{- (c) The AQUA Project, Glasgow University, 1993-1998 \section[CoreMonad]{The core pipeline monad} -} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFunctor #-} module CoreMonad ( -- * Configuration of the core-to-core passes CoreToDo(..), runWhen, runMaybe, SimplMode(..), FloatOutSwitches(..), pprPassDetails, -- * Plugins CorePluginPass, bindsOnlyPass, -- * Counting SimplCount, doSimplTick, doFreeSimplTick, simplCountN, pprSimplCount, plusSimplCount, zeroSimplCount, isZeroSimplCount, hasDetailedCounts, Tick(..), -- * The monad CoreM, runCoreM, -- ** Reading from the monad getHscEnv, getRuleBase, getModule, getDynFlags, getOrigNameCache, getPackageFamInstEnv, getVisibleOrphanMods, getUniqMask, getPrintUnqualified, getSrcSpanM, -- ** Writing to the monad addSimplCount, -- ** Lifting into the monad liftIO, liftIOWithCount, -- ** Dealing with annotations getAnnotations, getFirstAnnotations, -- ** Screen output putMsg, putMsgS, errorMsg, errorMsgS, warnMsg, fatalErrorMsg, fatalErrorMsgS, debugTraceMsg, debugTraceMsgS, dumpIfSet_dyn ) where import GhcPrelude hiding ( read ) import CoreSyn import HscTypes import Module import DynFlags import BasicTypes ( CompilerPhase(..) ) import Annotations import IOEnv hiding ( liftIO, failM, failWithM ) import qualified IOEnv ( liftIO ) import Var import Outputable import FastString import qualified ErrUtils as Err import ErrUtils( Severity(..) ) import UniqSupply import UniqFM ( UniqFM, mapUFM, filterUFM ) import MonadUtils import NameCache import SrcLoc import Data.List (intersperse, groupBy, sortBy) import Data.Ord import Data.Dynamic import Data.IORef import Data.Map (Map) import qualified Data.Map as Map import qualified Data.Map.Strict as MapStrict import Data.Word import Control.Monad import Control.Applicative ( Alternative(..) ) import Panic (throwGhcException, GhcException(..)) {- ************************************************************************ * * The CoreToDo type and related types Abstraction of core-to-core passes to run. * * ************************************************************************ -} data CoreToDo -- These are diff core-to-core passes, -- which may be invoked in any order, -- as many times as you like. = CoreDoSimplify -- The core-to-core simplifier. Int -- Max iterations SimplMode | CoreDoPluginPass String CorePluginPass | CoreDoFloatInwards | CoreDoFloatOutwards FloatOutSwitches | CoreLiberateCase | CoreDoPrintCore | CoreDoStaticArgs | CoreDoCallArity | CoreDoExitify | CoreDoStrictness | CoreDoWorkerWrapper | CoreDoSpecialising | CoreDoSpecConstr | CoreCSE | CoreDoRuleCheck CompilerPhase String -- Check for non-application of rules -- matching this string | CoreDoNothing -- Useful when building up | CoreDoPasses [CoreToDo] -- lists of these things | CoreDesugar -- Right after desugaring, no simple optimisation yet! | CoreDesugarOpt -- CoreDesugarXXX: Not strictly a core-to-core pass, but produces -- Core output, and hence useful to pass to endPass | CoreTidy | CorePrep | CoreOccurAnal instance Outputable CoreToDo where ppr (CoreDoSimplify _ _) = text "Simplifier" ppr (CoreDoPluginPass s _) = text "Core plugin: " <+> text s ppr CoreDoFloatInwards = text "Float inwards" ppr (CoreDoFloatOutwards f) = text "Float out" <> parens (ppr f) ppr CoreLiberateCase = text "Liberate case" ppr CoreDoStaticArgs = text "Static argument" ppr CoreDoCallArity = text "Called arity analysis" ppr CoreDoExitify = text "Exitification transformation" ppr CoreDoStrictness = text "Demand analysis" ppr CoreDoWorkerWrapper = text "Worker Wrapper binds" ppr CoreDoSpecialising = text "Specialise" ppr CoreDoSpecConstr = text "SpecConstr" ppr CoreCSE = text "Common sub-expression" ppr CoreDesugar = text "Desugar (before optimization)" ppr CoreDesugarOpt = text "Desugar (after optimization)" ppr CoreTidy = text "Tidy Core" ppr CorePrep = text "CorePrep" ppr CoreOccurAnal = text "Occurrence analysis" ppr CoreDoPrintCore = text "Print core" ppr (CoreDoRuleCheck {}) = text "Rule check" ppr CoreDoNothing = text "CoreDoNothing" ppr (CoreDoPasses passes) = text "CoreDoPasses" <+> ppr passes pprPassDetails :: CoreToDo -> SDoc pprPassDetails (CoreDoSimplify n md) = vcat [ text "Max iterations =" <+> int n , ppr md ] pprPassDetails _ = Outputable.empty data SimplMode -- See comments in SimplMonad = SimplMode { sm_names :: [String] -- Name(s) of the phase , sm_phase :: CompilerPhase , sm_dflags :: DynFlags -- Just for convenient non-monadic -- access; we don't override these , sm_rules :: Bool -- Whether RULES are enabled , sm_inline :: Bool -- Whether inlining is enabled , sm_case_case :: Bool -- Whether case-of-case is enabled , sm_eta_expand :: Bool -- Whether eta-expansion is enabled } instance Outputable SimplMode where ppr (SimplMode { sm_phase = p, sm_names = ss , sm_rules = r, sm_inline = i , sm_eta_expand = eta, sm_case_case = cc }) = text "SimplMode" <+> braces ( sep [ text "Phase =" <+> ppr p <+> brackets (text (concat $ intersperse "," ss)) <> comma , pp_flag i (sLit "inline") <> comma , pp_flag r (sLit "rules") <> comma , pp_flag eta (sLit "eta-expand") <> comma , pp_flag cc (sLit "case-of-case") ]) where pp_flag f s = ppUnless f (text "no") <+> ptext s data FloatOutSwitches = FloatOutSwitches { floatOutLambdas :: Maybe Int, -- ^ Just n <=> float lambdas to top level, if -- doing so will abstract over n or fewer -- value variables -- Nothing <=> float all lambdas to top level, -- regardless of how many free variables -- Just 0 is the vanilla case: float a lambda -- iff it has no free vars floatOutConstants :: Bool, -- ^ True <=> float constants to top level, -- even if they do not escape a lambda floatOutOverSatApps :: Bool, -- ^ True <=> float out over-saturated applications -- based on arity information. -- See Note [Floating over-saturated applications] -- in SetLevels floatToTopLevelOnly :: Bool -- ^ Allow floating to the top level only. } instance Outputable FloatOutSwitches where ppr = pprFloatOutSwitches pprFloatOutSwitches :: FloatOutSwitches -> SDoc pprFloatOutSwitches sw = text "FOS" <+> (braces $ sep $ punctuate comma $ [ text "Lam =" <+> ppr (floatOutLambdas sw) , text "Consts =" <+> ppr (floatOutConstants sw) , text "OverSatApps =" <+> ppr (floatOutOverSatApps sw) ]) -- The core-to-core pass ordering is derived from the DynFlags: runWhen :: Bool -> CoreToDo -> CoreToDo runWhen True do_this = do_this runWhen False _ = CoreDoNothing runMaybe :: Maybe a -> (a -> CoreToDo) -> CoreToDo runMaybe (Just x) f = f x runMaybe Nothing _ = CoreDoNothing {- ************************************************************************ * * Types for Plugins * * ************************************************************************ -} -- | A description of the plugin pass itself type CorePluginPass = ModGuts -> CoreM ModGuts bindsOnlyPass :: (CoreProgram -> CoreM CoreProgram) -> ModGuts -> CoreM ModGuts bindsOnlyPass pass guts = do { binds' <- pass (mg_binds guts) ; return (guts { mg_binds = binds' }) } {- ************************************************************************ * * Counting and logging * * ************************************************************************ -} getVerboseSimplStats :: (Bool -> SDoc) -> SDoc getVerboseSimplStats = getPprDebug -- For now, anyway zeroSimplCount :: DynFlags -> SimplCount isZeroSimplCount :: SimplCount -> Bool hasDetailedCounts :: SimplCount -> Bool pprSimplCount :: SimplCount -> SDoc doSimplTick :: DynFlags -> Tick -> SimplCount -> SimplCount doFreeSimplTick :: Tick -> SimplCount -> SimplCount plusSimplCount :: SimplCount -> SimplCount -> SimplCount data SimplCount = VerySimplCount !Int -- Used when don't want detailed stats | SimplCount { ticks :: !Int, -- Total ticks details :: !TickCounts, -- How many of each type n_log :: !Int, -- N log1 :: [Tick], -- Last N events; <= opt_HistorySize, -- most recent first log2 :: [Tick] -- Last opt_HistorySize events before that -- Having log1, log2 lets us accumulate the -- recent history reasonably efficiently } type TickCounts = Map Tick Int simplCountN :: SimplCount -> Int simplCountN (VerySimplCount n) = n simplCountN (SimplCount { ticks = n }) = n zeroSimplCount dflags -- This is where we decide whether to do -- the VerySimpl version or the full-stats version | dopt Opt_D_dump_simpl_stats dflags = SimplCount {ticks = 0, details = Map.empty, n_log = 0, log1 = [], log2 = []} | otherwise = VerySimplCount 0 isZeroSimplCount (VerySimplCount n) = n==0 isZeroSimplCount (SimplCount { ticks = n }) = n==0 hasDetailedCounts (VerySimplCount {}) = False hasDetailedCounts (SimplCount {}) = True doFreeSimplTick tick sc@SimplCount { details = dts } = sc { details = dts `addTick` tick } doFreeSimplTick _ sc = sc doSimplTick dflags tick sc@(SimplCount { ticks = tks, details = dts, n_log = nl, log1 = l1 }) | nl >= historySize dflags = sc1 { n_log = 1, log1 = [tick], log2 = l1 } | otherwise = sc1 { n_log = nl+1, log1 = tick : l1 } where sc1 = sc { ticks = tks+1, details = dts `addTick` tick } doSimplTick _ _ (VerySimplCount n) = VerySimplCount (n+1) addTick :: TickCounts -> Tick -> TickCounts addTick fm tick = MapStrict.insertWith (+) tick 1 fm plusSimplCount sc1@(SimplCount { ticks = tks1, details = dts1 }) sc2@(SimplCount { ticks = tks2, details = dts2 }) = log_base { ticks = tks1 + tks2 , details = MapStrict.unionWith (+) dts1 dts2 } where -- A hackish way of getting recent log info log_base | null (log1 sc2) = sc1 -- Nothing at all in sc2 | null (log2 sc2) = sc2 { log2 = log1 sc1 } | otherwise = sc2 plusSimplCount (VerySimplCount n) (VerySimplCount m) = VerySimplCount (n+m) plusSimplCount lhs rhs = throwGhcException . PprProgramError "plusSimplCount" $ vcat [ text "lhs" , pprSimplCount lhs , text "rhs" , pprSimplCount rhs ] -- We use one or the other consistently pprSimplCount (VerySimplCount n) = text "Total ticks:" <+> int n pprSimplCount (SimplCount { ticks = tks, details = dts, log1 = l1, log2 = l2 }) = vcat [text "Total ticks: " <+> int tks, blankLine, pprTickCounts dts, getVerboseSimplStats $ \dbg -> if dbg then vcat [blankLine, text "Log (most recent first)", nest 4 (vcat (map ppr l1) $$ vcat (map ppr l2))] else Outputable.empty ] {- Note [Which transformations are innocuous] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ At one point (Jun 18) I wondered if some transformations (ticks) might be "innocuous", in the sense that they do not unlock a later transformation that does not occur in the same pass. If so, we could refrain from bumping the overall tick-count for such innocuous transformations, and perhaps terminate the simplifier one pass earlier. BUt alas I found that virtually nothing was innocuous! This Note just records what I learned, in case anyone wants to try again. These transformations are not innocuous: *** NB: I think these ones could be made innocuous EtaExpansion LetFloatFromLet LetFloatFromLet x = K (let z = e2 in Just z) prepareRhs transforms to x2 = let z=e2 in Just z x = K xs And now more let-floating can happen in the next pass, on x2 PreInlineUnconditionally Example in spectral/cichelli/Auxil hinsert = ...let lo = e in let j = ...lo... in case x of False -> () True -> case lo of I# lo' -> ...j... When we PreInlineUnconditionally j, lo's occ-info changes to once, so it can be PreInlineUnconditionally in the next pass, and a cascade of further things can happen. PostInlineUnconditionally let x = e in let y = ...x.. in case .. of { A -> ...x...y... B -> ...x...y... } Current postinlineUnconditinaly will inline y, and then x; sigh. But PostInlineUnconditionally might also unlock subsequent transformations for the same reason as PreInlineUnconditionally, so it's probably not innocuous anyway. KnownBranch, BetaReduction: May drop chunks of code, and thereby enable PreInlineUnconditionally for some let-binding which now occurs once EtaExpansion: Example in imaginary/digits-of-e1 fail = \void. e where e :: IO () --> etaExpandRhs fail = \void. (\s. (e |> g) s) |> sym g where g :: IO () ~ S -> (S,()) --> Next iteration of simplify fail1 = \void. \s. (e |> g) s fail = fail1 |> Void#->sym g And now inline 'fail' CaseMerge: case x of y { DEFAULT -> case y of z { pi -> ei } alts2 } ---> CaseMerge case x of { pi -> let z = y in ei ; alts2 } The "let z=y" case-binder-swap gets dealt with in the next pass -} pprTickCounts :: Map Tick Int -> SDoc pprTickCounts counts = vcat (map pprTickGroup groups) where groups :: [[(Tick,Int)]] -- Each group shares a comon tag -- toList returns common tags adjacent groups = groupBy same_tag (Map.toList counts) same_tag (tick1,_) (tick2,_) = tickToTag tick1 == tickToTag tick2 pprTickGroup :: [(Tick, Int)] -> SDoc pprTickGroup group@((tick1,_):_) = hang (int (sum [n | (_,n) <- group]) <+> text (tickString tick1)) 2 (vcat [ int n <+> pprTickCts tick -- flip as we want largest first | (tick,n) <- sortBy (flip (comparing snd)) group]) pprTickGroup [] = panic "pprTickGroup" data Tick -- See Note [Which transformations are innocuous] = PreInlineUnconditionally Id | PostInlineUnconditionally Id | UnfoldingDone Id | RuleFired FastString -- Rule name | LetFloatFromLet | EtaExpansion Id -- LHS binder | EtaReduction Id -- Binder on outer lambda | BetaReduction Id -- Lambda binder | CaseOfCase Id -- Bndr on *inner* case | KnownBranch Id -- Case binder | CaseMerge Id -- Binder on outer case | AltMerge Id -- Case binder | CaseElim Id -- Case binder | CaseIdentity Id -- Case binder | FillInCaseDefault Id -- Case binder | SimplifierDone -- Ticked at each iteration of the simplifier instance Outputable Tick where ppr tick = text (tickString tick) <+> pprTickCts tick instance Eq Tick where a == b = case a `cmpTick` b of EQ -> True _ -> False instance Ord Tick where compare = cmpTick tickToTag :: Tick -> Int tickToTag (PreInlineUnconditionally _) = 0 tickToTag (PostInlineUnconditionally _) = 1 tickToTag (UnfoldingDone _) = 2 tickToTag (RuleFired _) = 3 tickToTag LetFloatFromLet = 4 tickToTag (EtaExpansion _) = 5 tickToTag (EtaReduction _) = 6 tickToTag (BetaReduction _) = 7 tickToTag (CaseOfCase _) = 8 tickToTag (KnownBranch _) = 9 tickToTag (CaseMerge _) = 10 tickToTag (CaseElim _) = 11 tickToTag (CaseIdentity _) = 12 tickToTag (FillInCaseDefault _) = 13 tickToTag SimplifierDone = 16 tickToTag (AltMerge _) = 17 tickString :: Tick -> String tickString (PreInlineUnconditionally _) = "PreInlineUnconditionally" tickString (PostInlineUnconditionally _)= "PostInlineUnconditionally" tickString (UnfoldingDone _) = "UnfoldingDone" tickString (RuleFired _) = "RuleFired" tickString LetFloatFromLet = "LetFloatFromLet" tickString (EtaExpansion _) = "EtaExpansion" tickString (EtaReduction _) = "EtaReduction" tickString (BetaReduction _) = "BetaReduction" tickString (CaseOfCase _) = "CaseOfCase" tickString (KnownBranch _) = "KnownBranch" tickString (CaseMerge _) = "CaseMerge" tickString (AltMerge _) = "AltMerge" tickString (CaseElim _) = "CaseElim" tickString (CaseIdentity _) = "CaseIdentity" tickString (FillInCaseDefault _) = "FillInCaseDefault" tickString SimplifierDone = "SimplifierDone" pprTickCts :: Tick -> SDoc pprTickCts (PreInlineUnconditionally v) = ppr v pprTickCts (PostInlineUnconditionally v)= ppr v pprTickCts (UnfoldingDone v) = ppr v pprTickCts (RuleFired v) = ppr v pprTickCts LetFloatFromLet = Outputable.empty pprTickCts (EtaExpansion v) = ppr v pprTickCts (EtaReduction v) = ppr v pprTickCts (BetaReduction v) = ppr v pprTickCts (CaseOfCase v) = ppr v pprTickCts (KnownBranch v) = ppr v pprTickCts (CaseMerge v) = ppr v pprTickCts (AltMerge v) = ppr v pprTickCts (CaseElim v) = ppr v pprTickCts (CaseIdentity v) = ppr v pprTickCts (FillInCaseDefault v) = ppr v pprTickCts _ = Outputable.empty cmpTick :: Tick -> Tick -> Ordering cmpTick a b = case (tickToTag a `compare` tickToTag b) of GT -> GT EQ -> cmpEqTick a b LT -> LT cmpEqTick :: Tick -> Tick -> Ordering cmpEqTick (PreInlineUnconditionally a) (PreInlineUnconditionally b) = a `compare` b cmpEqTick (PostInlineUnconditionally a) (PostInlineUnconditionally b) = a `compare` b cmpEqTick (UnfoldingDone a) (UnfoldingDone b) = a `compare` b cmpEqTick (RuleFired a) (RuleFired b) = a `compare` b cmpEqTick (EtaExpansion a) (EtaExpansion b) = a `compare` b cmpEqTick (EtaReduction a) (EtaReduction b) = a `compare` b cmpEqTick (BetaReduction a) (BetaReduction b) = a `compare` b cmpEqTick (CaseOfCase a) (CaseOfCase b) = a `compare` b cmpEqTick (KnownBranch a) (KnownBranch b) = a `compare` b cmpEqTick (CaseMerge a) (CaseMerge b) = a `compare` b cmpEqTick (AltMerge a) (AltMerge b) = a `compare` b cmpEqTick (CaseElim a) (CaseElim b) = a `compare` b cmpEqTick (CaseIdentity a) (CaseIdentity b) = a `compare` b cmpEqTick (FillInCaseDefault a) (FillInCaseDefault b) = a `compare` b cmpEqTick _ _ = EQ {- ************************************************************************ * * Monad and carried data structure definitions * * ************************************************************************ -} data CoreReader = CoreReader { cr_hsc_env :: HscEnv, cr_rule_base :: RuleBase, cr_module :: Module, cr_print_unqual :: PrintUnqualified, cr_loc :: SrcSpan, -- Use this for log/error messages so they -- are at least tagged with the right source file cr_visible_orphan_mods :: !ModuleSet, cr_uniq_mask :: !Char -- Mask for creating unique values } -- Note: CoreWriter used to be defined with data, rather than newtype. If it -- is defined that way again, the cw_simpl_count field, at least, must be -- strict to avoid a space leak (#7702). newtype CoreWriter = CoreWriter { cw_simpl_count :: SimplCount } emptyWriter :: DynFlags -> CoreWriter emptyWriter dflags = CoreWriter { cw_simpl_count = zeroSimplCount dflags } plusWriter :: CoreWriter -> CoreWriter -> CoreWriter plusWriter w1 w2 = CoreWriter { cw_simpl_count = (cw_simpl_count w1) `plusSimplCount` (cw_simpl_count w2) } type CoreIOEnv = IOEnv CoreReader -- | The monad used by Core-to-Core passes to register simplification statistics. -- Also used to have common state (in the form of UniqueSupply) for generating Uniques. newtype CoreM a = CoreM { unCoreM :: CoreIOEnv (a, CoreWriter) } deriving (Functor) instance Monad CoreM where mx >>= f = CoreM $ do (x, w1) <- unCoreM mx (y, w2) <- unCoreM (f x) let w = w1 `plusWriter` w2 return $ seq w (y, w) -- forcing w before building the tuple avoids a space leak -- (#7702) instance Applicative CoreM where pure x = CoreM $ nop x (<*>) = ap m *> k = m >>= \_ -> k instance Alternative CoreM where empty = CoreM Control.Applicative.empty m <|> n = CoreM (unCoreM m <|> unCoreM n) instance MonadPlus CoreM instance MonadUnique CoreM where getUniqueSupplyM = do mask <- read cr_uniq_mask liftIO $! mkSplitUniqSupply mask getUniqueM = do mask <- read cr_uniq_mask liftIO $! uniqFromMask mask runCoreM :: HscEnv -> RuleBase -> Char -- ^ Mask -> Module -> ModuleSet -> PrintUnqualified -> SrcSpan -> CoreM a -> IO (a, SimplCount) runCoreM hsc_env rule_base mask mod orph_imps print_unqual loc m = liftM extract $ runIOEnv reader $ unCoreM m where reader = CoreReader { cr_hsc_env = hsc_env, cr_rule_base = rule_base, cr_module = mod, cr_visible_orphan_mods = orph_imps, cr_print_unqual = print_unqual, cr_loc = loc, cr_uniq_mask = mask } extract :: (a, CoreWriter) -> (a, SimplCount) extract (value, writer) = (value, cw_simpl_count writer) {- ************************************************************************ * * Core combinators, not exported * * ************************************************************************ -} nop :: a -> CoreIOEnv (a, CoreWriter) nop x = do r <- getEnv return (x, emptyWriter $ (hsc_dflags . cr_hsc_env) r) read :: (CoreReader -> a) -> CoreM a read f = CoreM $ getEnv >>= (\r -> nop (f r)) write :: CoreWriter -> CoreM () write w = CoreM $ return ((), w) -- \subsection{Lifting IO into the monad} -- | Lift an 'IOEnv' operation into 'CoreM' liftIOEnv :: CoreIOEnv a -> CoreM a liftIOEnv mx = CoreM (mx >>= (\x -> nop x)) instance MonadIO CoreM where liftIO = liftIOEnv . IOEnv.liftIO -- | Lift an 'IO' operation into 'CoreM' while consuming its 'SimplCount' liftIOWithCount :: IO (SimplCount, a) -> CoreM a liftIOWithCount what = liftIO what >>= (\(count, x) -> addSimplCount count >> return x) {- ************************************************************************ * * Reader, writer and state accessors * * ************************************************************************ -} getHscEnv :: CoreM HscEnv getHscEnv = read cr_hsc_env getRuleBase :: CoreM RuleBase getRuleBase = read cr_rule_base getVisibleOrphanMods :: CoreM ModuleSet getVisibleOrphanMods = read cr_visible_orphan_mods getPrintUnqualified :: CoreM PrintUnqualified getPrintUnqualified = read cr_print_unqual getSrcSpanM :: CoreM SrcSpan getSrcSpanM = read cr_loc addSimplCount :: SimplCount -> CoreM () addSimplCount count = write (CoreWriter { cw_simpl_count = count }) getUniqMask :: CoreM Char getUniqMask = read cr_uniq_mask -- Convenience accessors for useful fields of HscEnv instance HasDynFlags CoreM where getDynFlags = fmap hsc_dflags getHscEnv instance HasModule CoreM where getModule = read cr_module -- | The original name cache is the current mapping from 'Module' and -- 'OccName' to a compiler-wide unique 'Name' getOrigNameCache :: CoreM OrigNameCache getOrigNameCache = do nameCacheRef <- fmap hsc_NC getHscEnv liftIO $ fmap nsNames $ readIORef nameCacheRef getPackageFamInstEnv :: CoreM PackageFamInstEnv getPackageFamInstEnv = do hsc_env <- getHscEnv eps <- liftIO $ hscEPS hsc_env return $ eps_fam_inst_env eps {- ************************************************************************ * * Dealing with annotations * * ************************************************************************ -} -- | Get all annotations of a given type. This happens lazily, that is -- no deserialization will take place until the [a] is actually demanded and -- the [a] can also be empty (the UniqFM is not filtered). -- -- This should be done once at the start of a Core-to-Core pass that uses -- annotations. -- -- See Note [Annotations] getAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM [a]) getAnnotations deserialize guts = do hsc_env <- getHscEnv ann_env <- liftIO $ prepareAnnotations hsc_env (Just guts) return (deserializeAnns deserialize ann_env) -- | Get at most one annotation of a given type per Unique. getFirstAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM a) getFirstAnnotations deserialize guts = liftM (mapUFM head . filterUFM (not . null)) $ getAnnotations deserialize guts {- Note [Annotations] ~~~~~~~~~~~~~~~~~~ A Core-to-Core pass that wants to make use of annotations calls getAnnotations or getFirstAnnotations at the beginning to obtain a UniqFM with annotations of a specific type. This produces all annotations from interface files read so far. However, annotations from interface files read during the pass will not be visible until getAnnotations is called again. This is similar to how rules work and probably isn't too bad. The current implementation could be optimised a bit: when looking up annotations for a thing from the HomePackageTable, we could search directly in the module where the thing is defined rather than building one UniqFM which contains all annotations we know of. This would work because annotations can only be given to things defined in the same module. However, since we would only want to deserialise every annotation once, we would have to build a cache for every module in the HTP. In the end, it's probably not worth it as long as we aren't using annotations heavily. ************************************************************************ * * Direct screen output * * ************************************************************************ -} msg :: Severity -> WarnReason -> SDoc -> CoreM () msg sev reason doc = do { dflags <- getDynFlags ; loc <- getSrcSpanM ; unqual <- getPrintUnqualified ; let sty = case sev of SevError -> err_sty SevWarning -> err_sty SevDump -> dump_sty _ -> user_sty err_sty = mkErrStyle dflags unqual user_sty = mkUserStyle dflags unqual AllTheWay dump_sty = mkDumpStyle dflags unqual ; liftIO $ putLogMsg dflags reason sev loc sty doc } -- | Output a String message to the screen putMsgS :: String -> CoreM () putMsgS = putMsg . text -- | Output a message to the screen putMsg :: SDoc -> CoreM () putMsg = msg SevInfo NoReason -- | Output an error to the screen. Does not cause the compiler to die. errorMsgS :: String -> CoreM () errorMsgS = errorMsg . text -- | Output an error to the screen. Does not cause the compiler to die. errorMsg :: SDoc -> CoreM () errorMsg = msg SevError NoReason warnMsg :: WarnReason -> SDoc -> CoreM () warnMsg = msg SevWarning -- | Output a fatal error to the screen. Does not cause the compiler to die. fatalErrorMsgS :: String -> CoreM () fatalErrorMsgS = fatalErrorMsg . text -- | Output a fatal error to the screen. Does not cause the compiler to die. fatalErrorMsg :: SDoc -> CoreM () fatalErrorMsg = msg SevFatal NoReason -- | Output a string debugging message at verbosity level of @-v@ or higher debugTraceMsgS :: String -> CoreM () debugTraceMsgS = debugTraceMsg . text -- | Outputs a debugging message at verbosity level of @-v@ or higher debugTraceMsg :: SDoc -> CoreM () debugTraceMsg = msg SevDump NoReason -- | Show some labelled 'SDoc' if a particular flag is set or at a verbosity level of @-v -ddump-most@ or higher dumpIfSet_dyn :: DumpFlag -> String -> SDoc -> CoreM () dumpIfSet_dyn flag str doc = do { dflags <- getDynFlags ; unqual <- getPrintUnqualified ; when (dopt flag dflags) $ liftIO $ Err.dumpSDoc dflags unqual flag str doc }