{- (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 \section[RnSource]{Main pass of renamer} -} {-# LANGUAGE CPP #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} module RnSource ( rnSrcDecls, addTcgDUs, findSplice ) where #include "HsVersions.h" import GhcPrelude import {-# SOURCE #-} RnExpr( rnLExpr ) import {-# SOURCE #-} RnSplice ( rnSpliceDecl, rnTopSpliceDecls ) import GHC.Hs import FieldLabel import RdrName import RnTypes import RnBinds import RnEnv import RnUtils ( HsDocContext(..), mapFvRn, bindLocalNames , checkDupRdrNames, inHsDocContext, bindLocalNamesFV , checkShadowedRdrNames, warnUnusedTypePatterns , extendTyVarEnvFVRn, newLocalBndrsRn , withHsDocContext ) import RnUnbound ( mkUnboundName, notInScopeErr ) import RnNames import RnHsDoc ( rnHsDoc, rnMbLHsDoc ) import TcAnnotations ( annCtxt ) import TcRnMonad import ForeignCall ( CCallTarget(..) ) import Module import HscTypes ( Warnings(..), plusWarns ) import PrelNames ( applicativeClassName, pureAName, thenAName , monadClassName, returnMName, thenMName , semigroupClassName, sappendName , monoidClassName, mappendName ) import Name import NameSet import NameEnv import Avail import Outputable import Bag import BasicTypes ( pprRuleName, TypeOrKind(..) ) import FastString import SrcLoc import DynFlags import Util ( debugIsOn, filterOut, lengthExceeds, partitionWith ) import HscTypes ( HscEnv, hsc_dflags ) import ListSetOps ( findDupsEq, removeDups, equivClasses ) import Digraph ( SCC, flattenSCC, flattenSCCs, Node(..) , stronglyConnCompFromEdgedVerticesUniq ) import UniqSet import OrdList import qualified GHC.LanguageExtensions as LangExt import Control.Monad import Control.Arrow ( first ) import Data.List ( mapAccumL ) import qualified Data.List.NonEmpty as NE import Data.List.NonEmpty ( NonEmpty(..) ) import Data.Maybe ( isNothing, fromMaybe, mapMaybe ) import qualified Data.Set as Set ( difference, fromList, toList, null ) import Data.Function ( on ) {- | @rnSourceDecl@ "renames" declarations. It simultaneously performs dependency analysis and precedence parsing. It also does the following error checks: * Checks that tyvars are used properly. This includes checking for undefined tyvars, and tyvars in contexts that are ambiguous. (Some of this checking has now been moved to module @TcMonoType@, since we don't have functional dependency information at this point.) * Checks that all variable occurrences are defined. * Checks the @(..)@ etc constraints in the export list. Brings the binders of the group into scope in the appropriate places; does NOT assume that anything is in scope already -} rnSrcDecls :: HsGroup GhcPs -> RnM (TcGblEnv, HsGroup GhcRn) -- Rename a top-level HsGroup; used for normal source files *and* hs-boot files rnSrcDecls group@(HsGroup { hs_valds = val_decls, hs_splcds = splice_decls, hs_tyclds = tycl_decls, hs_derivds = deriv_decls, hs_fixds = fix_decls, hs_warnds = warn_decls, hs_annds = ann_decls, hs_fords = foreign_decls, hs_defds = default_decls, hs_ruleds = rule_decls, hs_docs = docs }) = do { -- (A) Process the fixity declarations, creating a mapping from -- FastStrings to FixItems. -- Also checks for duplicates. local_fix_env <- makeMiniFixityEnv fix_decls ; -- (B) Bring top level binders (and their fixities) into scope, -- *except* for the value bindings, which get done in step (D) -- with collectHsIdBinders. However *do* include -- -- * Class ops, data constructors, and record fields, -- because they do not have value declarations. -- -- * For hs-boot files, include the value signatures -- Again, they have no value declarations -- (tc_envs, tc_bndrs) <- getLocalNonValBinders local_fix_env group ; setEnvs tc_envs $ do { failIfErrsM ; -- No point in continuing if (say) we have duplicate declarations -- (D1) Bring pattern synonyms into scope. -- Need to do this before (D2) because rnTopBindsLHS -- looks up those pattern synonyms (#9889) extendPatSynEnv val_decls local_fix_env $ \pat_syn_bndrs -> do { -- (D2) Rename the left-hand sides of the value bindings. -- This depends on everything from (B) being in scope. -- It uses the fixity env from (A) to bind fixities for view patterns. new_lhs <- rnTopBindsLHS local_fix_env val_decls ; -- Bind the LHSes (and their fixities) in the global rdr environment let { id_bndrs = collectHsIdBinders new_lhs } ; -- Excludes pattern-synonym binders -- They are already in scope traceRn "rnSrcDecls" (ppr id_bndrs) ; tc_envs <- extendGlobalRdrEnvRn (map avail id_bndrs) local_fix_env ; setEnvs tc_envs $ do { -- Now everything is in scope, as the remaining renaming assumes. -- (E) Rename type and class decls -- (note that value LHSes need to be in scope for default methods) -- -- You might think that we could build proper def/use information -- for type and class declarations, but they can be involved -- in mutual recursion across modules, and we only do the SCC -- analysis for them in the type checker. -- So we content ourselves with gathering uses only; that -- means we'll only report a declaration as unused if it isn't -- mentioned at all. Ah well. traceRn "Start rnTyClDecls" (ppr tycl_decls) ; (rn_tycl_decls, src_fvs1) <- rnTyClDecls tycl_decls ; -- (F) Rename Value declarations right-hand sides traceRn "Start rnmono" empty ; let { val_bndr_set = mkNameSet id_bndrs `unionNameSet` mkNameSet pat_syn_bndrs } ; is_boot <- tcIsHsBootOrSig ; (rn_val_decls, bind_dus) <- if is_boot -- For an hs-boot, use tc_bndrs (which collects how we're renamed -- signatures), since val_bndr_set is empty (there are no x = ... -- bindings in an hs-boot.) then rnTopBindsBoot tc_bndrs new_lhs else rnValBindsRHS (TopSigCtxt val_bndr_set) new_lhs ; traceRn "finish rnmono" (ppr rn_val_decls) ; -- (G) Rename Fixity and deprecations -- Rename fixity declarations and error if we try to -- fix something from another module (duplicates were checked in (A)) let { all_bndrs = tc_bndrs `unionNameSet` val_bndr_set } ; rn_fix_decls <- mapM (mapM (rnSrcFixityDecl (TopSigCtxt all_bndrs))) fix_decls ; -- Rename deprec decls; -- check for duplicates and ensure that deprecated things are defined locally -- at the moment, we don't keep these around past renaming rn_warns <- rnSrcWarnDecls all_bndrs warn_decls ; -- (H) Rename Everything else (rn_rule_decls, src_fvs2) <- setXOptM LangExt.ScopedTypeVariables $ rnList rnHsRuleDecls rule_decls ; -- Inside RULES, scoped type variables are on (rn_foreign_decls, src_fvs3) <- rnList rnHsForeignDecl foreign_decls ; (rn_ann_decls, src_fvs4) <- rnList rnAnnDecl ann_decls ; (rn_default_decls, src_fvs5) <- rnList rnDefaultDecl default_decls ; (rn_deriv_decls, src_fvs6) <- rnList rnSrcDerivDecl deriv_decls ; (rn_splice_decls, src_fvs7) <- rnList rnSpliceDecl splice_decls ; -- Haddock docs; no free vars rn_docs <- mapM (wrapLocM rnDocDecl) docs ; last_tcg_env <- getGblEnv ; -- (I) Compute the results and return let {rn_group = HsGroup { hs_ext = noExtField, hs_valds = rn_val_decls, hs_splcds = rn_splice_decls, hs_tyclds = rn_tycl_decls, hs_derivds = rn_deriv_decls, hs_fixds = rn_fix_decls, hs_warnds = [], -- warns are returned in the tcg_env -- (see below) not in the HsGroup hs_fords = rn_foreign_decls, hs_annds = rn_ann_decls, hs_defds = rn_default_decls, hs_ruleds = rn_rule_decls, hs_docs = rn_docs } ; tcf_bndrs = hsTyClForeignBinders rn_tycl_decls rn_foreign_decls ; other_def = (Just (mkNameSet tcf_bndrs), emptyNameSet) ; other_fvs = plusFVs [src_fvs1, src_fvs2, src_fvs3, src_fvs4, src_fvs5, src_fvs6, src_fvs7] ; -- It is tiresome to gather the binders from type and class decls src_dus = unitOL other_def `plusDU` bind_dus `plusDU` usesOnly other_fvs ; -- Instance decls may have occurrences of things bound in bind_dus -- so we must put other_fvs last final_tcg_env = let tcg_env' = (last_tcg_env `addTcgDUs` src_dus) in -- we return the deprecs in the env, not in the HsGroup above tcg_env' { tcg_warns = tcg_warns tcg_env' `plusWarns` rn_warns }; } ; traceRn "finish rnSrc" (ppr rn_group) ; traceRn "finish Dus" (ppr src_dus ) ; return (final_tcg_env, rn_group) }}}} rnSrcDecls (XHsGroup nec) = noExtCon nec addTcgDUs :: TcGblEnv -> DefUses -> TcGblEnv -- This function could be defined lower down in the module hierarchy, -- but there doesn't seem anywhere very logical to put it. addTcgDUs tcg_env dus = tcg_env { tcg_dus = tcg_dus tcg_env `plusDU` dus } rnList :: (a -> RnM (b, FreeVars)) -> [Located a] -> RnM ([Located b], FreeVars) rnList f xs = mapFvRn (wrapLocFstM f) xs {- ********************************************************* * * HsDoc stuff * * ********************************************************* -} rnDocDecl :: DocDecl -> RnM DocDecl rnDocDecl (DocCommentNext doc) = do rn_doc <- rnHsDoc doc return (DocCommentNext rn_doc) rnDocDecl (DocCommentPrev doc) = do rn_doc <- rnHsDoc doc return (DocCommentPrev rn_doc) rnDocDecl (DocCommentNamed str doc) = do rn_doc <- rnHsDoc doc return (DocCommentNamed str rn_doc) rnDocDecl (DocGroup lev doc) = do rn_doc <- rnHsDoc doc return (DocGroup lev rn_doc) {- ********************************************************* * * Source-code deprecations declarations * * ********************************************************* Check that the deprecated names are defined, are defined locally, and that there are no duplicate deprecations. It's only imported deprecations, dealt with in RnIfaces, that we gather them together. -} -- checks that the deprecations are defined locally, and that there are no duplicates rnSrcWarnDecls :: NameSet -> [LWarnDecls GhcPs] -> RnM Warnings rnSrcWarnDecls _ [] = return NoWarnings rnSrcWarnDecls bndr_set decls' = do { -- check for duplicates ; mapM_ (\ dups -> let ((dL->L loc rdr) :| (lrdr':_)) = dups in addErrAt loc (dupWarnDecl lrdr' rdr)) warn_rdr_dups ; pairs_s <- mapM (addLocM rn_deprec) decls ; return (WarnSome ((concat pairs_s))) } where decls = concatMap (wd_warnings . unLoc) decls' sig_ctxt = TopSigCtxt bndr_set rn_deprec (Warning _ rdr_names txt) -- ensures that the names are defined locally = do { names <- concatMapM (lookupLocalTcNames sig_ctxt what . unLoc) rdr_names ; return [(rdrNameOcc rdr, txt) | (rdr, _) <- names] } rn_deprec (XWarnDecl nec) = noExtCon nec what = text "deprecation" warn_rdr_dups = findDupRdrNames $ concatMap (\(dL->L _ (Warning _ ns _)) -> ns) decls findDupRdrNames :: [Located RdrName] -> [NonEmpty (Located RdrName)] findDupRdrNames = findDupsEq (\ x -> \ y -> rdrNameOcc (unLoc x) == rdrNameOcc (unLoc y)) -- look for duplicates among the OccNames; -- we check that the names are defined above -- invt: the lists returned by findDupsEq always have at least two elements dupWarnDecl :: Located RdrName -> RdrName -> SDoc -- Located RdrName -> DeprecDecl RdrName -> SDoc dupWarnDecl d rdr_name = vcat [text "Multiple warning declarations for" <+> quotes (ppr rdr_name), text "also at " <+> ppr (getLoc d)] {- ********************************************************* * * \subsection{Annotation declarations} * * ********************************************************* -} rnAnnDecl :: AnnDecl GhcPs -> RnM (AnnDecl GhcRn, FreeVars) rnAnnDecl ann@(HsAnnotation _ s provenance expr) = addErrCtxt (annCtxt ann) $ do { (provenance', provenance_fvs) <- rnAnnProvenance provenance ; (expr', expr_fvs) <- setStage (Splice Untyped) $ rnLExpr expr ; return (HsAnnotation noExtField s provenance' expr', provenance_fvs `plusFV` expr_fvs) } rnAnnDecl (XAnnDecl nec) = noExtCon nec rnAnnProvenance :: AnnProvenance RdrName -> RnM (AnnProvenance Name, FreeVars) rnAnnProvenance provenance = do provenance' <- traverse lookupTopBndrRn provenance return (provenance', maybe emptyFVs unitFV (annProvenanceName_maybe provenance')) {- ********************************************************* * * \subsection{Default declarations} * * ********************************************************* -} rnDefaultDecl :: DefaultDecl GhcPs -> RnM (DefaultDecl GhcRn, FreeVars) rnDefaultDecl (DefaultDecl _ tys) = do { (tys', fvs) <- rnLHsTypes doc_str tys ; return (DefaultDecl noExtField tys', fvs) } where doc_str = DefaultDeclCtx rnDefaultDecl (XDefaultDecl nec) = noExtCon nec {- ********************************************************* * * \subsection{Foreign declarations} * * ********************************************************* -} rnHsForeignDecl :: ForeignDecl GhcPs -> RnM (ForeignDecl GhcRn, FreeVars) rnHsForeignDecl (ForeignImport { fd_name = name, fd_sig_ty = ty, fd_fi = spec }) = do { topEnv :: HscEnv <- getTopEnv ; name' <- lookupLocatedTopBndrRn name ; (ty', fvs) <- rnHsSigType (ForeignDeclCtx name) TypeLevel ty -- Mark any PackageTarget style imports as coming from the current package ; let unitId = thisPackage $ hsc_dflags topEnv spec' = patchForeignImport unitId spec ; return (ForeignImport { fd_i_ext = noExtField , fd_name = name', fd_sig_ty = ty' , fd_fi = spec' }, fvs) } rnHsForeignDecl (ForeignExport { fd_name = name, fd_sig_ty = ty, fd_fe = spec }) = do { name' <- lookupLocatedOccRn name ; (ty', fvs) <- rnHsSigType (ForeignDeclCtx name) TypeLevel ty ; return (ForeignExport { fd_e_ext = noExtField , fd_name = name', fd_sig_ty = ty' , fd_fe = spec } , fvs `addOneFV` unLoc name') } -- NB: a foreign export is an *occurrence site* for name, so -- we add it to the free-variable list. It might, for example, -- be imported from another module rnHsForeignDecl (XForeignDecl nec) = noExtCon nec -- | For Windows DLLs we need to know what packages imported symbols are from -- to generate correct calls. Imported symbols are tagged with the current -- package, so if they get inlined across a package boundary we'll still -- know where they're from. -- patchForeignImport :: UnitId -> ForeignImport -> ForeignImport patchForeignImport unitId (CImport cconv safety fs spec src) = CImport cconv safety fs (patchCImportSpec unitId spec) src patchCImportSpec :: UnitId -> CImportSpec -> CImportSpec patchCImportSpec unitId spec = case spec of CFunction callTarget -> CFunction $ patchCCallTarget unitId callTarget _ -> spec patchCCallTarget :: UnitId -> CCallTarget -> CCallTarget patchCCallTarget unitId callTarget = case callTarget of StaticTarget src label Nothing isFun -> StaticTarget src label (Just unitId) isFun _ -> callTarget {- ********************************************************* * * \subsection{Instance declarations} * * ********************************************************* -} rnSrcInstDecl :: InstDecl GhcPs -> RnM (InstDecl GhcRn, FreeVars) rnSrcInstDecl (TyFamInstD { tfid_inst = tfi }) = do { (tfi', fvs) <- rnTyFamInstDecl NonAssocTyFamEqn tfi ; return (TyFamInstD { tfid_ext = noExtField, tfid_inst = tfi' }, fvs) } rnSrcInstDecl (DataFamInstD { dfid_inst = dfi }) = do { (dfi', fvs) <- rnDataFamInstDecl NonAssocTyFamEqn dfi ; return (DataFamInstD { dfid_ext = noExtField, dfid_inst = dfi' }, fvs) } rnSrcInstDecl (ClsInstD { cid_inst = cid }) = do { traceRn "rnSrcIstDecl {" (ppr cid) ; (cid', fvs) <- rnClsInstDecl cid ; traceRn "rnSrcIstDecl end }" empty ; return (ClsInstD { cid_d_ext = noExtField, cid_inst = cid' }, fvs) } rnSrcInstDecl (XInstDecl nec) = noExtCon nec -- | Warn about non-canonical typeclass instance declarations -- -- A "non-canonical" instance definition can occur for instances of a -- class which redundantly defines an operation its superclass -- provides as well (c.f. `return`/`pure`). In such cases, a canonical -- instance is one where the subclass inherits its method -- implementation from its superclass instance (usually the subclass -- has a default method implementation to that effect). Consequently, -- a non-canonical instance occurs when this is not the case. -- -- See also descriptions of 'checkCanonicalMonadInstances' and -- 'checkCanonicalMonoidInstances' checkCanonicalInstances :: Name -> LHsSigType GhcRn -> LHsBinds GhcRn -> RnM () checkCanonicalInstances cls poly_ty mbinds = do whenWOptM Opt_WarnNonCanonicalMonadInstances checkCanonicalMonadInstances whenWOptM Opt_WarnNonCanonicalMonoidInstances checkCanonicalMonoidInstances where -- | Warn about unsound/non-canonical 'Applicative'/'Monad' instance -- declarations. Specifically, the following conditions are verified: -- -- In 'Monad' instances declarations: -- -- * If 'return' is overridden it must be canonical (i.e. @return = pure@) -- * If '(>>)' is overridden it must be canonical (i.e. @(>>) = (*>)@) -- -- In 'Applicative' instance declarations: -- -- * Warn if 'pure' is defined backwards (i.e. @pure = return@). -- * Warn if '(*>)' is defined backwards (i.e. @(*>) = (>>)@). -- checkCanonicalMonadInstances | cls == applicativeClassName = do forM_ (bagToList mbinds) $ \(dL->L loc mbind) -> setSrcSpan loc $ do case mbind of FunBind { fun_id = (dL->L _ name) , fun_matches = mg } | name == pureAName, isAliasMG mg == Just returnMName -> addWarnNonCanonicalMethod1 Opt_WarnNonCanonicalMonadInstances "pure" "return" | name == thenAName, isAliasMG mg == Just thenMName -> addWarnNonCanonicalMethod1 Opt_WarnNonCanonicalMonadInstances "(*>)" "(>>)" _ -> return () | cls == monadClassName = do forM_ (bagToList mbinds) $ \(dL->L loc mbind) -> setSrcSpan loc $ do case mbind of FunBind { fun_id = (dL->L _ name) , fun_matches = mg } | name == returnMName, isAliasMG mg /= Just pureAName -> addWarnNonCanonicalMethod2 Opt_WarnNonCanonicalMonadInstances "return" "pure" | name == thenMName, isAliasMG mg /= Just thenAName -> addWarnNonCanonicalMethod2 Opt_WarnNonCanonicalMonadInstances "(>>)" "(*>)" _ -> return () | otherwise = return () -- | Check whether Monoid(mappend) is defined in terms of -- Semigroup((<>)) (and not the other way round). Specifically, -- the following conditions are verified: -- -- In 'Monoid' instances declarations: -- -- * If 'mappend' is overridden it must be canonical -- (i.e. @mappend = (<>)@) -- -- In 'Semigroup' instance declarations: -- -- * Warn if '(<>)' is defined backwards (i.e. @(<>) = mappend@). -- checkCanonicalMonoidInstances | cls == semigroupClassName = do forM_ (bagToList mbinds) $ \(dL->L loc mbind) -> setSrcSpan loc $ do case mbind of FunBind { fun_id = (dL->L _ name) , fun_matches = mg } | name == sappendName, isAliasMG mg == Just mappendName -> addWarnNonCanonicalMethod1 Opt_WarnNonCanonicalMonoidInstances "(<>)" "mappend" _ -> return () | cls == monoidClassName = do forM_ (bagToList mbinds) $ \(dL->L loc mbind) -> setSrcSpan loc $ do case mbind of FunBind { fun_id = (dL->L _ name) , fun_matches = mg } | name == mappendName, isAliasMG mg /= Just sappendName -> addWarnNonCanonicalMethod2NoDefault Opt_WarnNonCanonicalMonoidInstances "mappend" "(<>)" _ -> return () | otherwise = return () -- | test whether MatchGroup represents a trivial \"lhsName = rhsName\" -- binding, and return @Just rhsName@ if this is the case isAliasMG :: MatchGroup GhcRn (LHsExpr GhcRn) -> Maybe Name isAliasMG MG {mg_alts = (dL->L _ [dL->L _ (Match { m_pats = [] , m_grhss = grhss })])} | GRHSs _ [dL->L _ (GRHS _ [] body)] lbinds <- grhss , EmptyLocalBinds _ <- unLoc lbinds , HsVar _ lrhsName <- unLoc body = Just (unLoc lrhsName) isAliasMG _ = Nothing -- got "lhs = rhs" but expected something different addWarnNonCanonicalMethod1 flag lhs rhs = do addWarn (Reason flag) $ vcat [ text "Noncanonical" <+> quotes (text (lhs ++ " = " ++ rhs)) <+> text "definition detected" , instDeclCtxt1 poly_ty , text "Move definition from" <+> quotes (text rhs) <+> text "to" <+> quotes (text lhs) ] -- expected "lhs = rhs" but got something else addWarnNonCanonicalMethod2 flag lhs rhs = do addWarn (Reason flag) $ vcat [ text "Noncanonical" <+> quotes (text lhs) <+> text "definition detected" , instDeclCtxt1 poly_ty , text "Either remove definition for" <+> quotes (text lhs) <+> text "or define as" <+> quotes (text (lhs ++ " = " ++ rhs)) ] -- like above, but method has no default impl addWarnNonCanonicalMethod2NoDefault flag lhs rhs = do addWarn (Reason flag) $ vcat [ text "Noncanonical" <+> quotes (text lhs) <+> text "definition detected" , instDeclCtxt1 poly_ty , text "Define as" <+> quotes (text (lhs ++ " = " ++ rhs)) ] -- stolen from TcInstDcls instDeclCtxt1 :: LHsSigType GhcRn -> SDoc instDeclCtxt1 hs_inst_ty = inst_decl_ctxt (ppr (getLHsInstDeclHead hs_inst_ty)) inst_decl_ctxt :: SDoc -> SDoc inst_decl_ctxt doc = hang (text "in the instance declaration for") 2 (quotes doc <> text ".") rnClsInstDecl :: ClsInstDecl GhcPs -> RnM (ClsInstDecl GhcRn, FreeVars) rnClsInstDecl (ClsInstDecl { cid_poly_ty = inst_ty, cid_binds = mbinds , cid_sigs = uprags, cid_tyfam_insts = ats , cid_overlap_mode = oflag , cid_datafam_insts = adts }) = do { (inst_ty', inst_fvs) <- rnHsSigType (GenericCtx $ text "an instance declaration") TypeLevel inst_ty ; let (ktv_names, _, head_ty') = splitLHsInstDeclTy inst_ty' ; cls <- case hsTyGetAppHead_maybe head_ty' of Just (dL->L _ cls) -> pure cls Nothing -> do -- The instance is malformed. We'd still like -- to make *some* progress (rather than failing outright), so -- we report an error and continue for as long as we can. -- Importantly, this error should be thrown before we reach the -- typechecker, lest we encounter different errors that are -- hopelessly confusing (such as the one in #16114). addErrAt (getLoc (hsSigType inst_ty)) $ hang (text "Illegal class instance:" <+> quotes (ppr inst_ty)) 2 (vcat [ text "Class instances must be of the form" , nest 2 $ text "context => C ty_1 ... ty_n" , text "where" <+> quotes (char 'C') <+> text "is a class" ]) pure $ mkUnboundName (mkTcOccFS (fsLit "")) -- Rename the bindings -- The typechecker (not the renamer) checks that all -- the bindings are for the right class -- (Slightly strangely) when scoped type variables are on, the -- forall-d tyvars scope over the method bindings too ; (mbinds', uprags', meth_fvs) <- rnMethodBinds False cls ktv_names mbinds uprags ; checkCanonicalInstances cls inst_ty' mbinds' -- Rename the associated types, and type signatures -- Both need to have the instance type variables in scope ; traceRn "rnSrcInstDecl" (ppr inst_ty' $$ ppr ktv_names) ; ((ats', adts'), more_fvs) <- extendTyVarEnvFVRn ktv_names $ do { (ats', at_fvs) <- rnATInstDecls rnTyFamInstDecl cls ktv_names ats ; (adts', adt_fvs) <- rnATInstDecls rnDataFamInstDecl cls ktv_names adts ; return ( (ats', adts'), at_fvs `plusFV` adt_fvs) } ; let all_fvs = meth_fvs `plusFV` more_fvs `plusFV` inst_fvs ; return (ClsInstDecl { cid_ext = noExtField , cid_poly_ty = inst_ty', cid_binds = mbinds' , cid_sigs = uprags', cid_tyfam_insts = ats' , cid_overlap_mode = oflag , cid_datafam_insts = adts' }, all_fvs) } -- We return the renamed associated data type declarations so -- that they can be entered into the list of type declarations -- for the binding group, but we also keep a copy in the instance. -- The latter is needed for well-formedness checks in the type -- checker (eg, to ensure that all ATs of the instance actually -- receive a declaration). -- NB: Even the copies in the instance declaration carry copies of -- the instance context after renaming. This is a bit -- strange, but should not matter (and it would be more work -- to remove the context). rnClsInstDecl (XClsInstDecl nec) = noExtCon nec rnFamInstEqn :: HsDocContext -> AssocTyFamInfo -> [Located RdrName] -- Kind variables from the equation's RHS -> FamInstEqn GhcPs rhs -> (HsDocContext -> rhs -> RnM (rhs', FreeVars)) -> RnM (FamInstEqn GhcRn rhs', FreeVars) rnFamInstEqn doc atfi rhs_kvars (HsIB { hsib_body = FamEqn { feqn_tycon = tycon , feqn_bndrs = mb_bndrs , feqn_pats = pats , feqn_fixity = fixity , feqn_rhs = payload }}) rn_payload = do { let mb_cls = case atfi of NonAssocTyFamEqn -> Nothing AssocTyFamDeflt cls -> Just cls AssocTyFamInst cls _ -> Just cls ; tycon' <- lookupFamInstName mb_cls tycon ; let pat_kity_vars_with_dups = extractHsTyArgRdrKiTyVarsDup pats -- Use the "...Dups" form because it's needed -- below to report unsed binder on the LHS -- Implicitly bound variables, empty if we have an explicit 'forall' according -- to the "forall-or-nothing" rule. ; let imp_vars | isNothing mb_bndrs = nubL pat_kity_vars_with_dups | otherwise = [] ; imp_var_names <- mapM (newTyVarNameRn mb_cls) imp_vars ; let bndrs = fromMaybe [] mb_bndrs bnd_vars = map hsLTyVarLocName bndrs payload_kvars = filterOut (`elemRdr` (bnd_vars ++ imp_vars)) rhs_kvars -- Make sure to filter out the kind variables that were explicitly -- bound in the type patterns. ; payload_kvar_names <- mapM (newTyVarNameRn mb_cls) payload_kvars -- all names not bound in an explict forall ; let all_imp_var_names = imp_var_names ++ payload_kvar_names -- All the free vars of the family patterns -- with a sensible binding location ; ((bndrs', pats', payload'), fvs) <- bindLocalNamesFV all_imp_var_names $ bindLHsTyVarBndrs doc (Just $ inHsDocContext doc) Nothing bndrs $ \bndrs' -> -- Note: If we pass mb_cls instead of Nothing here, -- bindLHsTyVarBndrs will use class variables for any names -- the user meant to bring in scope here. This is an explicit -- forall, so we want fresh names, not class variables. -- Thus: always pass Nothing do { (pats', pat_fvs) <- rnLHsTypeArgs (FamPatCtx tycon) pats ; (payload', rhs_fvs) <- rn_payload doc payload -- Report unused binders on the LHS -- See Note [Unused type variables in family instances] ; let groups :: [NonEmpty (Located RdrName)] groups = equivClasses cmpLocated $ pat_kity_vars_with_dups ; nms_dups <- mapM (lookupOccRn . unLoc) $ [ tv | (tv :| (_:_)) <- groups ] -- Add to the used variables -- a) any variables that appear *more than once* on the LHS -- e.g. F a Int a = Bool -- b) for associated instances, the variables -- of the instance decl. See -- Note [Unused type variables in family instances] ; let nms_used = extendNameSetList rhs_fvs $ inst_tvs ++ nms_dups inst_tvs = case atfi of NonAssocTyFamEqn -> [] AssocTyFamDeflt _ -> [] AssocTyFamInst _ inst_tvs -> inst_tvs all_nms = all_imp_var_names ++ hsLTyVarNames bndrs' ; warnUnusedTypePatterns all_nms nms_used ; return ((bndrs', pats', payload'), rhs_fvs `plusFV` pat_fvs) } ; let all_fvs = fvs `addOneFV` unLoc tycon' -- type instance => use, hence addOneFV ; return (HsIB { hsib_ext = all_imp_var_names -- Note [Wildcards in family instances] , hsib_body = FamEqn { feqn_ext = noExtField , feqn_tycon = tycon' , feqn_bndrs = bndrs' <$ mb_bndrs , feqn_pats = pats' , feqn_fixity = fixity , feqn_rhs = payload' } }, all_fvs) } rnFamInstEqn _ _ _ (HsIB _ (XFamEqn nec)) _ = noExtCon nec rnFamInstEqn _ _ _ (XHsImplicitBndrs nec) _ = noExtCon nec rnTyFamInstDecl :: AssocTyFamInfo -> TyFamInstDecl GhcPs -> RnM (TyFamInstDecl GhcRn, FreeVars) rnTyFamInstDecl atfi (TyFamInstDecl { tfid_eqn = eqn }) = do { (eqn', fvs) <- rnTyFamInstEqn atfi NotClosedTyFam eqn ; return (TyFamInstDecl { tfid_eqn = eqn' }, fvs) } -- | Tracks whether we are renaming: -- -- 1. A type family equation that is not associated -- with a parent type class ('NonAssocTyFamEqn') -- -- 2. An associated type family default delcaration ('AssocTyFamDeflt') -- -- 3. An associated type family instance declaration ('AssocTyFamInst') data AssocTyFamInfo = NonAssocTyFamEqn | AssocTyFamDeflt Name -- Name of the parent class | AssocTyFamInst Name -- Name of the parent class [Name] -- Names of the tyvars of the parent instance decl -- | Tracks whether we are renaming an equation in a closed type family -- equation ('ClosedTyFam') or not ('NotClosedTyFam'). data ClosedTyFamInfo = NotClosedTyFam | ClosedTyFam (Located RdrName) Name -- The names (RdrName and Name) of the closed type family rnTyFamInstEqn :: AssocTyFamInfo -> ClosedTyFamInfo -> TyFamInstEqn GhcPs -> RnM (TyFamInstEqn GhcRn, FreeVars) rnTyFamInstEqn atfi ctf_info eqn@(HsIB { hsib_body = FamEqn { feqn_tycon = tycon , feqn_rhs = rhs }}) = do { let rhs_kvs = extractHsTyRdrTyVarsKindVars rhs ; (eqn'@(HsIB { hsib_body = FamEqn { feqn_tycon = dL -> L _ tycon' }}), fvs) <- rnFamInstEqn (TySynCtx tycon) atfi rhs_kvs eqn rnTySyn ; case ctf_info of NotClosedTyFam -> pure () ClosedTyFam fam_rdr_name fam_name -> checkTc (fam_name == tycon') $ withHsDocContext (TyFamilyCtx fam_rdr_name) $ wrongTyFamName fam_name tycon' ; pure (eqn', fvs) } rnTyFamInstEqn _ _ (HsIB _ (XFamEqn nec)) = noExtCon nec rnTyFamInstEqn _ _ (XHsImplicitBndrs nec) = noExtCon nec rnTyFamDefltDecl :: Name -> TyFamDefltDecl GhcPs -> RnM (TyFamDefltDecl GhcRn, FreeVars) rnTyFamDefltDecl cls = rnTyFamInstDecl (AssocTyFamDeflt cls) rnDataFamInstDecl :: AssocTyFamInfo -> DataFamInstDecl GhcPs -> RnM (DataFamInstDecl GhcRn, FreeVars) rnDataFamInstDecl atfi (DataFamInstDecl { dfid_eqn = eqn@(HsIB { hsib_body = FamEqn { feqn_tycon = tycon , feqn_rhs = rhs }})}) = do { let rhs_kvs = extractDataDefnKindVars rhs ; (eqn', fvs) <- rnFamInstEqn (TyDataCtx tycon) atfi rhs_kvs eqn rnDataDefn ; return (DataFamInstDecl { dfid_eqn = eqn' }, fvs) } rnDataFamInstDecl _ (DataFamInstDecl (HsIB _ (XFamEqn nec))) = noExtCon nec rnDataFamInstDecl _ (DataFamInstDecl (XHsImplicitBndrs nec)) = noExtCon nec -- Renaming of the associated types in instances. -- Rename associated type family decl in class rnATDecls :: Name -- Class -> [LFamilyDecl GhcPs] -> RnM ([LFamilyDecl GhcRn], FreeVars) rnATDecls cls at_decls = rnList (rnFamDecl (Just cls)) at_decls rnATInstDecls :: (AssocTyFamInfo -> -- The function that renames decl GhcPs -> -- an instance. rnTyFamInstDecl RnM (decl GhcRn, FreeVars)) -- or rnDataFamInstDecl -> Name -- Class -> [Name] -> [Located (decl GhcPs)] -> RnM ([Located (decl GhcRn)], FreeVars) -- Used for data and type family defaults in a class decl -- and the family instance declarations in an instance -- -- NB: We allow duplicate associated-type decls; -- See Note [Associated type instances] in TcInstDcls rnATInstDecls rnFun cls tv_ns at_insts = rnList (rnFun (AssocTyFamInst cls tv_ns)) at_insts -- See Note [Renaming associated types] {- Note [Wildcards in family instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Wild cards can be used in type/data family instance declarations to indicate that the name of a type variable doesn't matter. Each wild card will be replaced with a new unique type variable. For instance: type family F a b :: * type instance F Int _ = Int is the same as type family F a b :: * type instance F Int b = Int This is implemented as follows: Unnamed wildcards remain unchanged after the renamer, and then given fresh meta-variables during typechecking, and it is handled pretty much the same way as the ones in partial type signatures. We however don't want to emit hole constraints on wildcards in family instances, so we turn on PartialTypeSignatures and turn off warning flag to let typechecker know this. See related Note [Wildcards in visible kind application] in TcHsType.hs Note [Unused type variables in family instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When the flag -fwarn-unused-type-patterns is on, the compiler reports warnings about unused type variables in type-family instances. A tpye variable is considered used (i.e. cannot be turned into a wildcard) when * it occurs on the RHS of the family instance e.g. type instance F a b = a -- a is used on the RHS * it occurs multiple times in the patterns on the LHS e.g. type instance F a a = Int -- a appears more than once on LHS * it is one of the instance-decl variables, for associated types e.g. instance C (a,b) where type T (a,b) = a Here the type pattern in the type instance must be the same as that for the class instance, so type T (a,_) = a would be rejected. So we should not complain about an unused variable b As usual, the warnings are not reported for type variables with names beginning with an underscore. Extra-constraints wild cards are not supported in type/data family instance declarations. Relevant tickets: #3699, #10586, #10982 and #11451. Note [Renaming associated types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Check that the RHS of the decl mentions only type variables that are explicitly bound on the LHS. For example, this is not ok class C a b where type F a x :: * instance C (p,q) r where type F (p,q) x = (x, r) -- BAD: mentions 'r' c.f. #5515 Kind variables, on the other hand, are allowed to be implicitly or explicitly bound. As examples, this (#9574) is acceptable: class Funct f where type Codomain f :: * instance Funct ('KProxy :: KProxy o) where -- o is implicitly bound by the kind signature -- of the LHS type pattern ('KProxy) type Codomain 'KProxy = NatTr (Proxy :: o -> *) And this (#14131) is also acceptable: data family Nat :: k -> k -> * -- k is implicitly bound by an invisible kind pattern newtype instance Nat :: (k -> *) -> (k -> *) -> * where Nat :: (forall xx. f xx -> g xx) -> Nat f g We could choose to disallow this, but then associated type families would not be able to be as expressive as top-level type synonyms. For example, this type synonym definition is allowed: type T = (Nothing :: Maybe a) So for parity with type synonyms, we also allow: type family T :: Maybe a type instance T = (Nothing :: Maybe a) All this applies only for *instance* declarations. In *class* declarations there is no RHS to worry about, and the class variables can all be in scope (#5862): class Category (x :: k -> k -> *) where type Ob x :: k -> Constraint id :: Ob x a => x a a (.) :: (Ob x a, Ob x b, Ob x c) => x b c -> x a b -> x a c Here 'k' is in scope in the kind signature, just like 'x'. Although type family equations can bind type variables with explicit foralls, it need not be the case that all variables that appear on the RHS must be bound by a forall. For instance, the following is acceptable: class C a where type T a b instance C (Maybe a) where type forall b. T (Maybe a) b = Either a b Even though `a` is not bound by the forall, this is still accepted because `a` was previously bound by the `instance C (Maybe a)` part. (see #16116). In each case, the function which detects improperly bound variables on the RHS is TcValidity.checkValidFamPats. -} {- ********************************************************* * * \subsection{Stand-alone deriving declarations} * * ********************************************************* -} rnSrcDerivDecl :: DerivDecl GhcPs -> RnM (DerivDecl GhcRn, FreeVars) rnSrcDerivDecl (DerivDecl _ ty mds overlap) = do { standalone_deriv_ok <- xoptM LangExt.StandaloneDeriving ; unless standalone_deriv_ok (addErr standaloneDerivErr) ; (mds', ty', fvs) <- rnLDerivStrategy DerivDeclCtx mds $ rnHsSigWcType BindUnlessForall DerivDeclCtx ty ; warnNoDerivStrat mds' loc ; return (DerivDecl noExtField ty' mds' overlap, fvs) } where loc = getLoc $ hsib_body $ hswc_body ty rnSrcDerivDecl (XDerivDecl nec) = noExtCon nec standaloneDerivErr :: SDoc standaloneDerivErr = hang (text "Illegal standalone deriving declaration") 2 (text "Use StandaloneDeriving to enable this extension") {- ********************************************************* * * \subsection{Rules} * * ********************************************************* -} rnHsRuleDecls :: RuleDecls GhcPs -> RnM (RuleDecls GhcRn, FreeVars) rnHsRuleDecls (HsRules { rds_src = src , rds_rules = rules }) = do { (rn_rules,fvs) <- rnList rnHsRuleDecl rules ; return (HsRules { rds_ext = noExtField , rds_src = src , rds_rules = rn_rules }, fvs) } rnHsRuleDecls (XRuleDecls nec) = noExtCon nec rnHsRuleDecl :: RuleDecl GhcPs -> RnM (RuleDecl GhcRn, FreeVars) rnHsRuleDecl (HsRule { rd_name = rule_name , rd_act = act , rd_tyvs = tyvs , rd_tmvs = tmvs , rd_lhs = lhs , rd_rhs = rhs }) = do { let rdr_names_w_loc = map (get_var . unLoc) tmvs ; checkDupRdrNames rdr_names_w_loc ; checkShadowedRdrNames rdr_names_w_loc ; names <- newLocalBndrsRn rdr_names_w_loc ; let doc = RuleCtx (snd $ unLoc rule_name) ; bindRuleTyVars doc in_rule tyvs $ \ tyvs' -> bindRuleTmVars doc tyvs' tmvs names $ \ tmvs' -> do { (lhs', fv_lhs') <- rnLExpr lhs ; (rhs', fv_rhs') <- rnLExpr rhs ; checkValidRule (snd $ unLoc rule_name) names lhs' fv_lhs' ; return (HsRule { rd_ext = HsRuleRn fv_lhs' fv_rhs' , rd_name = rule_name , rd_act = act , rd_tyvs = tyvs' , rd_tmvs = tmvs' , rd_lhs = lhs' , rd_rhs = rhs' }, fv_lhs' `plusFV` fv_rhs') } } where get_var (RuleBndrSig _ v _) = v get_var (RuleBndr _ v) = v get_var (XRuleBndr nec) = noExtCon nec in_rule = text "in the rule" <+> pprFullRuleName rule_name rnHsRuleDecl (XRuleDecl nec) = noExtCon nec bindRuleTmVars :: HsDocContext -> Maybe ty_bndrs -> [LRuleBndr GhcPs] -> [Name] -> ([LRuleBndr GhcRn] -> RnM (a, FreeVars)) -> RnM (a, FreeVars) bindRuleTmVars doc tyvs vars names thing_inside = go vars names $ \ vars' -> bindLocalNamesFV names (thing_inside vars') where go ((dL->L l (RuleBndr _ (dL->L loc _))) : vars) (n : ns) thing_inside = go vars ns $ \ vars' -> thing_inside (cL l (RuleBndr noExtField (cL loc n)) : vars') go ((dL->L l (RuleBndrSig _ (dL->L loc _) bsig)) : vars) (n : ns) thing_inside = rnHsSigWcTypeScoped bind_free_tvs doc bsig $ \ bsig' -> go vars ns $ \ vars' -> thing_inside (cL l (RuleBndrSig noExtField (cL loc n) bsig') : vars') go [] [] thing_inside = thing_inside [] go vars names _ = pprPanic "bindRuleVars" (ppr vars $$ ppr names) bind_free_tvs = case tyvs of Nothing -> AlwaysBind Just _ -> NeverBind bindRuleTyVars :: HsDocContext -> SDoc -> Maybe [LHsTyVarBndr GhcPs] -> (Maybe [LHsTyVarBndr GhcRn] -> RnM (b, FreeVars)) -> RnM (b, FreeVars) bindRuleTyVars doc in_doc (Just bndrs) thing_inside = bindLHsTyVarBndrs doc (Just in_doc) Nothing bndrs (thing_inside . Just) bindRuleTyVars _ _ _ thing_inside = thing_inside Nothing {- Note [Rule LHS validity checking] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Check the shape of a transformation rule LHS. Currently we only allow LHSs of the form @(f e1 .. en)@, where @f@ is not one of the @forall@'d variables. We used restrict the form of the 'ei' to prevent you writing rules with LHSs with a complicated desugaring (and hence unlikely to match); (e.g. a case expression is not allowed: too elaborate.) But there are legitimate non-trivial args ei, like sections and lambdas. So it seems simmpler not to check at all, and that is why check_e is commented out. -} checkValidRule :: FastString -> [Name] -> LHsExpr GhcRn -> NameSet -> RnM () checkValidRule rule_name ids lhs' fv_lhs' = do { -- Check for the form of the LHS case (validRuleLhs ids lhs') of Nothing -> return () Just bad -> failWithTc (badRuleLhsErr rule_name lhs' bad) -- Check that LHS vars are all bound ; let bad_vars = [var | var <- ids, not (var `elemNameSet` fv_lhs')] ; mapM_ (addErr . badRuleVar rule_name) bad_vars } validRuleLhs :: [Name] -> LHsExpr GhcRn -> Maybe (HsExpr GhcRn) -- Nothing => OK -- Just e => Not ok, and e is the offending sub-expression validRuleLhs foralls lhs = checkl lhs where checkl = check . unLoc check (OpApp _ e1 op e2) = checkl op `mplus` checkl_e e1 `mplus` checkl_e e2 check (HsApp _ e1 e2) = checkl e1 `mplus` checkl_e e2 check (HsAppType _ e _) = checkl e check (HsVar _ lv) | (unLoc lv) `notElem` foralls = Nothing check other = Just other -- Failure -- Check an argument checkl_e _ = Nothing -- Was (check_e e); see Note [Rule LHS validity checking] {- Commented out; see Note [Rule LHS validity checking] above check_e (HsVar v) = Nothing check_e (HsPar e) = checkl_e e check_e (HsLit e) = Nothing check_e (HsOverLit e) = Nothing check_e (OpApp e1 op _ e2) = checkl_e e1 `mplus` checkl_e op `mplus` checkl_e e2 check_e (HsApp e1 e2) = checkl_e e1 `mplus` checkl_e e2 check_e (NegApp e _) = checkl_e e check_e (ExplicitList _ es) = checkl_es es check_e other = Just other -- Fails checkl_es es = foldr (mplus . checkl_e) Nothing es -} badRuleVar :: FastString -> Name -> SDoc badRuleVar name var = sep [text "Rule" <+> doubleQuotes (ftext name) <> colon, text "Forall'd variable" <+> quotes (ppr var) <+> text "does not appear on left hand side"] badRuleLhsErr :: FastString -> LHsExpr GhcRn -> HsExpr GhcRn -> SDoc badRuleLhsErr name lhs bad_e = sep [text "Rule" <+> pprRuleName name <> colon, nest 2 (vcat [err, text "in left-hand side:" <+> ppr lhs])] $$ text "LHS must be of form (f e1 .. en) where f is not forall'd" where err = case bad_e of HsUnboundVar _ uv -> notInScopeErr (mkRdrUnqual (unboundVarOcc uv)) _ -> text "Illegal expression:" <+> ppr bad_e {- ************************************************************** * * Renaming type, class, instance and role declarations * * ***************************************************************** @rnTyDecl@ uses the `global name function' to create a new type declaration in which local names have been replaced by their original names, reporting any unknown names. Renaming type variables is a pain. Because they now contain uniques, it is necessary to pass in an association list which maps a parsed tyvar to its @Name@ representation. In some cases (type signatures of values), it is even necessary to go over the type first in order to get the set of tyvars used by it, make an assoc list, and then go over it again to rename the tyvars! However, we can also do some scoping checks at the same time. Note [Dependency analysis of type, class, and instance decls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A TyClGroup represents a strongly connected components of type/class/instance decls, together with the role annotations for the type/class declarations. The renamer uses strongly connected comoponent analysis to build these groups. We do this for a number of reasons: * Improve kind error messages. Consider data T f a = MkT f a data S f a = MkS f (T f a) This has a kind error, but the error message is better if you check T first, (fixing its kind) and *then* S. If you do kind inference together, you might get an error reported in S, which is jolly confusing. See #4875 * Increase kind polymorphism. See TcTyClsDecls Note [Grouping of type and class declarations] Why do the instance declarations participate? At least two reasons * Consider (#11348) type family F a type instance F Int = Bool data R = MkR (F Int) type Foo = 'MkR 'True For Foo to kind-check we need to know that (F Int) ~ Bool. But we won't know that unless we've looked at the type instance declaration for F before kind-checking Foo. * Another example is this (#3990). data family Complex a data instance Complex Double = CD {-# UNPACK #-} !Double {-# UNPACK #-} !Double data T = T {-# UNPACK #-} !(Complex Double) Here, to generate the right kind of unpacked implementation for T, we must have access to the 'data instance' declaration. * Things become more complicated when we introduce transitive dependencies through imported definitions, like in this scenario: A.hs type family Closed (t :: Type) :: Type where Closed t = Open t type family Open (t :: Type) :: Type B.hs data Q where Q :: Closed Bool -> Q type instance Open Int = Bool type S = 'Q 'True Somehow, we must ensure that the instance Open Int = Bool is checked before the type synonym S. While we know that S depends upon 'Q depends upon Closed, we have no idea that Closed depends upon Open! To accomodate for these situations, we ensure that an instance is checked before every @TyClDecl@ on which it does not depend. That's to say, instances are checked as early as possible in @tcTyAndClassDecls@. ------------------------------------ So much for WHY. What about HOW? It's pretty easy: (1) Rename the type/class, instance, and role declarations individually (2) Do strongly-connected component analysis of the type/class decls, We'll make a TyClGroup for each SCC In this step we treat a reference to a (promoted) data constructor K as a dependency on its parent type. Thus data T = K1 | K2 data S = MkS (Proxy 'K1) Here S depends on 'K1 and hence on its parent T. In this step we ignore instances; see Note [No dependencies on data instances] (3) Attach roles to the appropriate SCC (4) Attach instances to the appropriate SCC. We add an instance decl to SCC when: all its free types/classes are bound in this SCC or earlier ones (5) We make an initial TyClGroup, with empty group_tyclds, for any (orphan) instances that affect only imported types/classes Steps (3) and (4) are done by the (mapAccumL mk_group) call. Note [No dependencies on data instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this data family D a data instance D Int = D1 data S = MkS (Proxy 'D1) Here the declaration of S depends on the /data instance/ declaration for 'D Int'. That makes things a lot more complicated, especially if the data instance is an associated type of an enclosing class instance. (And the class instance might have several associated type instances with different dependency structure!) Ugh. For now we simply don't allow promotion of data constructors for data instances. See Note [AFamDataCon: not promoting data family constructors] in TcEnv -} rnTyClDecls :: [TyClGroup GhcPs] -> RnM ([TyClGroup GhcRn], FreeVars) -- Rename the declarations and do dependency analysis on them rnTyClDecls tycl_ds = do { -- Rename the type/class, instance, and role declaraations ; tycls_w_fvs <- mapM (wrapLocFstM rnTyClDecl) (tyClGroupTyClDecls tycl_ds) ; let tc_names = mkNameSet (map (tcdName . unLoc . fst) tycls_w_fvs) ; kisigs_w_fvs <- rnStandaloneKindSignatures tc_names (tyClGroupKindSigs tycl_ds) ; instds_w_fvs <- mapM (wrapLocFstM rnSrcInstDecl) (tyClGroupInstDecls tycl_ds) ; role_annots <- rnRoleAnnots tc_names (tyClGroupRoleDecls tycl_ds) -- Do SCC analysis on the type/class decls ; rdr_env <- getGlobalRdrEnv ; let tycl_sccs = depAnalTyClDecls rdr_env kisig_fv_env tycls_w_fvs role_annot_env = mkRoleAnnotEnv role_annots (kisig_env, kisig_fv_env) = mkKindSig_fv_env kisigs_w_fvs inst_ds_map = mkInstDeclFreeVarsMap rdr_env tc_names instds_w_fvs (init_inst_ds, rest_inst_ds) = getInsts [] inst_ds_map first_group | null init_inst_ds = [] | otherwise = [TyClGroup { group_ext = noExtField , group_tyclds = [] , group_kisigs = [] , group_roles = [] , group_instds = init_inst_ds }] (final_inst_ds, groups) = mapAccumL (mk_group role_annot_env kisig_env) rest_inst_ds tycl_sccs all_fvs = foldr (plusFV . snd) emptyFVs tycls_w_fvs `plusFV` foldr (plusFV . snd) emptyFVs instds_w_fvs `plusFV` foldr (plusFV . snd) emptyFVs kisigs_w_fvs all_groups = first_group ++ groups ; MASSERT2( null final_inst_ds, ppr instds_w_fvs $$ ppr inst_ds_map $$ ppr (flattenSCCs tycl_sccs) $$ ppr final_inst_ds ) ; traceRn "rnTycl dependency analysis made groups" (ppr all_groups) ; return (all_groups, all_fvs) } where mk_group :: RoleAnnotEnv -> KindSigEnv -> InstDeclFreeVarsMap -> SCC (LTyClDecl GhcRn) -> (InstDeclFreeVarsMap, TyClGroup GhcRn) mk_group role_env kisig_env inst_map scc = (inst_map', group) where tycl_ds = flattenSCC scc bndrs = map (tcdName . unLoc) tycl_ds roles = getRoleAnnots bndrs role_env kisigs = getKindSigs bndrs kisig_env (inst_ds, inst_map') = getInsts bndrs inst_map group = TyClGroup { group_ext = noExtField , group_tyclds = tycl_ds , group_kisigs = kisigs , group_roles = roles , group_instds = inst_ds } -- | Free variables of standalone kind signatures. newtype KindSig_FV_Env = KindSig_FV_Env (NameEnv FreeVars) lookupKindSig_FV_Env :: KindSig_FV_Env -> Name -> FreeVars lookupKindSig_FV_Env (KindSig_FV_Env e) name = fromMaybe emptyFVs (lookupNameEnv e name) -- | Standalone kind signatures. type KindSigEnv = NameEnv (LStandaloneKindSig GhcRn) mkKindSig_fv_env :: [(LStandaloneKindSig GhcRn, FreeVars)] -> (KindSigEnv, KindSig_FV_Env) mkKindSig_fv_env kisigs_w_fvs = (kisig_env, kisig_fv_env) where kisig_env = mapNameEnv fst compound_env kisig_fv_env = KindSig_FV_Env (mapNameEnv snd compound_env) compound_env :: NameEnv (LStandaloneKindSig GhcRn, FreeVars) = mkNameEnvWith (standaloneKindSigName . unLoc . fst) kisigs_w_fvs getKindSigs :: [Name] -> KindSigEnv -> [LStandaloneKindSig GhcRn] getKindSigs bndrs kisig_env = mapMaybe (lookupNameEnv kisig_env) bndrs rnStandaloneKindSignatures :: NameSet -- names of types and classes in the current TyClGroup -> [LStandaloneKindSig GhcPs] -> RnM [(LStandaloneKindSig GhcRn, FreeVars)] rnStandaloneKindSignatures tc_names kisigs = do { let (no_dups, dup_kisigs) = removeDups (compare `on` get_name) kisigs get_name = standaloneKindSigName . unLoc ; mapM_ dupKindSig_Err dup_kisigs ; mapM (wrapLocFstM (rnStandaloneKindSignature tc_names)) no_dups } rnStandaloneKindSignature :: NameSet -- names of types and classes in the current TyClGroup -> StandaloneKindSig GhcPs -> RnM (StandaloneKindSig GhcRn, FreeVars) rnStandaloneKindSignature tc_names (StandaloneKindSig _ v ki) = do { standalone_ki_sig_ok <- xoptM LangExt.StandaloneKindSignatures ; unless standalone_ki_sig_ok $ addErr standaloneKiSigErr ; new_v <- lookupSigCtxtOccRn (TopSigCtxt tc_names) (text "standalone kind signature") v ; let doc = StandaloneKindSigCtx (ppr v) ; (new_ki, fvs) <- rnHsSigType doc KindLevel ki ; return (StandaloneKindSig noExtField new_v new_ki, fvs) } where standaloneKiSigErr :: SDoc standaloneKiSigErr = hang (text "Illegal standalone kind signature") 2 (text "Did you mean to enable StandaloneKindSignatures?") rnStandaloneKindSignature _ (XStandaloneKindSig nec) = noExtCon nec depAnalTyClDecls :: GlobalRdrEnv -> KindSig_FV_Env -> [(LTyClDecl GhcRn, FreeVars)] -> [SCC (LTyClDecl GhcRn)] -- See Note [Dependency analysis of type, class, and instance decls] depAnalTyClDecls rdr_env kisig_fv_env ds_w_fvs = stronglyConnCompFromEdgedVerticesUniq edges where edges :: [ Node Name (LTyClDecl GhcRn) ] edges = [ DigraphNode d name (map (getParent rdr_env) (nonDetEltsUniqSet deps)) | (d, fvs) <- ds_w_fvs, let { name = tcdName (unLoc d) ; kisig_fvs = lookupKindSig_FV_Env kisig_fv_env name ; deps = fvs `plusFV` kisig_fvs } ] -- It's OK to use nonDetEltsUFM here as -- stronglyConnCompFromEdgedVertices is still deterministic -- even if the edges are in nondeterministic order as explained -- in Note [Deterministic SCC] in Digraph. toParents :: GlobalRdrEnv -> NameSet -> NameSet toParents rdr_env ns = nonDetFoldUniqSet add emptyNameSet ns -- It's OK to use nonDetFoldUFM because we immediately forget the -- ordering by creating a set where add n s = extendNameSet s (getParent rdr_env n) getParent :: GlobalRdrEnv -> Name -> Name getParent rdr_env n = case lookupGRE_Name rdr_env n of Just gre -> case gre_par gre of ParentIs { par_is = p } -> p FldParent { par_is = p } -> p _ -> n Nothing -> n {- ****************************************************** * * Role annotations * * ****************************************************** -} -- | Renames role annotations, returning them as the values in a NameEnv -- and checks for duplicate role annotations. -- It is quite convenient to do both of these in the same place. -- See also Note [Role annotations in the renamer] rnRoleAnnots :: NameSet -> [LRoleAnnotDecl GhcPs] -> RnM [LRoleAnnotDecl GhcRn] rnRoleAnnots tc_names role_annots = do { -- Check for duplicates *before* renaming, to avoid -- lumping together all the unboundNames let (no_dups, dup_annots) = removeDups (compare `on` get_name) role_annots get_name = roleAnnotDeclName . unLoc ; mapM_ dupRoleAnnotErr dup_annots ; mapM (wrapLocM rn_role_annot1) no_dups } where rn_role_annot1 (RoleAnnotDecl _ tycon roles) = do { -- the name is an *occurrence*, but look it up only in the -- decls defined in this group (see #10263) tycon' <- lookupSigCtxtOccRn (RoleAnnotCtxt tc_names) (text "role annotation") tycon ; return $ RoleAnnotDecl noExtField tycon' roles } rn_role_annot1 (XRoleAnnotDecl nec) = noExtCon nec dupRoleAnnotErr :: NonEmpty (LRoleAnnotDecl GhcPs) -> RnM () dupRoleAnnotErr list = addErrAt loc $ hang (text "Duplicate role annotations for" <+> quotes (ppr $ roleAnnotDeclName first_decl) <> colon) 2 (vcat $ map pp_role_annot $ NE.toList sorted_list) where sorted_list = NE.sortBy cmp_annot list ((dL->L loc first_decl) :| _) = sorted_list pp_role_annot (dL->L loc decl) = hang (ppr decl) 4 (text "-- written at" <+> ppr loc) cmp_annot (dL->L loc1 _) (dL->L loc2 _) = loc1 `compare` loc2 dupKindSig_Err :: NonEmpty (LStandaloneKindSig GhcPs) -> RnM () dupKindSig_Err list = addErrAt loc $ hang (text "Duplicate standalone kind signatures for" <+> quotes (ppr $ standaloneKindSigName first_decl) <> colon) 2 (vcat $ map pp_kisig $ NE.toList sorted_list) where sorted_list = NE.sortBy cmp_loc list ((dL->L loc first_decl) :| _) = sorted_list pp_kisig (dL->L loc decl) = hang (ppr decl) 4 (text "-- written at" <+> ppr loc) cmp_loc (dL->L loc1 _) (dL->L loc2 _) = loc1 `compare` loc2 {- Note [Role annotations in the renamer] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We must ensure that a type's role annotation is put in the same group as the proper type declaration. This is because role annotations are needed during type-checking when creating the type's TyCon. So, rnRoleAnnots builds a NameEnv (LRoleAnnotDecl Name) that maps a name to a role annotation for that type, if any. Then, this map can be used to add the role annotations to the groups after dependency analysis. This process checks for duplicate role annotations, where we must be careful to do the check *before* renaming to avoid calling all unbound names duplicates of one another. The renaming process, as usual, might identify and report errors for unbound names. This is done by using lookupSigCtxtOccRn in rnRoleAnnots (using lookupGlobalOccRn led to #8485). -} {- ****************************************************** * * Dependency info for instances * * ****************************************************** -} ---------------------------------------------------------- -- | 'InstDeclFreeVarsMap is an association of an -- @InstDecl@ with @FreeVars@. The @FreeVars@ are -- the tycon names that are both -- a) free in the instance declaration -- b) bound by this group of type/class/instance decls type InstDeclFreeVarsMap = [(LInstDecl GhcRn, FreeVars)] -- | Construct an @InstDeclFreeVarsMap@ by eliminating any @Name@s from the -- @FreeVars@ which are *not* the binders of a @TyClDecl@. mkInstDeclFreeVarsMap :: GlobalRdrEnv -> NameSet -> [(LInstDecl GhcRn, FreeVars)] -> InstDeclFreeVarsMap mkInstDeclFreeVarsMap rdr_env tycl_bndrs inst_ds_fvs = [ (inst_decl, toParents rdr_env fvs `intersectFVs` tycl_bndrs) | (inst_decl, fvs) <- inst_ds_fvs ] -- | Get the @LInstDecl@s which have empty @FreeVars@ sets, and the -- @InstDeclFreeVarsMap@ with these entries removed. -- We call (getInsts tcs instd_map) when we've completed the declarations -- for 'tcs'. The call returns (inst_decls, instd_map'), where -- inst_decls are the instance declarations all of -- whose free vars are now defined -- instd_map' is the inst-decl map with 'tcs' removed from -- the free-var set getInsts :: [Name] -> InstDeclFreeVarsMap -> ([LInstDecl GhcRn], InstDeclFreeVarsMap) getInsts bndrs inst_decl_map = partitionWith pick_me inst_decl_map where pick_me :: (LInstDecl GhcRn, FreeVars) -> Either (LInstDecl GhcRn) (LInstDecl GhcRn, FreeVars) pick_me (decl, fvs) | isEmptyNameSet depleted_fvs = Left decl | otherwise = Right (decl, depleted_fvs) where depleted_fvs = delFVs bndrs fvs {- ****************************************************** * * Renaming a type or class declaration * * ****************************************************** -} rnTyClDecl :: TyClDecl GhcPs -> RnM (TyClDecl GhcRn, FreeVars) -- All flavours of top-level type family declarations ("type family", "newtype -- family", and "data family") rnTyClDecl (FamDecl { tcdFam = fam }) = do { (fam', fvs) <- rnFamDecl Nothing fam ; return (FamDecl noExtField fam', fvs) } rnTyClDecl (SynDecl { tcdLName = tycon, tcdTyVars = tyvars, tcdFixity = fixity, tcdRhs = rhs }) = do { tycon' <- lookupLocatedTopBndrRn tycon ; let kvs = extractHsTyRdrTyVarsKindVars rhs doc = TySynCtx tycon ; traceRn "rntycl-ty" (ppr tycon <+> ppr kvs) ; bindHsQTyVars doc Nothing Nothing kvs tyvars $ \ tyvars' _ -> do { (rhs', fvs) <- rnTySyn doc rhs ; return (SynDecl { tcdLName = tycon', tcdTyVars = tyvars' , tcdFixity = fixity , tcdRhs = rhs', tcdSExt = fvs }, fvs) } } -- "data", "newtype" declarations rnTyClDecl (DataDecl _ _ _ _ (XHsDataDefn nec)) = noExtCon nec rnTyClDecl (DataDecl { tcdLName = tycon, tcdTyVars = tyvars, tcdFixity = fixity, tcdDataDefn = defn@HsDataDefn{ dd_ND = new_or_data , dd_kindSig = kind_sig} }) = do { tycon' <- lookupLocatedTopBndrRn tycon ; let kvs = extractDataDefnKindVars defn doc = TyDataCtx tycon ; traceRn "rntycl-data" (ppr tycon <+> ppr kvs) ; bindHsQTyVars doc Nothing Nothing kvs tyvars $ \ tyvars' no_rhs_kvs -> do { (defn', fvs) <- rnDataDefn doc defn ; cusk <- data_decl_has_cusk tyvars' new_or_data no_rhs_kvs kind_sig ; let rn_info = DataDeclRn { tcdDataCusk = cusk , tcdFVs = fvs } ; traceRn "rndata" (ppr tycon <+> ppr cusk <+> ppr no_rhs_kvs) ; return (DataDecl { tcdLName = tycon' , tcdTyVars = tyvars' , tcdFixity = fixity , tcdDataDefn = defn' , tcdDExt = rn_info }, fvs) } } rnTyClDecl (ClassDecl { tcdCtxt = context, tcdLName = lcls, tcdTyVars = tyvars, tcdFixity = fixity, tcdFDs = fds, tcdSigs = sigs, tcdMeths = mbinds, tcdATs = ats, tcdATDefs = at_defs, tcdDocs = docs}) = do { lcls' <- lookupLocatedTopBndrRn lcls ; let cls' = unLoc lcls' kvs = [] -- No scoped kind vars except those in -- kind signatures on the tyvars -- Tyvars scope over superclass context and method signatures ; ((tyvars', context', fds', ats'), stuff_fvs) <- bindHsQTyVars cls_doc Nothing Nothing kvs tyvars $ \ tyvars' _ -> do -- Checks for distinct tyvars { (context', cxt_fvs) <- rnContext cls_doc context ; fds' <- rnFds fds -- The fundeps have no free variables ; (ats', fv_ats) <- rnATDecls cls' ats ; let fvs = cxt_fvs `plusFV` fv_ats ; return ((tyvars', context', fds', ats'), fvs) } ; (at_defs', fv_at_defs) <- rnList (rnTyFamDefltDecl cls') at_defs -- No need to check for duplicate associated type decls -- since that is done by RnNames.extendGlobalRdrEnvRn -- Check the signatures -- First process the class op sigs (op_sigs), then the fixity sigs (non_op_sigs). ; let sig_rdr_names_w_locs = [op | (dL->L _ (ClassOpSig _ False ops _)) <- sigs , op <- ops] ; checkDupRdrNames sig_rdr_names_w_locs -- Typechecker is responsible for checking that we only -- give default-method bindings for things in this class. -- The renamer *could* check this for class decls, but can't -- for instance decls. -- The newLocals call is tiresome: given a generic class decl -- class C a where -- op :: a -> a -- op {| x+y |} (Inl a) = ... -- op {| x+y |} (Inr b) = ... -- op {| a*b |} (a*b) = ... -- we want to name both "x" tyvars with the same unique, so that they are -- easy to group together in the typechecker. ; (mbinds', sigs', meth_fvs) <- rnMethodBinds True cls' (hsAllLTyVarNames tyvars') mbinds sigs -- No need to check for duplicate method signatures -- since that is done by RnNames.extendGlobalRdrEnvRn -- and the methods are already in scope -- Haddock docs ; docs' <- mapM (wrapLocM rnDocDecl) docs ; let all_fvs = meth_fvs `plusFV` stuff_fvs `plusFV` fv_at_defs ; return (ClassDecl { tcdCtxt = context', tcdLName = lcls', tcdTyVars = tyvars', tcdFixity = fixity, tcdFDs = fds', tcdSigs = sigs', tcdMeths = mbinds', tcdATs = ats', tcdATDefs = at_defs', tcdDocs = docs', tcdCExt = all_fvs }, all_fvs ) } where cls_doc = ClassDeclCtx lcls rnTyClDecl (XTyClDecl nec) = noExtCon nec -- Does the data type declaration include a CUSK? data_decl_has_cusk :: LHsQTyVars pass -> NewOrData -> Bool -> Maybe (LHsKind pass') -> RnM Bool data_decl_has_cusk tyvars new_or_data no_rhs_kvs kind_sig = do { -- See Note [Unlifted Newtypes and CUSKs], and for a broader -- picture, see Note [Implementation of UnliftedNewtypes]. ; unlifted_newtypes <- xoptM LangExt.UnliftedNewtypes ; let non_cusk_newtype | NewType <- new_or_data = unlifted_newtypes && isNothing kind_sig | otherwise = False -- See Note [CUSKs: complete user-supplied kind signatures] in GHC.Hs.Decls ; return $ hsTvbAllKinded tyvars && no_rhs_kvs && not non_cusk_newtype } {- Note [Unlifted Newtypes and CUSKs] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When unlifted newtypes are enabled, a newtype must have a kind signature in order to be considered have a CUSK. This is because the flow of kind inference works differently. Consider: newtype Foo = FooC Int When UnliftedNewtypes is disabled, we decide that Foo has kind `TYPE 'LiftedRep` without looking inside the data constructor. So, we can say that Foo has a CUSK. However, when UnliftedNewtypes is enabled, we fill in the kind of Foo as a metavar that gets solved by unification with the kind of the field inside FooC (that is, Int, whose kind is `TYPE 'LiftedRep`). But since we have to look inside the data constructors to figure out the kind signature of Foo, it does not have a CUSK. See Note [Implementation of UnliftedNewtypes] for where this fits in to the broader picture of UnliftedNewtypes. -} -- "type" and "type instance" declarations rnTySyn :: HsDocContext -> LHsType GhcPs -> RnM (LHsType GhcRn, FreeVars) rnTySyn doc rhs = rnLHsType doc rhs rnDataDefn :: HsDocContext -> HsDataDefn GhcPs -> RnM (HsDataDefn GhcRn, FreeVars) rnDataDefn doc (HsDataDefn { dd_ND = new_or_data, dd_cType = cType , dd_ctxt = context, dd_cons = condecls , dd_kindSig = m_sig, dd_derivs = derivs }) = do { checkTc (h98_style || null (unLoc context)) (badGadtStupidTheta doc) ; (m_sig', sig_fvs) <- case m_sig of Just sig -> first Just <$> rnLHsKind doc sig Nothing -> return (Nothing, emptyFVs) ; (context', fvs1) <- rnContext doc context ; (derivs', fvs3) <- rn_derivs derivs -- For the constructor declarations, drop the LocalRdrEnv -- in the GADT case, where the type variables in the declaration -- do not scope over the constructor signatures -- data T a where { T1 :: forall b. b-> b } ; let { zap_lcl_env | h98_style = \ thing -> thing | otherwise = setLocalRdrEnv emptyLocalRdrEnv } ; (condecls', con_fvs) <- zap_lcl_env $ rnConDecls condecls -- No need to check for duplicate constructor decls -- since that is done by RnNames.extendGlobalRdrEnvRn ; let all_fvs = fvs1 `plusFV` fvs3 `plusFV` con_fvs `plusFV` sig_fvs ; return ( HsDataDefn { dd_ext = noExtField , dd_ND = new_or_data, dd_cType = cType , dd_ctxt = context', dd_kindSig = m_sig' , dd_cons = condecls' , dd_derivs = derivs' } , all_fvs ) } where h98_style = case condecls of -- Note [Stupid theta] (dL->L _ (ConDeclGADT {})) : _ -> False _ -> True rn_derivs (dL->L loc ds) = do { deriv_strats_ok <- xoptM LangExt.DerivingStrategies ; failIfTc (lengthExceeds ds 1 && not deriv_strats_ok) multipleDerivClausesErr ; (ds', fvs) <- mapFvRn (rnLHsDerivingClause doc) ds ; return (cL loc ds', fvs) } rnDataDefn _ (XHsDataDefn nec) = noExtCon nec warnNoDerivStrat :: Maybe (LDerivStrategy GhcRn) -> SrcSpan -> RnM () warnNoDerivStrat mds loc = do { dyn_flags <- getDynFlags ; when (wopt Opt_WarnMissingDerivingStrategies dyn_flags) $ case mds of Nothing -> addWarnAt (Reason Opt_WarnMissingDerivingStrategies) loc (if xopt LangExt.DerivingStrategies dyn_flags then no_strat_warning else no_strat_warning $+$ deriv_strat_nenabled ) _ -> pure () } where no_strat_warning :: SDoc no_strat_warning = text "No deriving strategy specified. Did you want stock" <> text ", newtype, or anyclass?" deriv_strat_nenabled :: SDoc deriv_strat_nenabled = text "Use DerivingStrategies to specify a strategy." rnLHsDerivingClause :: HsDocContext -> LHsDerivingClause GhcPs -> RnM (LHsDerivingClause GhcRn, FreeVars) rnLHsDerivingClause doc (dL->L loc (HsDerivingClause { deriv_clause_ext = noExtField , deriv_clause_strategy = dcs , deriv_clause_tys = (dL->L loc' dct) })) = do { (dcs', dct', fvs) <- rnLDerivStrategy doc dcs $ mapFvRn (rnHsSigType doc TypeLevel) dct ; warnNoDerivStrat dcs' loc ; pure ( cL loc (HsDerivingClause { deriv_clause_ext = noExtField , deriv_clause_strategy = dcs' , deriv_clause_tys = cL loc' dct' }) , fvs ) } rnLHsDerivingClause _ (dL->L _ (XHsDerivingClause nec)) = noExtCon nec rnLHsDerivingClause _ _ = panic "rnLHsDerivingClause: Impossible Match" -- due to #15884 rnLDerivStrategy :: forall a. HsDocContext -> Maybe (LDerivStrategy GhcPs) -> RnM (a, FreeVars) -> RnM (Maybe (LDerivStrategy GhcRn), a, FreeVars) rnLDerivStrategy doc mds thing_inside = case mds of Nothing -> boring_case Nothing Just (dL->L loc ds) -> setSrcSpan loc $ do (ds', thing, fvs) <- rn_deriv_strat ds pure (Just (cL loc ds'), thing, fvs) where rn_deriv_strat :: DerivStrategy GhcPs -> RnM (DerivStrategy GhcRn, a, FreeVars) rn_deriv_strat ds = do let extNeeded :: LangExt.Extension extNeeded | ViaStrategy{} <- ds = LangExt.DerivingVia | otherwise = LangExt.DerivingStrategies unlessXOptM extNeeded $ failWith $ illegalDerivStrategyErr ds case ds of StockStrategy -> boring_case StockStrategy AnyclassStrategy -> boring_case AnyclassStrategy NewtypeStrategy -> boring_case NewtypeStrategy ViaStrategy via_ty -> do (via_ty', fvs1) <- rnHsSigType doc TypeLevel via_ty let HsIB { hsib_ext = via_imp_tvs , hsib_body = via_body } = via_ty' (via_exp_tv_bndrs, _, _) = splitLHsSigmaTyInvis via_body via_exp_tvs = hsLTyVarNames via_exp_tv_bndrs via_tvs = via_imp_tvs ++ via_exp_tvs (thing, fvs2) <- extendTyVarEnvFVRn via_tvs thing_inside pure (ViaStrategy via_ty', thing, fvs1 `plusFV` fvs2) boring_case :: ds -> RnM (ds, a, FreeVars) boring_case ds = do (thing, fvs) <- thing_inside pure (ds, thing, fvs) badGadtStupidTheta :: HsDocContext -> SDoc badGadtStupidTheta _ = vcat [text "No context is allowed on a GADT-style data declaration", text "(You can put a context on each constructor, though.)"] illegalDerivStrategyErr :: DerivStrategy GhcPs -> SDoc illegalDerivStrategyErr ds = vcat [ text "Illegal deriving strategy" <> colon <+> derivStrategyName ds , text enableStrategy ] where enableStrategy :: String enableStrategy | ViaStrategy{} <- ds = "Use DerivingVia to enable this extension" | otherwise = "Use DerivingStrategies to enable this extension" multipleDerivClausesErr :: SDoc multipleDerivClausesErr = vcat [ text "Illegal use of multiple, consecutive deriving clauses" , text "Use DerivingStrategies to allow this" ] rnFamDecl :: Maybe Name -- Just cls => this FamilyDecl is nested -- inside an *class decl* for cls -- used for associated types -> FamilyDecl GhcPs -> RnM (FamilyDecl GhcRn, FreeVars) rnFamDecl mb_cls (FamilyDecl { fdLName = tycon, fdTyVars = tyvars , fdFixity = fixity , fdInfo = info, fdResultSig = res_sig , fdInjectivityAnn = injectivity }) = do { tycon' <- lookupLocatedTopBndrRn tycon ; ((tyvars', res_sig', injectivity'), fv1) <- bindHsQTyVars doc Nothing mb_cls kvs tyvars $ \ tyvars' _ -> do { let rn_sig = rnFamResultSig doc ; (res_sig', fv_kind) <- wrapLocFstM rn_sig res_sig ; injectivity' <- traverse (rnInjectivityAnn tyvars' res_sig') injectivity ; return ( (tyvars', res_sig', injectivity') , fv_kind ) } ; (info', fv2) <- rn_info tycon' info ; return (FamilyDecl { fdExt = noExtField , fdLName = tycon', fdTyVars = tyvars' , fdFixity = fixity , fdInfo = info', fdResultSig = res_sig' , fdInjectivityAnn = injectivity' } , fv1 `plusFV` fv2) } where doc = TyFamilyCtx tycon kvs = extractRdrKindSigVars res_sig ---------------------- rn_info :: Located Name -> FamilyInfo GhcPs -> RnM (FamilyInfo GhcRn, FreeVars) rn_info (dL->L _ fam_name) (ClosedTypeFamily (Just eqns)) = do { (eqns', fvs) <- rnList (rnTyFamInstEqn NonAssocTyFamEqn (ClosedTyFam tycon fam_name)) -- no class context eqns ; return (ClosedTypeFamily (Just eqns'), fvs) } rn_info _ (ClosedTypeFamily Nothing) = return (ClosedTypeFamily Nothing, emptyFVs) rn_info _ OpenTypeFamily = return (OpenTypeFamily, emptyFVs) rn_info _ DataFamily = return (DataFamily, emptyFVs) rnFamDecl _ (XFamilyDecl nec) = noExtCon nec rnFamResultSig :: HsDocContext -> FamilyResultSig GhcPs -> RnM (FamilyResultSig GhcRn, FreeVars) rnFamResultSig _ (NoSig _) = return (NoSig noExtField, emptyFVs) rnFamResultSig doc (KindSig _ kind) = do { (rndKind, ftvs) <- rnLHsKind doc kind ; return (KindSig noExtField rndKind, ftvs) } rnFamResultSig doc (TyVarSig _ tvbndr) = do { -- `TyVarSig` tells us that user named the result of a type family by -- writing `= tyvar` or `= (tyvar :: kind)`. In such case we want to -- be sure that the supplied result name is not identical to an -- already in-scope type variable from an enclosing class. -- -- Example of disallowed declaration: -- class C a b where -- type F b = a | a -> b rdr_env <- getLocalRdrEnv ; let resName = hsLTyVarName tvbndr ; when (resName `elemLocalRdrEnv` rdr_env) $ addErrAt (getLoc tvbndr) $ (hsep [ text "Type variable", quotes (ppr resName) <> comma , text "naming a type family result," ] $$ text "shadows an already bound type variable") ; bindLHsTyVarBndr doc Nothing -- This might be a lie, but it's used for -- scoping checks that are irrelevant here tvbndr $ \ tvbndr' -> return (TyVarSig noExtField tvbndr', unitFV (hsLTyVarName tvbndr')) } rnFamResultSig _ (XFamilyResultSig nec) = noExtCon nec -- Note [Renaming injectivity annotation] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- During renaming of injectivity annotation we have to make several checks to -- make sure that it is well-formed. At the moment injectivity annotation -- consists of a single injectivity condition, so the terms "injectivity -- annotation" and "injectivity condition" might be used interchangeably. See -- Note [Injectivity annotation] for a detailed discussion of currently allowed -- injectivity annotations. -- -- Checking LHS is simple because the only type variable allowed on the LHS of -- injectivity condition is the variable naming the result in type family head. -- Example of disallowed annotation: -- -- type family Foo a b = r | b -> a -- -- Verifying RHS of injectivity consists of checking that: -- -- 1. only variables defined in type family head appear on the RHS (kind -- variables are also allowed). Example of disallowed annotation: -- -- type family Foo a = r | r -> b -- -- 2. for associated types the result variable does not shadow any of type -- class variables. Example of disallowed annotation: -- -- class Foo a b where -- type F a = b | b -> a -- -- Breaking any of these assumptions results in an error. -- | Rename injectivity annotation. Note that injectivity annotation is just the -- part after the "|". Everything that appears before it is renamed in -- rnFamDecl. rnInjectivityAnn :: LHsQTyVars GhcRn -- ^ Type variables declared in -- type family head -> LFamilyResultSig GhcRn -- ^ Result signature -> LInjectivityAnn GhcPs -- ^ Injectivity annotation -> RnM (LInjectivityAnn GhcRn) rnInjectivityAnn tvBndrs (dL->L _ (TyVarSig _ resTv)) (dL->L srcSpan (InjectivityAnn injFrom injTo)) = do { (injDecl'@(dL->L _ (InjectivityAnn injFrom' injTo')), noRnErrors) <- askNoErrs $ bindLocalNames [hsLTyVarName resTv] $ -- The return type variable scopes over the injectivity annotation -- e.g. type family F a = (r::*) | r -> a do { injFrom' <- rnLTyVar injFrom ; injTo' <- mapM rnLTyVar injTo ; return $ cL srcSpan (InjectivityAnn injFrom' injTo') } ; let tvNames = Set.fromList $ hsAllLTyVarNames tvBndrs resName = hsLTyVarName resTv -- See Note [Renaming injectivity annotation] lhsValid = EQ == (stableNameCmp resName (unLoc injFrom')) rhsValid = Set.fromList (map unLoc injTo') `Set.difference` tvNames -- if renaming of type variables ended with errors (eg. there were -- not-in-scope variables) don't check the validity of injectivity -- annotation. This gives better error messages. ; when (noRnErrors && not lhsValid) $ addErrAt (getLoc injFrom) ( vcat [ text $ "Incorrect type variable on the LHS of " ++ "injectivity condition" , nest 5 ( vcat [ text "Expected :" <+> ppr resName , text "Actual :" <+> ppr injFrom ])]) ; when (noRnErrors && not (Set.null rhsValid)) $ do { let errorVars = Set.toList rhsValid ; addErrAt srcSpan $ ( hsep [ text "Unknown type variable" <> plural errorVars , text "on the RHS of injectivity condition:" , interpp'SP errorVars ] ) } ; return injDecl' } -- We can only hit this case when the user writes injectivity annotation without -- naming the result: -- -- type family F a | result -> a -- type family F a :: * | result -> a -- -- So we rename injectivity annotation like we normally would except that -- this time we expect "result" to be reported not in scope by rnLTyVar. rnInjectivityAnn _ _ (dL->L srcSpan (InjectivityAnn injFrom injTo)) = setSrcSpan srcSpan $ do (injDecl', _) <- askNoErrs $ do injFrom' <- rnLTyVar injFrom injTo' <- mapM rnLTyVar injTo return $ cL srcSpan (InjectivityAnn injFrom' injTo') return $ injDecl' {- Note [Stupid theta] ~~~~~~~~~~~~~~~~~~~ #3850 complains about a regression wrt 6.10 for data Show a => T a There is no reason not to allow the stupid theta if there are no data constructors. It's still stupid, but does no harm, and I don't want to cause programs to break unnecessarily (notably HList). So if there are no data constructors we allow h98_style = True -} {- ***************************************************** * * Support code for type/data declarations * * ***************************************************** -} --------------- wrongTyFamName :: Name -> Name -> SDoc wrongTyFamName fam_tc_name eqn_tc_name = hang (text "Mismatched type name in type family instance.") 2 (vcat [ text "Expected:" <+> ppr fam_tc_name , text " Actual:" <+> ppr eqn_tc_name ]) ----------------- rnConDecls :: [LConDecl GhcPs] -> RnM ([LConDecl GhcRn], FreeVars) rnConDecls = mapFvRn (wrapLocFstM rnConDecl) rnConDecl :: ConDecl GhcPs -> RnM (ConDecl GhcRn, FreeVars) rnConDecl decl@(ConDeclH98 { con_name = name, con_ex_tvs = ex_tvs , con_mb_cxt = mcxt, con_args = args , con_doc = mb_doc }) = do { _ <- addLocM checkConName name ; new_name <- lookupLocatedTopBndrRn name ; mb_doc' <- rnMbLHsDoc mb_doc -- We bind no implicit binders here; this is just like -- a nested HsForAllTy. E.g. consider -- data T a = forall (b::k). MkT (...) -- The 'k' will already be in scope from the bindHsQTyVars -- for the data decl itself. So we'll get -- data T {k} a = ... -- And indeed we may later discover (a::k). But that's the -- scoping we get. So no implicit binders at the existential forall ; let ctxt = ConDeclCtx [new_name] ; bindLHsTyVarBndrs ctxt (Just (inHsDocContext ctxt)) Nothing ex_tvs $ \ new_ex_tvs -> do { (new_context, fvs1) <- rnMbContext ctxt mcxt ; (new_args, fvs2) <- rnConDeclDetails (unLoc new_name) ctxt args ; let all_fvs = fvs1 `plusFV` fvs2 ; traceRn "rnConDecl" (ppr name <+> vcat [ text "ex_tvs:" <+> ppr ex_tvs , text "new_ex_dqtvs':" <+> ppr new_ex_tvs ]) ; return (decl { con_ext = noExtField , con_name = new_name, con_ex_tvs = new_ex_tvs , con_mb_cxt = new_context, con_args = new_args , con_doc = mb_doc' }, all_fvs) }} rnConDecl decl@(ConDeclGADT { con_names = names , con_forall = (dL->L _ explicit_forall) , con_qvars = qtvs , con_mb_cxt = mcxt , con_args = args , con_res_ty = res_ty , con_doc = mb_doc }) = do { mapM_ (addLocM checkConName) names ; new_names <- mapM lookupLocatedTopBndrRn names ; mb_doc' <- rnMbLHsDoc mb_doc ; let explicit_tkvs = hsQTvExplicit qtvs theta = hsConDeclTheta mcxt arg_tys = hsConDeclArgTys args -- We must ensure that we extract the free tkvs in left-to-right -- order of their appearance in the constructor type. -- That order governs the order the implicitly-quantified type -- variable, and hence the order needed for visible type application -- See #14808. free_tkvs = extractHsTvBndrs explicit_tkvs $ extractHsTysRdrTyVarsDups (theta ++ arg_tys ++ [res_ty]) ctxt = ConDeclCtx new_names mb_ctxt = Just (inHsDocContext ctxt) ; traceRn "rnConDecl" (ppr names $$ ppr free_tkvs $$ ppr explicit_forall ) ; rnImplicitBndrs (not explicit_forall) free_tkvs $ \ implicit_tkvs -> bindLHsTyVarBndrs ctxt mb_ctxt Nothing explicit_tkvs $ \ explicit_tkvs -> do { (new_cxt, fvs1) <- rnMbContext ctxt mcxt ; (new_args, fvs2) <- rnConDeclDetails (unLoc (head new_names)) ctxt args ; (new_res_ty, fvs3) <- rnLHsType ctxt res_ty ; let all_fvs = fvs1 `plusFV` fvs2 `plusFV` fvs3 (args', res_ty') = case args of InfixCon {} -> pprPanic "rnConDecl" (ppr names) RecCon {} -> (new_args, new_res_ty) PrefixCon as | (arg_tys, final_res_ty) <- splitHsFunType new_res_ty -> ASSERT( null as ) -- See Note [GADT abstract syntax] in GHC.Hs.Decls (PrefixCon arg_tys, final_res_ty) new_qtvs = HsQTvs { hsq_ext = implicit_tkvs , hsq_explicit = explicit_tkvs } ; traceRn "rnConDecl2" (ppr names $$ ppr implicit_tkvs $$ ppr explicit_tkvs) ; return (decl { con_g_ext = noExtField, con_names = new_names , con_qvars = new_qtvs, con_mb_cxt = new_cxt , con_args = args', con_res_ty = res_ty' , con_doc = mb_doc' }, all_fvs) } } rnConDecl (XConDecl nec) = noExtCon nec rnMbContext :: HsDocContext -> Maybe (LHsContext GhcPs) -> RnM (Maybe (LHsContext GhcRn), FreeVars) rnMbContext _ Nothing = return (Nothing, emptyFVs) rnMbContext doc (Just cxt) = do { (ctx',fvs) <- rnContext doc cxt ; return (Just ctx',fvs) } rnConDeclDetails :: Name -> HsDocContext -> HsConDetails (LHsType GhcPs) (Located [LConDeclField GhcPs]) -> RnM (HsConDetails (LHsType GhcRn) (Located [LConDeclField GhcRn]), FreeVars) rnConDeclDetails _ doc (PrefixCon tys) = do { (new_tys, fvs) <- rnLHsTypes doc tys ; return (PrefixCon new_tys, fvs) } rnConDeclDetails _ doc (InfixCon ty1 ty2) = do { (new_ty1, fvs1) <- rnLHsType doc ty1 ; (new_ty2, fvs2) <- rnLHsType doc ty2 ; return (InfixCon new_ty1 new_ty2, fvs1 `plusFV` fvs2) } rnConDeclDetails con doc (RecCon (dL->L l fields)) = do { fls <- lookupConstructorFields con ; (new_fields, fvs) <- rnConDeclFields doc fls fields -- No need to check for duplicate fields -- since that is done by RnNames.extendGlobalRdrEnvRn ; return (RecCon (cL l new_fields), fvs) } ------------------------------------------------- -- | Brings pattern synonym names and also pattern synonym selectors -- from record pattern synonyms into scope. extendPatSynEnv :: HsValBinds GhcPs -> MiniFixityEnv -> ([Name] -> TcRnIf TcGblEnv TcLclEnv a) -> TcM a extendPatSynEnv val_decls local_fix_env thing = do { names_with_fls <- new_ps val_decls ; let pat_syn_bndrs = concat [ name: map flSelector fields | (name, fields) <- names_with_fls ] ; let avails = map avail pat_syn_bndrs ; (gbl_env, lcl_env) <- extendGlobalRdrEnvRn avails local_fix_env ; let field_env' = extendNameEnvList (tcg_field_env gbl_env) names_with_fls final_gbl_env = gbl_env { tcg_field_env = field_env' } ; setEnvs (final_gbl_env, lcl_env) (thing pat_syn_bndrs) } where new_ps :: HsValBinds GhcPs -> TcM [(Name, [FieldLabel])] new_ps (ValBinds _ binds _) = foldrM new_ps' [] binds new_ps _ = panic "new_ps" new_ps' :: LHsBindLR GhcPs GhcPs -> [(Name, [FieldLabel])] -> TcM [(Name, [FieldLabel])] new_ps' bind names | (dL->L bind_loc (PatSynBind _ (PSB { psb_id = (dL->L _ n) , psb_args = RecCon as }))) <- bind = do bnd_name <- newTopSrcBinder (cL bind_loc n) let rnames = map recordPatSynSelectorId as mkFieldOcc :: Located RdrName -> LFieldOcc GhcPs mkFieldOcc (dL->L l name) = cL l (FieldOcc noExtField (cL l name)) field_occs = map mkFieldOcc rnames flds <- mapM (newRecordSelector False [bnd_name]) field_occs return ((bnd_name, flds): names) | (dL->L bind_loc (PatSynBind _ (PSB { psb_id = (dL->L _ n)}))) <- bind = do bnd_name <- newTopSrcBinder (cL bind_loc n) return ((bnd_name, []): names) | otherwise = return names {- ********************************************************* * * \subsection{Support code to rename types} * * ********************************************************* -} rnFds :: [LHsFunDep GhcPs] -> RnM [LHsFunDep GhcRn] rnFds fds = mapM (wrapLocM rn_fds) fds where rn_fds (tys1, tys2) = do { tys1' <- rnHsTyVars tys1 ; tys2' <- rnHsTyVars tys2 ; return (tys1', tys2') } rnHsTyVars :: [Located RdrName] -> RnM [Located Name] rnHsTyVars tvs = mapM rnHsTyVar tvs rnHsTyVar :: Located RdrName -> RnM (Located Name) rnHsTyVar (dL->L l tyvar) = do tyvar' <- lookupOccRn tyvar return (cL l tyvar') {- ********************************************************* * * findSplice * * ********************************************************* This code marches down the declarations, looking for the first Template Haskell splice. As it does so it a) groups the declarations into a HsGroup b) runs any top-level quasi-quotes -} findSplice :: [LHsDecl GhcPs] -> RnM (HsGroup GhcPs, Maybe (SpliceDecl GhcPs, [LHsDecl GhcPs])) findSplice ds = addl emptyRdrGroup ds addl :: HsGroup GhcPs -> [LHsDecl GhcPs] -> RnM (HsGroup GhcPs, Maybe (SpliceDecl GhcPs, [LHsDecl GhcPs])) -- This stuff reverses the declarations (again) but it doesn't matter addl gp [] = return (gp, Nothing) addl gp ((dL->L l d) : ds) = add gp l d ds add :: HsGroup GhcPs -> SrcSpan -> HsDecl GhcPs -> [LHsDecl GhcPs] -> RnM (HsGroup GhcPs, Maybe (SpliceDecl GhcPs, [LHsDecl GhcPs])) -- #10047: Declaration QuasiQuoters are expanded immediately, without -- causing a group split add gp _ (SpliceD _ (SpliceDecl _ (dL->L _ qq@HsQuasiQuote{}) _)) ds = do { (ds', _) <- rnTopSpliceDecls qq ; addl gp (ds' ++ ds) } add gp loc (SpliceD _ splice@(SpliceDecl _ _ flag)) ds = do { -- We've found a top-level splice. If it is an *implicit* one -- (i.e. a naked top level expression) case flag of ExplicitSplice -> return () ImplicitSplice -> do { th_on <- xoptM LangExt.TemplateHaskell ; unless th_on $ setSrcSpan loc $ failWith badImplicitSplice } ; return (gp, Just (splice, ds)) } where badImplicitSplice = text "Parse error: module header, import declaration" $$ text "or top-level declaration expected." -- The compiler should suggest the above, and not using -- TemplateHaskell since the former suggestion is more -- relevant to the larger base of users. -- See #12146 for discussion. -- Class declarations: pull out the fixity signatures to the top add gp@(HsGroup {hs_tyclds = ts, hs_fixds = fs}) l (TyClD _ d) ds | isClassDecl d = let fsigs = [ cL l f | (dL->L l (FixSig _ f)) <- tcdSigs d ] in addl (gp { hs_tyclds = add_tycld (cL l d) ts, hs_fixds = fsigs ++ fs}) ds | otherwise = addl (gp { hs_tyclds = add_tycld (cL l d) ts }) ds -- Signatures: fixity sigs go a different place than all others add gp@(HsGroup {hs_fixds = ts}) l (SigD _ (FixSig _ f)) ds = addl (gp {hs_fixds = cL l f : ts}) ds -- Standalone kind signatures: added to the TyClGroup add gp@(HsGroup {hs_tyclds = ts}) l (KindSigD _ s) ds = addl (gp {hs_tyclds = add_kisig (cL l s) ts}) ds add gp@(HsGroup {hs_valds = ts}) l (SigD _ d) ds = addl (gp {hs_valds = add_sig (cL l d) ts}) ds -- Value declarations: use add_bind add gp@(HsGroup {hs_valds = ts}) l (ValD _ d) ds = addl (gp { hs_valds = add_bind (cL l d) ts }) ds -- Role annotations: added to the TyClGroup add gp@(HsGroup {hs_tyclds = ts}) l (RoleAnnotD _ d) ds = addl (gp { hs_tyclds = add_role_annot (cL l d) ts }) ds -- NB instance declarations go into TyClGroups. We throw them into the first -- group, just as we do for the TyClD case. The renamer will go on to group -- and order them later. add gp@(HsGroup {hs_tyclds = ts}) l (InstD _ d) ds = addl (gp { hs_tyclds = add_instd (cL l d) ts }) ds -- The rest are routine add gp@(HsGroup {hs_derivds = ts}) l (DerivD _ d) ds = addl (gp { hs_derivds = cL l d : ts }) ds add gp@(HsGroup {hs_defds = ts}) l (DefD _ d) ds = addl (gp { hs_defds = cL l d : ts }) ds add gp@(HsGroup {hs_fords = ts}) l (ForD _ d) ds = addl (gp { hs_fords = cL l d : ts }) ds add gp@(HsGroup {hs_warnds = ts}) l (WarningD _ d) ds = addl (gp { hs_warnds = cL l d : ts }) ds add gp@(HsGroup {hs_annds = ts}) l (AnnD _ d) ds = addl (gp { hs_annds = cL l d : ts }) ds add gp@(HsGroup {hs_ruleds = ts}) l (RuleD _ d) ds = addl (gp { hs_ruleds = cL l d : ts }) ds add gp l (DocD _ d) ds = addl (gp { hs_docs = (cL l d) : (hs_docs gp) }) ds add (HsGroup {}) _ (SpliceD _ (XSpliceDecl nec)) _ = noExtCon nec add (HsGroup {}) _ (XHsDecl nec) _ = noExtCon nec add (XHsGroup nec) _ _ _ = noExtCon nec add_tycld :: LTyClDecl (GhcPass p) -> [TyClGroup (GhcPass p)] -> [TyClGroup (GhcPass p)] add_tycld d [] = [TyClGroup { group_ext = noExtField , group_tyclds = [d] , group_kisigs = [] , group_roles = [] , group_instds = [] } ] add_tycld d (ds@(TyClGroup { group_tyclds = tyclds }):dss) = ds { group_tyclds = d : tyclds } : dss add_tycld _ (XTyClGroup nec: _) = noExtCon nec add_instd :: LInstDecl (GhcPass p) -> [TyClGroup (GhcPass p)] -> [TyClGroup (GhcPass p)] add_instd d [] = [TyClGroup { group_ext = noExtField , group_tyclds = [] , group_kisigs = [] , group_roles = [] , group_instds = [d] } ] add_instd d (ds@(TyClGroup { group_instds = instds }):dss) = ds { group_instds = d : instds } : dss add_instd _ (XTyClGroup nec: _) = noExtCon nec add_role_annot :: LRoleAnnotDecl (GhcPass p) -> [TyClGroup (GhcPass p)] -> [TyClGroup (GhcPass p)] add_role_annot d [] = [TyClGroup { group_ext = noExtField , group_tyclds = [] , group_kisigs = [] , group_roles = [d] , group_instds = [] } ] add_role_annot d (tycls@(TyClGroup { group_roles = roles }) : rest) = tycls { group_roles = d : roles } : rest add_role_annot _ (XTyClGroup nec: _) = noExtCon nec add_kisig :: LStandaloneKindSig (GhcPass p) -> [TyClGroup (GhcPass p)] -> [TyClGroup (GhcPass p)] add_kisig d [] = [TyClGroup { group_ext = noExtField , group_tyclds = [] , group_kisigs = [d] , group_roles = [] , group_instds = [] } ] add_kisig d (tycls@(TyClGroup { group_kisigs = kisigs }) : rest) = tycls { group_kisigs = d : kisigs } : rest add_kisig _ (XTyClGroup nec : _) = noExtCon nec add_bind :: LHsBind a -> HsValBinds a -> HsValBinds a add_bind b (ValBinds x bs sigs) = ValBinds x (bs `snocBag` b) sigs add_bind _ (XValBindsLR {}) = panic "RdrHsSyn:add_bind" add_sig :: LSig (GhcPass a) -> HsValBinds (GhcPass a) -> HsValBinds (GhcPass a) add_sig s (ValBinds x bs sigs) = ValBinds x bs (s:sigs) add_sig _ (XValBindsLR {}) = panic "RdrHsSyn:add_sig"