (Bndr tv _) fvs = tyCoFVsVarBndr tv fvs tyCoFVsVarBndrs :: [Var] -> FV -> FV tyCoFVsVarBndrs vars fvs = foldr tyCoFVsVarBndr fvs vars tyCoFVsVarBndr :: Var -> FV -> FV tyCoFVsVarBndr var fvs = tyCoFVsOfType (varType var) -- Free vars of its type/kind `unionFV` delFV var fvs -- Delete it from the thing-inside tyCoFVsOfTypes :: [Type] -> FV -- See Note [Free variables of types] tyCoFVsOfTypes (ty:tys) fv_cand in_scope acc = (tyCoFVsOfType ty `unionFV` tyCoFVsOfTypes tys) fv_cand in_scope acc tyCoFVsOfTypes [] fv_cand in_scope acc = emptyFV fv_cand in_scope acc -- | Get a deterministic set of the vars free in a coercion tyCoVarsOfCoDSet :: Coercion -> DTyCoVarSet -- See Note [Free variables of types] tyCoVarsOfCoDSet co = fvDVarSet $ tyCoFVsOfCo co tyCoVarsOfCoList :: Coercion -> [TyCoVar] -- See Note [Free variables of types] tyCoVarsOfCoList co = fvVarList $ tyCoFVsOfCo co tyCoFVsOfMCo :: MCoercion -> FV tyCoFVsOfMCo MRefl = emptyFV tyCoFVsOfMCo (MCo co) = tyCoFVsOfCo co tyCoVarsOfCosSet :: CoVarEnv Coercion -> TyCoVarSet tyCoVarsOfCosSet cos = tyCoVarsOfCos $ nonDetEltsUFM cos -- It's OK to use nonDetEltsUFM here because we immediately forget the -- ordering by returning a set tyCoFVsOfCo :: Coercion -> FV -- Extracts type and coercion variables from a coercion -- See Note [Free variables of types] tyCoFVsOfCo (Refl ty) fv_cand in_scope acc = tyCoFVsOfType ty fv_cand in_scope acc tyCoFVsOfCo (GRefl _ ty mco) fv_cand in_scope acc = (tyCoFVsOfType ty `unionFV` tyCoFVsOfMCo mco) fv_cand in_scope acc tyCoFVsOfCo (TyConAppCo _ _ cos) fv_cand in_scope acc = tyCoFVsOfCos cos fv_cand in_scope acc tyCoFVsOfCo (AppCo co arg) fv_cand in_scope acc = (tyCoFVsOfCo co `unionFV` tyCoFVsOfCo arg) fv_cand in_scope acc tyCoFVsOfCo (ForAllCo tv kind_co co) fv_cand in_scope acc = (tyCoFVsVarBndr tv (tyCoFVsOfCo co) `unionFV` tyCoFVsOfCo kind_co) fv_cand in_scope acc tyCoFVsOfCo (FunCo _ co1 co2) fv_cand in_scope acc = (tyCoFVsOfCo co1 `unionFV` tyCoFVsOfCo co2) fv_cand in_scope acc tyCoFVsOfCo (CoVarCo v) fv_cand in_scope acc = tyCoFVsOfCoVar v fv_cand in_scope acc tyCoFVsOfCo (HoleCo h) fv_cand in_scope acc = tyCoFVsOfCoVar (coHoleCoVar h) fv_cand in_scope acc -- See Note [CoercionHoles and coercion free variables] tyCoFVsOfCo (AxiomInstCo _ _ cos) fv_cand in_scope acc = tyCoFVsOfCos cos fv_cand in_scope acc tyCoFVsOfCo (UnivCo p _ t1 t2) fv_cand in_scope acc = (tyCoFVsOfProv p `unionFV` tyCoFVsOfType t1 `unionFV` tyCoFVsOfType t2) fv_cand in_scope acc tyCoFVsOfCo (SymCo co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc tyCoFVsOfCo (TransCo co1 co2) fv_cand in_scope acc = (tyCoFVsOfCo co1 `unionFV` tyCoFVsOfCo co2) fv_cand in_scope acc tyCoFVsOfCo (NthCo _ _ co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc tyCoFVsOfCo (LRCo _ co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc tyCoFVsOfCo (InstCo co arg) fv_cand in_scope acc = (tyCoFVsOfCo co `unionFV` tyCoFVsOfCo arg) fv_cand in_scope acc tyCoFVsOfCo (KindCo co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc tyCoFVsOfCo (SubCo co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc tyCoFVsOfCo (AxiomRuleCo _ cs) fv_cand in_scope acc = tyCoFVsOfCos cs fv_cand in_scope acc tyCoFVsOfCoVar :: CoVar -> FV tyCoFVsOfCoVar v fv_cand in_scope acc = (unitFV v `unionFV` tyCoFVsOfType (varType v)) fv_cand in_scope acc tyCoFVsOfProv :: UnivCoProvenance -> FV tyCoFVsOfProv UnsafeCoerceProv fv_cand in_scope acc = emptyFV fv_cand in_scope acc tyCoFVsOfProv (PhantomProv co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc tyCoFVsOfProv (ProofIrrelProv co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc tyCoFVsOfProv (PluginProv _) fv_cand in_scope acc = emptyFV fv_cand in_scope acc tyCoFVsOfCos :: [Coercion] -> FV tyCoFVsOfCos [] fv_cand in_scope acc = emptyFV fv_cand in_scope acc tyCoFVsOfCos (co:cos) fv_cand in_scope acc = (tyCoFVsOfCo co `unionFV` tyCoFVsOfCos cos) fv_cand in_scope acc ------------- Extracting the CoVars of a type or coercion ----------- {- Note [CoVarsOfX and the InterestingVarFun] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The coVarsOfType, coVarsOfTypes, coVarsOfCo, and coVarsOfCos functions are implemented in terms of the respective FV equivalents (tyCoFVsOf...), rather than the VarSet-based flavors (tyCoVarsOf...), despite the performance considerations outlined in Note [Free variables of types]. This is because FV includes the InterestingVarFun, which is useful here, because we can cleverly use it to restrict our calculations to CoVars - this is what getCoVarSet achieves. See #14880. -} getCoVarSet :: FV -> CoVarSet getCoVarSet fv = snd (fv isCoVar emptyVarSet ([], emptyVarSet)) coVarsOfType :: Type -> CoVarSet coVarsOfType ty = getCoVarSet (tyCoFVsOfType ty) coVarsOfTypes :: [Type] -> TyCoVarSet coVarsOfTypes tys = getCoVarSet (tyCoFVsOfTypes tys) coVarsOfCo :: Coercion -> CoVarSet coVarsOfCo co = getCoVarSet (tyCoFVsOfCo co) coVarsOfCos :: [Coercion] -> CoVarSet coVarsOfCos cos = getCoVarSet (tyCoFVsOfCos cos) ----- Whether a covar is /Almost Devoid/ in a type or coercion ---- -- | Given a covar and a coercion, returns True if covar is almost devoid in -- the coercion. That is, covar can only appear in Refl and GRefl. -- See last wrinkle in Note [Unused coercion variable in ForAllCo] in Coercion almostDevoidCoVarOfCo :: CoVar -> Coercion -> Bool almostDevoidCoVarOfCo cv co = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_co :: Coercion -> CoVar -> Bool almost_devoid_co_var_of_co (Refl {}) _ = True -- covar is allowed in Refl and almost_devoid_co_var_of_co (GRefl {}) _ = True -- GRefl, so we don't look into -- the coercions almost_devoid_co_var_of_co (TyConAppCo _ _ cos) cv = almost_devoid_co_var_of_cos cos cv almost_devoid_co_var_of_co (AppCo co arg) cv = almost_devoid_co_var_of_co co cv && almost_devoid_co_var_of_co arg cv almost_devoid_co_var_of_co (ForAllCo v kind_co co) cv = almost_devoid_co_var_of_co kind_co cv && (v == cv || almost_devoid_co_var_of_co co cv) almost_devoid_co_var_of_co (FunCo _ co1 co2) cv = almost_devoid_co_var_of_co co1 cv && almost_devoid_co_var_of_co co2 cv almost_devoid_co_var_of_co (CoVarCo v) cv = v /= cv almost_devoid_co_var_of_co (HoleCo h) cv = (coHoleCoVar h) /= cv almost_devoid_co_var_of_co (AxiomInstCo _ _ cos) cv = almost_devoid_co_var_of_cos cos cv almost_devoid_co_var_of_co (UnivCo p _ t1 t2) cv = almost_devoid_co_var_of_prov p cv && almost_devoid_co_var_of_type t1 cv && almost_devoid_co_var_of_type t2 cv almost_devoid_co_var_of_co (SymCo co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_co (TransCo co1 co2) cv = almost_devoid_co_var_of_co co1 cv && almost_devoid_co_var_of_co co2 cv almost_devoid_co_var_of_co (NthCo _ _ co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_co (LRCo _ co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_co (InstCo co arg) cv = almost_devoid_co_var_of_co co cv && almost_devoid_co_var_of_co arg cv almost_devoid_co_var_of_co (KindCo co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_co (SubCo co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_co (AxiomRuleCo _ cs) cv = almost_devoid_co_var_of_cos cs cv almost_devoid_co_var_of_cos :: [Coercion] -> CoVar -> Bool almost_devoid_co_var_of_cos [] _ = True almost_devoid_co_var_of_cos (co:cos) cv = almost_devoid_co_var_of_co co cv && almost_devoid_co_var_of_cos cos cv almost_devoid_co_var_of_prov :: UnivCoProvenance -> CoVar -> Bool almost_devoid_co_var_of_prov (PhantomProv co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_prov (ProofIrrelProv co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_prov UnsafeCoerceProv _ = True almost_devoid_co_var_of_prov (PluginProv _) _ = True almost_devoid_co_var_of_type :: Type -> CoVar -> Bool almost_devoid_co_var_of_type (TyVarTy _) _ = True almost_devoid_co_var_of_type (TyConApp _ tys) cv = almost_devoid_co_var_of_types tys cv almost_devoid_co_var_of_type (LitTy {}) _ = True almost_devoid_co_var_of_type (AppTy fun arg) cv = almost_devoid_co_var_of_type fun cv && almost_devoid_co_var_of_type arg cv almost_devoid_co_var_of_type (FunTy _ arg res) cv = almost_devoid_co_var_of_type arg cv && almost_devoid_co_var_of_type res cv almost_devoid_co_var_of_type (ForAllTy (Bndr v _) ty) cv = almost_devoid_co_var_of_type (varType v) cv && (v == cv || almost_devoid_co_var_of_type ty cv) almost_devoid_co_var_of_type (CastTy ty co) cv = almost_devoid_co_var_of_type ty cv && almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_type (CoercionTy co) cv = almost_devoid_co_var_of_co co cv almost_devoid_co_var_of_types :: [Type] -> CoVar -> Bool almost_devoid_co_var_of_types [] _ = True almost_devoid_co_var_of_types (ty:tys) cv = almost_devoid_co_var_of_type ty cv && almost_devoid_co_var_of_types tys cv ------------- Injective free vars ----------------- -- | Returns the free variables of a 'Type' that are in injective positions. -- Specifically, it finds the free variables while: -- -- * Expanding type synonyms -- -- * Ignoring the coercion in @(ty |> co)@ -- -- * Ignoring the non-injective fields of a 'TyConApp' -- -- -- For example, if @F@ is a non-injective type family, then: -- -- @ -- injectiveTyVarsOf( Either c (Maybe (a, F b c)) ) = {a,c} -- @ -- -- If @'injectiveVarsOfType' ty = itvs@, then knowing @ty@ fixes @itvs@. -- More formally, if -- @a@ is in @'injectiveVarsOfType' ty@ -- and @S1(ty) ~ S2(ty)@, -- then @S1(a) ~ S2(a)@, -- where @S1@ and @S2@ are arbitrary substitutions. -- -- See @Note [When does a tycon application need an explicit kind signature?]@. injectiveVarsOfType :: Bool -- ^ Should we look under injective type families? -- See Note [Coverage condition for injective type families] -- in FamInst. -> Type -> FV injectiveVarsOfType look_under_tfs = go where go ty | Just ty' <- coreView ty = go ty' go (TyVarTy v) = unitFV v `unionFV` go (tyVarKind v) go (AppTy f a) = go f `unionFV` go a go (FunTy _ ty1 ty2) = go ty1 `unionFV` go ty2 go (TyConApp tc tys) = case tyConInjectivityInfo tc of Injective inj | look_under_tfs || not (isTypeFamilyTyCon tc) -> mapUnionFV go $ filterByList (inj ++ repeat True) tys -- Oversaturated arguments to a tycon are -- always injective, hence the repeat True _ -> emptyFV go (ForAllTy (Bndr tv _) ty) = go (tyVarKind tv) `unionFV` delFV tv (go ty) go LitTy{} = emptyFV go (CastTy ty _) = go ty go CoercionTy{} = emptyFV -- | Returns the free variables of a 'Type' that are in injective positions. -- Specifically, it finds the free variables while: -- -- * Expanding type synonyms -- -- * Ignoring the coercion in @(ty |> co)@ -- -- * Ignoring the non-injective fields of a 'TyConApp' -- -- See @Note [When does a tycon application need an explicit kind signature?]@. injectiveVarsOfTypes :: Bool -- ^ look under injective type families? -- See Note [Coverage condition for injective type families] -- in FamInst. -> [Type] -> FV injectiveVarsOfTypes look_under_tfs = mapUnionFV (injectiveVarsOfType look_under_tfs) ------------- Invisible vars ----------------- -- | Returns the set of variables that are used invisibly anywhere within -- the given type. A variable will be included even if it is used both visibly -- and invisibly. An invisible use site includes: -- * In the kind of a variable -- * In the kind of a bound variable in a forall -- * In a coercion -- * In a Specified or Inferred argument to a function -- See Note [VarBndrs, TyCoVarBinders, TyConBinders, and visibility] in TyCoRep invisibleVarsOfType :: Type -> FV invisibleVarsOfType = go where go ty | Just ty' <- coreView ty = go ty' go (TyVarTy v) = go (tyVarKind v) go (AppTy f a) = go f `unionFV` go a go (FunTy _ ty1 ty2) = go ty1 `unionFV` go ty2 go (TyConApp tc tys) = tyCoFVsOfTypes invisibles `unionFV` invisibleVarsOfTypes visibles where (invisibles, visibles) = partitionInvisibleTypes tc tys go (ForAllTy tvb ty) = tyCoFVsBndr tvb $ go ty go LitTy{} = emptyFV go (CastTy ty co) = tyCoFVsOfCo co `unionFV` go ty go (CoercionTy co) = tyCoFVsOfCo co -- | Like 'invisibleVarsOfType', but for many types. invisibleVarsOfTypes :: [Type] -> FV invisibleVarsOfTypes = mapUnionFV invisibleVarsOfType ------------- No free vars ----------------- -- | Returns True if this type has no free variables. Should be the same as -- isEmptyVarSet . tyCoVarsOfType, but faster in the non-forall case. noFreeVarsOfType :: Type -> Bool noFreeVarsOfType (TyVarTy _) = False noFreeVarsOfType (AppTy t1 t2) = noFreeVarsOfType t1 && noFreeVarsOfType t2 noFreeVarsOfType (TyConApp _ tys) = all noFreeVarsOfType tys noFreeVarsOfType ty@(ForAllTy {}) = isEmptyVarSet (tyCoVarsOfType ty) noFreeVarsOfType (FunTy _ t1 t2) = noFreeVarsOfType t1 && noFreeVarsOfType t2 noFreeVarsOfType (LitTy _) = True noFreeVarsOfType (CastTy ty co) = noFreeVarsOfType ty && noFreeVarsOfCo co noFreeVarsOfType (CoercionTy co) = noFreeVarsOfCo co noFreeVarsOfMCo :: MCoercion -> Bool noFreeVarsOfMCo MRefl = True noFreeVarsOfMCo (MCo co) = noFreeVarsOfCo co noFreeVarsOfTypes :: [Type] -> Bool noFreeVarsOfTypes = all noFreeVarsOfType -- | Returns True if this coercion has no free variables. Should be the same as -- isEmptyVarSet . tyCoVarsOfCo, but faster in the non-forall case. noFreeVarsOfCo :: Coercion -> Bool noFreeVarsOfCo (Refl ty) = noFreeVarsOfType ty noFreeVarsOfCo (GRefl _ ty co) = noFreeVarsOfType ty && noFreeVarsOfMCo co noFreeVarsOfCo (TyConAppCo _ _ args) = all noFreeVarsOfCo args noFreeVarsOfCo (AppCo c1 c2) = noFreeVarsOfCo c1 && noFreeVarsOfCo c2 noFreeVarsOfCo co@(ForAllCo {}) = isEmptyVarSet (tyCoVarsOfCo co) noFreeVarsOfCo (FunCo _ c1 c2) = noFreeVarsOfCo c1 && noFreeVarsOfCo c2 noFreeVarsOfCo (CoVarCo _) = False noFreeVarsOfCo (HoleCo {}) = True -- I'm unsure; probably never happens noFreeVarsOfCo (AxiomInstCo _ _ args) = all noFreeVarsOfCo args noFreeVarsOfCo (UnivCo p _ t1 t2) = noFreeVarsOfProv p && noFreeVarsOfType t1 && noFreeVarsOfType t2 noFreeVarsOfCo (SymCo co) = noFreeVarsOfCo co noFreeVarsOfCo (TransCo co1 co2) = noFreeVarsOfCo co1 && noFreeVarsOfCo co2 noFreeVarsOfCo (NthCo _ _ co) = noFreeVarsOfCo co noFreeVarsOfCo (LRCo _ co) = noFreeVarsOfCo co noFreeVarsOfCo (InstCo co1 co2) = noFreeVarsOfCo co1 && noFreeVarsOfCo co2 noFreeVarsOfCo (KindCo co) = noFreeVarsOfCo co noFreeVarsOfCo (SubCo co) = noFreeVarsOfCo co noFreeVarsOfCo (AxiomRuleCo _ cs) = all noFreeVarsOfCo cs -- | Returns True if this UnivCoProv has no free variables. Should be the same as -- isEmptyVarSet . tyCoVarsOfProv, but faster in the non-forall case. noFreeVarsOfProv :: UnivCoProvenance -> Bool noFreeVarsOfProv UnsafeCoerceProv = True noFreeVarsOfProv (PhantomProv co) = noFreeVarsOfCo co noFreeVarsOfProv (ProofIrrelProv co) = noFreeVarsOfCo co noFreeVarsOfProv (PluginProv {}) = True {- %************************************************************************ %* * Well-scoped tyvars * * ************************************************************************ Note [ScopedSort] ~~~~~~~~~~~~~~~~~ Consider foo :: Proxy a -> Proxy (b :: k) -> Proxy (a :: k2) -> () This function type is implicitly generalised over [a, b, k, k2]. These variables will be Specified; that is, they will be available for visible type application. This is because they are written in the type signature by the user. However, we must ask: what order will they appear in? In cases without dependency, this is easy: we just use the lexical left-to-right ordering of first occurrence. With dependency, we cannot get off the hook so easily. We thus state: * These variables appear in the order as given by ScopedSort, where the input to ScopedSort is the left-to-right order of first occurrence. Note that this applies only to *implicit* quantification, without a `forall`. If the user writes a `forall`, then we just use the order given. ScopedSort is defined thusly (as proposed in #15743): * Work left-to-right through the input list, with a cursor. * If variable v at the cursor is depended on by any earlier variable w, move v immediately before the leftmost such w. INVARIANT: The prefix of variables before the cursor form a valid telescope. Note that ScopedSort makes sense only after type inference is done and all types/kinds are fully settled and zonked. -} -- | Do a topological sort on a list of tyvars, -- so that binders occur before occurrences -- E.g. given [ a::k, k::*, b::k ] -- it'll return a well-scoped list [ k::*, a::k, b::k ] -- -- This is a deterministic sorting operation -- (that is, doesn't depend on Uniques). -- -- It is also meant to be stable: that is, variables should not -- be reordered unnecessarily. This is specified in Note [ScopedSort] -- See also Note [Ordering of implicit variables] in RnTypes scopedSort :: [TyCoVar] -> [TyCoVar] scopedSort = go [] [] where go :: [TyCoVar] -- already sorted, in reverse order -> [TyCoVarSet] -- each set contains all the variables which must be placed -- before the tv corresponding to the set; they are accumulations -- of the fvs in the sorted tvs' kinds -- This list is in 1-to-1 correspondence with the sorted tyvars -- INVARIANT: -- all (\tl -> all (`subVarSet` head tl) (tail tl)) (tails fv_list) -- That is, each set in the list is a superset of all later sets. -> [TyCoVar] -- yet to be sorted -> [TyCoVar] go acc _fv_list [] = reverse acc go acc fv_list (tv:tvs) = go acc' fv_list' tvs where (acc', fv_list') = insert tv acc fv_list insert :: TyCoVar -- var to insert -> [TyCoVar] -- sorted list, in reverse order -> [TyCoVarSet] -- list of fvs, as above -> ([TyCoVar], [TyCoVarSet]) -- augmented lists insert tv [] [] = ([tv], [tyCoVarsOfType (tyVarKind tv)]) insert tv (a:as) (fvs:fvss) | tv `elemVarSet` fvs , (as', fvss') <- insert tv as fvss = (a:as', fvs `unionVarSet` fv_tv : fvss') | otherwise = (tv:a:as, fvs `unionVarSet` fv_tv : fvs : fvss) where fv_tv = tyCoVarsOfType (tyVarKind tv) -- lists not in correspondence insert _ _ _ = panic "scopedSort" -- | Get the free vars of a type in scoped order tyCoVarsOfTypeWellScoped :: Type -> [TyVar] tyCoVarsOfTypeWellScoped = scopedSort . tyCoVarsOfTypeList -- | Get the free vars of types in scoped order tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar] tyCoVarsOfTypesWellScoped = scopedSort . tyCoVarsOfTypesList