{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} {-# LANGUAGE CPP #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} module CoreMap( -- * Maps over Core expressions CoreMap, emptyCoreMap, extendCoreMap, lookupCoreMap, foldCoreMap, -- * Maps over 'Type's TypeMap, emptyTypeMap, extendTypeMap, lookupTypeMap, foldTypeMap, LooseTypeMap, -- ** With explicit scoping CmEnv, lookupCME, extendTypeMapWithScope, lookupTypeMapWithScope, mkDeBruijnContext, -- * Maps over 'Maybe' values MaybeMap, -- * Maps over 'List' values ListMap, -- * Maps over 'Literal's LiteralMap, -- * Map for compressing leaves. See Note [Compressed TrieMap] GenMap, -- * 'TrieMap' class TrieMap(..), insertTM, deleteTM, lkDFreeVar, xtDFreeVar, lkDNamed, xtDNamed, (>.>), (|>), (|>>), ) where #include "HsVersions.h" import GhcPrelude import TrieMap import CoreSyn import Coercion import Name import Type import TyCoRep import Var import FastString(FastString) import Util import qualified Data.Map as Map import qualified Data.IntMap as IntMap import VarEnv import NameEnv import Outputable import Control.Monad( (>=>) ) {- This module implements TrieMaps over Core related data structures like CoreExpr or Type. It is built on the Tries from the TrieMap module. The code is very regular and boilerplate-like, but there is some neat handling of *binders*. In effect they are deBruijn numbered on the fly. -} ---------------------- -- Recall that -- Control.Monad.(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> a -> Maybe c -- NB: Be careful about RULES and type families (#5821). So we should make sure -- to specify @Key TypeMapX@ (and not @DeBruijn Type@, the reduced form) -- The CoreMap makes heavy use of GenMap. However the CoreMap Types are not -- known when defining GenMap so we can only specialize them here. {-# SPECIALIZE lkG :: Key TypeMapX -> TypeMapG a -> Maybe a #-} {-# SPECIALIZE lkG :: Key CoercionMapX -> CoercionMapG a -> Maybe a #-} {-# SPECIALIZE lkG :: Key CoreMapX -> CoreMapG a -> Maybe a #-} {-# SPECIALIZE xtG :: Key TypeMapX -> XT a -> TypeMapG a -> TypeMapG a #-} {-# SPECIALIZE xtG :: Key CoercionMapX -> XT a -> CoercionMapG a -> CoercionMapG a #-} {-# SPECIALIZE xtG :: Key CoreMapX -> XT a -> CoreMapG a -> CoreMapG a #-} {-# SPECIALIZE mapG :: (a -> b) -> TypeMapG a -> TypeMapG b #-} {-# SPECIALIZE mapG :: (a -> b) -> CoercionMapG a -> CoercionMapG b #-} {-# SPECIALIZE mapG :: (a -> b) -> CoreMapG a -> CoreMapG b #-} {-# SPECIALIZE fdG :: (a -> b -> b) -> TypeMapG a -> b -> b #-} {-# SPECIALIZE fdG :: (a -> b -> b) -> CoercionMapG a -> b -> b #-} {-# SPECIALIZE fdG :: (a -> b -> b) -> CoreMapG a -> b -> b #-} {- ************************************************************************ * * CoreMap * * ************************************************************************ -} lkDNamed :: NamedThing n => n -> DNameEnv a -> Maybe a lkDNamed n env = lookupDNameEnv env (getName n) xtDNamed :: NamedThing n => n -> XT a -> DNameEnv a -> DNameEnv a xtDNamed tc f m = alterDNameEnv f m (getName tc) {- Note [Binders] ~~~~~~~~~~~~~~ * In general we check binders as late as possible because types are less likely to differ than expression structure. That's why cm_lam :: CoreMapG (TypeMapG a) rather than cm_lam :: TypeMapG (CoreMapG a) * We don't need to look at the type of some binders, notably - the case binder in (Case _ b _ _) - the binders in an alternative because they are totally fixed by the context Note [Empty case alternatives] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * For a key (Case e b ty (alt:alts)) we don't need to look the return type 'ty', because every alternative has that type. * For a key (Case e b ty []) we MUST look at the return type 'ty', because otherwise (Case (error () "urk") _ Int []) would compare equal to (Case (error () "urk") _ Bool []) which is utterly wrong (#6097) We could compare the return type regardless, but the wildly common case is that it's unnecessary, so we have two fields (cm_case and cm_ecase) for the two possibilities. Only cm_ecase looks at the type. See also Note [Empty case alternatives] in CoreSyn. -} -- | @CoreMap a@ is a map from 'CoreExpr' to @a@. If you are a client, this -- is the type you want. newtype CoreMap a = CoreMap (CoreMapG a) instance TrieMap CoreMap where type Key CoreMap = CoreExpr emptyTM = CoreMap emptyTM lookupTM k (CoreMap m) = lookupTM (deBruijnize k) m alterTM k f (CoreMap m) = CoreMap (alterTM (deBruijnize k) f m) foldTM k (CoreMap m) = foldTM k m mapTM f (CoreMap m) = CoreMap (mapTM f m) -- | @CoreMapG a@ is a map from @DeBruijn CoreExpr@ to @a@. The extended -- key makes it suitable for recursive traversal, since it can track binders, -- but it is strictly internal to this module. If you are including a 'CoreMap' -- inside another 'TrieMap', this is the type you want. type CoreMapG = GenMap CoreMapX -- | @CoreMapX a@ is the base map from @DeBruijn CoreExpr@ to @a@, but without -- the 'GenMap' optimization. data CoreMapX a = CM { cm_var :: VarMap a , cm_lit :: LiteralMap a , cm_co :: CoercionMapG a , cm_type :: TypeMapG a , cm_cast :: CoreMapG (CoercionMapG a) , cm_tick :: CoreMapG (TickishMap a) , cm_app :: CoreMapG (CoreMapG a) , cm_lam :: CoreMapG (BndrMap a) -- Note [Binders] , cm_letn :: CoreMapG (CoreMapG (BndrMap a)) , cm_letr :: ListMap CoreMapG (CoreMapG (ListMap BndrMap a)) , cm_case :: CoreMapG (ListMap AltMap a) , cm_ecase :: CoreMapG (TypeMapG a) -- Note [Empty case alternatives] } instance Eq (DeBruijn CoreExpr) where D env1 e1 == D env2 e2 = go e1 e2 where go (Var v1) (Var v2) = case (lookupCME env1 v1, lookupCME env2 v2) of (Just b1, Just b2) -> b1 == b2 (Nothing, Nothing) -> v1 == v2 _ -> False go (Lit lit1) (Lit lit2) = lit1 == lit2 go (Type t1) (Type t2) = D env1 t1 == D env2 t2 go (Coercion co1) (Coercion co2) = D env1 co1 == D env2 co2 go (Cast e1 co1) (Cast e2 co2) = D env1 co1 == D env2 co2 && go e1 e2 go (App f1 a1) (App f2 a2) = go f1 f2 && go a1 a2 -- This seems a bit dodgy, see 'eqTickish' go (Tick n1 e1) (Tick n2 e2) = n1 == n2 && go e1 e2 go (Lam b1 e1) (Lam b2 e2) = D env1 (varType b1) == D env2 (varType b2) && D (extendCME env1 b1) e1 == D (extendCME env2 b2) e2 go (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2) = go r1 r2 && D (extendCME env1 v1) e1 == D (extendCME env2 v2) e2 go (Let (Rec ps1) e1) (Let (Rec ps2) e2) = equalLength ps1 ps2 && D env1' rs1 == D env2' rs2 && D env1' e1 == D env2' e2 where (bs1,rs1) = unzip ps1 (bs2,rs2) = unzip ps2 env1' = extendCMEs env1 bs1 env2' = extendCMEs env2 bs2 go (Case e1 b1 t1 a1) (Case e2 b2 t2 a2) | null a1 -- See Note [Empty case alternatives] = null a2 && go e1 e2 && D env1 t1 == D env2 t2 | otherwise = go e1 e2 && D (extendCME env1 b1) a1 == D (extendCME env2 b2) a2 go _ _ = False emptyE :: CoreMapX a emptyE = CM { cm_var = emptyTM, cm_lit = emptyTM , cm_co = emptyTM, cm_type = emptyTM , cm_cast = emptyTM, cm_app = emptyTM , cm_lam = emptyTM, cm_letn = emptyTM , cm_letr = emptyTM, cm_case = emptyTM , cm_ecase = emptyTM, cm_tick = emptyTM } instance TrieMap CoreMapX where type Key CoreMapX = DeBruijn CoreExpr emptyTM = emptyE lookupTM = lkE alterTM = xtE foldTM = fdE mapTM = mapE -------------------------- mapE :: (a->b) -> CoreMapX a -> CoreMapX b mapE f (CM { cm_var = cvar, cm_lit = clit , cm_co = cco, cm_type = ctype , cm_cast = ccast , cm_app = capp , cm_lam = clam, cm_letn = cletn , cm_letr = cletr, cm_case = ccase , cm_ecase = cecase, cm_tick = ctick }) = CM { cm_var = mapTM f cvar, cm_lit = mapTM f clit , cm_co = mapTM f cco, cm_type = mapTM f ctype , cm_cast = mapTM (mapTM f) ccast, cm_app = mapTM (mapTM f) capp , cm_lam = mapTM (mapTM f) clam, cm_letn = mapTM (mapTM (mapTM f)) cletn , cm_letr = mapTM (mapTM (mapTM f)) cletr, cm_case = mapTM (mapTM f) ccase , cm_ecase = mapTM (mapTM f) cecase, cm_tick = mapTM (mapTM f) ctick } -------------------------- lookupCoreMap :: CoreMap a -> CoreExpr -> Maybe a lookupCoreMap cm e = lookupTM e cm extendCoreMap :: CoreMap a -> CoreExpr -> a -> CoreMap a extendCoreMap m e v = alterTM e (\_ -> Just v) m foldCoreMap :: (a -> b -> b) -> b -> CoreMap a -> b foldCoreMap k z m = foldTM k m z emptyCoreMap :: CoreMap a emptyCoreMap = emptyTM instance Outputable a => Outputable (CoreMap a) where ppr m = text "CoreMap elts" <+> ppr (foldTM (:) m []) ------------------------- fdE :: (a -> b -> b) -> CoreMapX a -> b -> b fdE k m = foldTM k (cm_var m) . foldTM k (cm_lit m) . foldTM k (cm_co m) . foldTM k (cm_type m) . foldTM (foldTM k) (cm_cast m) . foldTM (foldTM k) (cm_tick m) . foldTM (foldTM k) (cm_app m) . foldTM (foldTM k) (cm_lam m) . foldTM (foldTM (foldTM k)) (cm_letn m) . foldTM (foldTM (foldTM k)) (cm_letr m) . foldTM (foldTM k) (cm_case m) . foldTM (foldTM k) (cm_ecase m) -- lkE: lookup in trie for expressions lkE :: DeBruijn CoreExpr -> CoreMapX a -> Maybe a lkE (D env expr) cm = go expr cm where go (Var v) = cm_var >.> lkVar env v go (Lit l) = cm_lit >.> lookupTM l go (Type t) = cm_type >.> lkG (D env t) go (Coercion c) = cm_co >.> lkG (D env c) go (Cast e c) = cm_cast >.> lkG (D env e) >=> lkG (D env c) go (Tick tickish e) = cm_tick >.> lkG (D env e) >=> lkTickish tickish go (App e1 e2) = cm_app >.> lkG (D env e2) >=> lkG (D env e1) go (Lam v e) = cm_lam >.> lkG (D (extendCME env v) e) >=> lkBndr env v go (Let (NonRec b r) e) = cm_letn >.> lkG (D env r) >=> lkG (D (extendCME env b) e) >=> lkBndr env b go (Let (Rec prs) e) = let (bndrs,rhss) = unzip prs env1 = extendCMEs env bndrs in cm_letr >.> lkList (lkG . D env1) rhss >=> lkG (D env1 e) >=> lkList (lkBndr env1) bndrs go (Case e b ty as) -- See Note [Empty case alternatives] | null as = cm_ecase >.> lkG (D env e) >=> lkG (D env ty) | otherwise = cm_case >.> lkG (D env e) >=> lkList (lkA (extendCME env b)) as xtE :: DeBruijn CoreExpr -> XT a -> CoreMapX a -> CoreMapX a xtE (D env (Var v)) f m = m { cm_var = cm_var m |> xtVar env v f } xtE (D env (Type t)) f m = m { cm_type = cm_type m |> xtG (D env t) f } xtE (D env (Coercion c)) f m = m { cm_co = cm_co m |> xtG (D env c) f } xtE (D _ (Lit l)) f m = m { cm_lit = cm_lit m |> alterTM l f } xtE (D env (Cast e c)) f m = m { cm_cast = cm_cast m |> xtG (D env e) |>> xtG (D env c) f } xtE (D env (Tick t e)) f m = m { cm_tick = cm_tick m |> xtG (D env e) |>> xtTickish t f } xtE (D env (App e1 e2)) f m = m { cm_app = cm_app m |> xtG (D env e2) |>> xtG (D env e1) f } xtE (D env (Lam v e)) f m = m { cm_lam = cm_lam m |> xtG (D (extendCME env v) e) |>> xtBndr env v f } xtE (D env (Let (NonRec b r) e)) f m = m { cm_letn = cm_letn m |> xtG (D (extendCME env b) e) |>> xtG (D env r) |>> xtBndr env b f } xtE (D env (Let (Rec prs) e)) f m = m { cm_letr = let (bndrs,rhss) = unzip prs env1 = extendCMEs env bndrs in cm_letr m |> xtList (xtG . D env1) rhss |>> xtG (D env1 e) |>> xtList (xtBndr env1) bndrs f } xtE (D env (Case e b ty as)) f m | null as = m { cm_ecase = cm_ecase m |> xtG (D env e) |>> xtG (D env ty) f } | otherwise = m { cm_case = cm_case m |> xtG (D env e) |>> let env1 = extendCME env b in xtList (xtA env1) as f } -- TODO: this seems a bit dodgy, see 'eqTickish' type TickishMap a = Map.Map (Tickish Id) a lkTickish :: Tickish Id -> TickishMap a -> Maybe a lkTickish = lookupTM xtTickish :: Tickish Id -> XT a -> TickishMap a -> TickishMap a xtTickish = alterTM ------------------------ data AltMap a -- A single alternative = AM { am_deflt :: CoreMapG a , am_data :: DNameEnv (CoreMapG a) , am_lit :: LiteralMap (CoreMapG a) } instance TrieMap AltMap where type Key AltMap = CoreAlt emptyTM = AM { am_deflt = emptyTM , am_data = emptyDNameEnv , am_lit = emptyTM } lookupTM = lkA emptyCME alterTM = xtA emptyCME foldTM = fdA mapTM = mapA instance Eq (DeBruijn CoreAlt) where D env1 a1 == D env2 a2 = go a1 a2 where go (DEFAULT, _, rhs1) (DEFAULT, _, rhs2) = D env1 rhs1 == D env2 rhs2 go (LitAlt lit1, _, rhs1) (LitAlt lit2, _, rhs2) = lit1 == lit2 && D env1 rhs1 == D env2 rhs2 go (DataAlt dc1, bs1, rhs1) (DataAlt dc2, bs2, rhs2) = dc1 == dc2 && D (extendCMEs env1 bs1) rhs1 == D (extendCMEs env2 bs2) rhs2 go _ _ = False mapA :: (a->b) -> AltMap a -> AltMap b mapA f (AM { am_deflt = adeflt, am_data = adata, am_lit = alit }) = AM { am_deflt = mapTM f adeflt , am_data = mapTM (mapTM f) adata , am_lit = mapTM (mapTM f) alit } lkA :: CmEnv -> CoreAlt -> AltMap a -> Maybe a lkA env (DEFAULT, _, rhs) = am_deflt >.> lkG (D env rhs) lkA env (LitAlt lit, _, rhs) = am_lit >.> lookupTM lit >=> lkG (D env rhs) lkA env (DataAlt dc, bs, rhs) = am_data >.> lkDNamed dc >=> lkG (D (extendCMEs env bs) rhs) xtA :: CmEnv -> CoreAlt -> XT a -> AltMap a -> AltMap a xtA env (DEFAULT, _, rhs) f m = m { am_deflt = am_deflt m |> xtG (D env rhs) f } xtA env (LitAlt l, _, rhs) f m = m { am_lit = am_lit m |> alterTM l |>> xtG (D env rhs) f } xtA env (DataAlt d, bs, rhs) f m = m { am_data = am_data m |> xtDNamed d |>> xtG (D (extendCMEs env bs) rhs) f } fdA :: (a -> b -> b) -> AltMap a -> b -> b fdA k m = foldTM k (am_deflt m) . foldTM (foldTM k) (am_data m) . foldTM (foldTM k) (am_lit m) {- ************************************************************************ * * Coercions * * ************************************************************************ -} -- We should really never care about the contents of a coercion. Instead, -- just look up the coercion's type. newtype CoercionMap a = CoercionMap (CoercionMapG a) instance TrieMap CoercionMap where type Key CoercionMap = Coercion emptyTM = CoercionMap emptyTM lookupTM k (CoercionMap m) = lookupTM (deBruijnize k) m alterTM k f (CoercionMap m) = CoercionMap (alterTM (deBruijnize k) f m) foldTM k (CoercionMap m) = foldTM k m mapTM f (CoercionMap m) = CoercionMap (mapTM f m) type CoercionMapG = GenMap CoercionMapX newtype CoercionMapX a = CoercionMapX (TypeMapX a) instance TrieMap CoercionMapX where type Key CoercionMapX = DeBruijn Coercion emptyTM = CoercionMapX emptyTM lookupTM = lkC alterTM = xtC foldTM f (CoercionMapX core_tm) = foldTM f core_tm mapTM f (CoercionMapX core_tm) = CoercionMapX (mapTM f core_tm) instance Eq (DeBruijn Coercion) where D env1 co1 == D env2 co2 = D env1 (coercionType co1) == D env2 (coercionType co2) lkC :: DeBruijn Coercion -> CoercionMapX a -> Maybe a lkC (D env co) (CoercionMapX core_tm) = lkT (D env $ coercionType co) core_tm xtC :: DeBruijn Coercion -> XT a -> CoercionMapX a -> CoercionMapX a xtC (D env co) f (CoercionMapX m) = CoercionMapX (xtT (D env $ coercionType co) f m) {- ************************************************************************ * * Types * * ************************************************************************ -} -- | @TypeMapG a@ is a map from @DeBruijn Type@ to @a@. The extended -- key makes it suitable for recursive traversal, since it can track binders, -- but it is strictly internal to this module. If you are including a 'TypeMap' -- inside another 'TrieMap', this is the type you want. Note that this -- lookup does not do a kind-check. Thus, all keys in this map must have -- the same kind. Also note that this map respects the distinction between -- @Type@ and @Constraint@, despite the fact that they are equivalent type -- synonyms in Core. type TypeMapG = GenMap TypeMapX -- | @TypeMapX a@ is the base map from @DeBruijn Type@ to @a@, but without the -- 'GenMap' optimization. data TypeMapX a = TM { tm_var :: VarMap a , tm_app :: TypeMapG (TypeMapG a) , tm_tycon :: DNameEnv a , tm_forall :: TypeMapG (BndrMap a) -- See Note [Binders] , tm_tylit :: TyLitMap a , tm_coerce :: Maybe a } -- Note that there is no tyconapp case; see Note [Equality on AppTys] in Type -- | Squeeze out any synonyms, and change TyConApps to nested AppTys. Why the -- last one? See Note [Equality on AppTys] in Type -- -- Note, however, that we keep Constraint and Type apart here, despite the fact -- that they are both synonyms of TYPE 'LiftedRep (see #11715). trieMapView :: Type -> Maybe Type trieMapView ty -- First check for TyConApps that need to be expanded to -- AppTy chains. | Just (tc, tys@(_:_)) <- tcSplitTyConApp_maybe ty = Just $ foldl' AppTy (TyConApp tc []) tys -- Then resolve any remaining nullary synonyms. | Just ty' <- tcView ty = Just ty' trieMapView _ = Nothing instance TrieMap TypeMapX where type Key TypeMapX = DeBruijn Type emptyTM = emptyT lookupTM = lkT alterTM = xtT foldTM = fdT mapTM = mapT instance Eq (DeBruijn Type) where env_t@(D env t) == env_t'@(D env' t') | Just new_t <- tcView t = D env new_t == env_t' | Just new_t' <- tcView t' = env_t == D env' new_t' | otherwise = case (t, t') of (CastTy t1 _, _) -> D env t1 == D env t' (_, CastTy t1' _) -> D env t == D env t1' (TyVarTy v, TyVarTy v') -> case (lookupCME env v, lookupCME env' v') of (Just bv, Just bv') -> bv == bv' (Nothing, Nothing) -> v == v' _ -> False -- See Note [Equality on AppTys] in Type (AppTy t1 t2, s) | Just (t1', t2') <- repSplitAppTy_maybe s -> D env t1 == D env' t1' && D env t2 == D env' t2' (s, AppTy t1' t2') | Just (t1, t2) <- repSplitAppTy_maybe s -> D env t1 == D env' t1' && D env t2 == D env' t2' (FunTy _ t1 t2, FunTy _ t1' t2') -> D env t1 == D env' t1' && D env t2 == D env' t2' (TyConApp tc tys, TyConApp tc' tys') -> tc == tc' && D env tys == D env' tys' (LitTy l, LitTy l') -> l == l' (ForAllTy (Bndr tv _) ty, ForAllTy (Bndr tv' _) ty') -> D env (varType tv) == D env' (varType tv') && D (extendCME env tv) ty == D (extendCME env' tv') ty' (CoercionTy {}, CoercionTy {}) -> True _ -> False instance {-# OVERLAPPING #-} Outputable a => Outputable (TypeMapG a) where ppr m = text "TypeMap elts" <+> ppr (foldTM (:) m []) emptyT :: TypeMapX a emptyT = TM { tm_var = emptyTM , tm_app = emptyTM , tm_tycon = emptyDNameEnv , tm_forall = emptyTM , tm_tylit = emptyTyLitMap , tm_coerce = Nothing } mapT :: (a->b) -> TypeMapX a -> TypeMapX b mapT f (TM { tm_var = tvar, tm_app = tapp, tm_tycon = ttycon , tm_forall = tforall, tm_tylit = tlit , tm_coerce = tcoerce }) = TM { tm_var = mapTM f tvar , tm_app = mapTM (mapTM f) tapp , tm_tycon = mapTM f ttycon , tm_forall = mapTM (mapTM f) tforall , tm_tylit = mapTM f tlit , tm_coerce = fmap f tcoerce } ----------------- lkT :: DeBruijn Type -> TypeMapX a -> Maybe a lkT (D env ty) m = go ty m where go ty | Just ty' <- trieMapView ty = go ty' go (TyVarTy v) = tm_var >.> lkVar env v go (AppTy t1 t2) = tm_app >.> lkG (D env t1) >=> lkG (D env t2) go (TyConApp tc []) = tm_tycon >.> lkDNamed tc go ty@(TyConApp _ (_:_)) = pprPanic "lkT TyConApp" (ppr ty) go (LitTy l) = tm_tylit >.> lkTyLit l go (ForAllTy (Bndr tv _) ty) = tm_forall >.> lkG (D (extendCME env tv) ty) >=> lkBndr env tv go ty@(FunTy {}) = pprPanic "lkT FunTy" (ppr ty) go (CastTy t _) = go t go (CoercionTy {}) = tm_coerce ----------------- xtT :: DeBruijn Type -> XT a -> TypeMapX a -> TypeMapX a xtT (D env ty) f m | Just ty' <- trieMapView ty = xtT (D env ty') f m xtT (D env (TyVarTy v)) f m = m { tm_var = tm_var m |> xtVar env v f } xtT (D env (AppTy t1 t2)) f m = m { tm_app = tm_app m |> xtG (D env t1) |>> xtG (D env t2) f } xtT (D _ (TyConApp tc [])) f m = m { tm_tycon = tm_tycon m |> xtDNamed tc f } xtT (D _ (LitTy l)) f m = m { tm_tylit = tm_tylit m |> xtTyLit l f } xtT (D env (CastTy t _)) f m = xtT (D env t) f m xtT (D _ (CoercionTy {})) f m = m { tm_coerce = tm_coerce m |> f } xtT (D env (ForAllTy (Bndr tv _) ty)) f m = m { tm_forall = tm_forall m |> xtG (D (extendCME env tv) ty) |>> xtBndr env tv f } xtT (D _ ty@(TyConApp _ (_:_))) _ _ = pprPanic "xtT TyConApp" (ppr ty) xtT (D _ ty@(FunTy {})) _ _ = pprPanic "xtT FunTy" (ppr ty) fdT :: (a -> b -> b) -> TypeMapX a -> b -> b fdT k m = foldTM k (tm_var m) . foldTM (foldTM k) (tm_app m) . foldTM k (tm_tycon m) . foldTM (foldTM k) (tm_forall m) . foldTyLit k (tm_tylit m) . foldMaybe k (tm_coerce m) ------------------------ data TyLitMap a = TLM { tlm_number :: Map.Map Integer a , tlm_string :: Map.Map FastString a } instance TrieMap TyLitMap where type Key TyLitMap = TyLit emptyTM = emptyTyLitMap lookupTM = lkTyLit alterTM = xtTyLit foldTM = foldTyLit mapTM = mapTyLit emptyTyLitMap :: TyLitMap a emptyTyLitMap = TLM { tlm_number = Map.empty, tlm_string = Map.empty } mapTyLit :: (a->b) -> TyLitMap a -> TyLitMap b mapTyLit f (TLM { tlm_number = tn, tlm_string = ts }) = TLM { tlm_number = Map.map f tn, tlm_string = Map.map f ts } lkTyLit :: TyLit -> TyLitMap a -> Maybe a lkTyLit l = case l of NumTyLit n -> tlm_number >.> Map.lookup n StrTyLit n -> tlm_string >.> Map.lookup n xtTyLit :: TyLit -> XT a -> TyLitMap a -> TyLitMap a xtTyLit l f m = case l of NumTyLit n -> m { tlm_number = tlm_number m |> Map.alter f n } StrTyLit n -> m { tlm_string = tlm_string m |> Map.alter f n } foldTyLit :: (a -> b -> b) -> TyLitMap a -> b -> b foldTyLit l m = flip (Map.foldr l) (tlm_string m) . flip (Map.foldr l) (tlm_number m) ------------------------------------------------- -- | @TypeMap a@ is a map from 'Type' to @a@. If you are a client, this -- is the type you want. The keys in this map may have different kinds. newtype TypeMap a = TypeMap (TypeMapG (TypeMapG a)) lkTT :: DeBruijn Type -> TypeMap a -> Maybe a lkTT (D env ty) (TypeMap m) = lkG (D env $ typeKind ty) m >>= lkG (D env ty) xtTT :: DeBruijn Type -> XT a -> TypeMap a -> TypeMap a xtTT (D env ty) f (TypeMap m) = TypeMap (m |> xtG (D env $ typeKind ty) |>> xtG (D env ty) f) -- Below are some client-oriented functions which operate on 'TypeMap'. instance TrieMap TypeMap where type Key TypeMap = Type emptyTM = TypeMap emptyTM lookupTM k m = lkTT (deBruijnize k) m alterTM k f m = xtTT (deBruijnize k) f m foldTM k (TypeMap m) = foldTM (foldTM k) m mapTM f (TypeMap m) = TypeMap (mapTM (mapTM f) m) foldTypeMap :: (a -> b -> b) -> b -> TypeMap a -> b foldTypeMap k z m = foldTM k m z emptyTypeMap :: TypeMap a emptyTypeMap = emptyTM lookupTypeMap :: TypeMap a -> Type -> Maybe a lookupTypeMap cm t = lookupTM t cm extendTypeMap :: TypeMap a -> Type -> a -> TypeMap a extendTypeMap m t v = alterTM t (const (Just v)) m lookupTypeMapWithScope :: TypeMap a -> CmEnv -> Type -> Maybe a lookupTypeMapWithScope m cm t = lkTT (D cm t) m -- | Extend a 'TypeMap' with a type in the given context. -- @extendTypeMapWithScope m (mkDeBruijnContext [a,b,c]) t v@ is equivalent to -- @extendTypeMap m (forall a b c. t) v@, but allows reuse of the context over -- multiple insertions. extendTypeMapWithScope :: TypeMap a -> CmEnv -> Type -> a -> TypeMap a extendTypeMapWithScope m cm t v = xtTT (D cm t) (const (Just v)) m -- | Construct a deBruijn environment with the given variables in scope. -- e.g. @mkDeBruijnEnv [a,b,c]@ constructs a context @forall a b c.@ mkDeBruijnContext :: [Var] -> CmEnv mkDeBruijnContext = extendCMEs emptyCME -- | A 'LooseTypeMap' doesn't do a kind-check. Thus, when lookup up (t |> g), -- you'll find entries inserted under (t), even if (g) is non-reflexive. newtype LooseTypeMap a = LooseTypeMap (TypeMapG a) instance TrieMap LooseTypeMap where type Key LooseTypeMap = Type emptyTM = LooseTypeMap emptyTM lookupTM k (LooseTypeMap m) = lookupTM (deBruijnize k) m alterTM k f (LooseTypeMap m) = LooseTypeMap (alterTM (deBruijnize k) f m) foldTM f (LooseTypeMap m) = foldTM f m mapTM f (LooseTypeMap m) = LooseTypeMap (mapTM f m) {- ************************************************************************ * * Variables * * ************************************************************************ -} type BoundVar = Int -- Bound variables are deBruijn numbered type BoundVarMap a = IntMap.IntMap a data CmEnv = CME { cme_next :: !BoundVar , cme_env :: VarEnv BoundVar } emptyCME :: CmEnv emptyCME = CME { cme_next = 0, cme_env = emptyVarEnv } extendCME :: CmEnv -> Var -> CmEnv extendCME (CME { cme_next = bv, cme_env = env }) v = CME { cme_next = bv+1, cme_env = extendVarEnv env v bv } extendCMEs :: CmEnv -> [Var] -> CmEnv extendCMEs env vs = foldl' extendCME env vs lookupCME :: CmEnv -> Var -> Maybe BoundVar lookupCME (CME { cme_env = env }) v = lookupVarEnv env v -- | @DeBruijn a@ represents @a@ modulo alpha-renaming. This is achieved -- by equipping the value with a 'CmEnv', which tracks an on-the-fly deBruijn -- numbering. This allows us to define an 'Eq' instance for @DeBruijn a@, even -- if this was not (easily) possible for @a@. Note: we purposely don't -- export the constructor. Make a helper function if you find yourself -- needing it. data DeBruijn a = D CmEnv a -- | Synthesizes a @DeBruijn a@ from an @a@, by assuming that there are no -- bound binders (an empty 'CmEnv'). This is usually what you want if there -- isn't already a 'CmEnv' in scope. deBruijnize :: a -> DeBruijn a deBruijnize = D emptyCME instance Eq (DeBruijn a) => Eq (DeBruijn [a]) where D _ [] == D _ [] = True D env (x:xs) == D env' (x':xs') = D env x == D env' x' && D env xs == D env' xs' _ == _ = False --------- Variable binders ------------- -- | A 'BndrMap' is a 'TypeMapG' which allows us to distinguish between -- binding forms whose binders have different types. For example, -- if we are doing a 'TrieMap' lookup on @\(x :: Int) -> ()@, we should -- not pick up an entry in the 'TrieMap' for @\(x :: Bool) -> ()@: -- we can disambiguate this by matching on the type (or kind, if this -- a binder in a type) of the binder. type BndrMap = TypeMapG -- Note [Binders] -- ~~~~~~~~~~~~~~ -- We need to use 'BndrMap' for 'Coercion', 'CoreExpr' AND 'Type', since all -- of these data types have binding forms. lkBndr :: CmEnv -> Var -> BndrMap a -> Maybe a lkBndr env v m = lkG (D env (varType v)) m xtBndr :: CmEnv -> Var -> XT a -> BndrMap a -> BndrMap a xtBndr env v f = xtG (D env (varType v)) f --------- Variable occurrence ------------- data VarMap a = VM { vm_bvar :: BoundVarMap a -- Bound variable , vm_fvar :: DVarEnv a } -- Free variable instance TrieMap VarMap where type Key VarMap = Var emptyTM = VM { vm_bvar = IntMap.empty, vm_fvar = emptyDVarEnv } lookupTM = lkVar emptyCME alterTM = xtVar emptyCME foldTM = fdVar mapTM = mapVar mapVar :: (a->b) -> VarMap a -> VarMap b mapVar f (VM { vm_bvar = bv, vm_fvar = fv }) = VM { vm_bvar = mapTM f bv, vm_fvar = mapTM f fv } lkVar :: CmEnv -> Var -> VarMap a -> Maybe a lkVar env v | Just bv <- lookupCME env v = vm_bvar >.> lookupTM bv | otherwise = vm_fvar >.> lkDFreeVar v xtVar :: CmEnv -> Var -> XT a -> VarMap a -> VarMap a xtVar env v f m | Just bv <- lookupCME env v = m { vm_bvar = vm_bvar m |> alterTM bv f } | otherwise = m { vm_fvar = vm_fvar m |> xtDFreeVar v f } fdVar :: (a -> b -> b) -> VarMap a -> b -> b fdVar k m = foldTM k (vm_bvar m) . foldTM k (vm_fvar m) lkDFreeVar :: Var -> DVarEnv a -> Maybe a lkDFreeVar var env = lookupDVarEnv env var xtDFreeVar :: Var -> XT a -> DVarEnv a -> DVarEnv a xtDFreeVar v f m = alterDVarEnv f m v