{-# LANGUAGE CPP #-} {-# LANGUAGE LambdaCase #-} #if __GLASGOW_HASKELL__ <= 808 -- GHC 8.10 deprecates this flag, but GHC 8.8 needs it -- emitPrimOp is quite large {-# OPTIONS_GHC -fmax-pmcheck-iterations=4000000 #-} #endif ---------------------------------------------------------------------------- -- -- Stg to C--: primitive operations -- -- (c) The University of Glasgow 2004-2006 -- ----------------------------------------------------------------------------- module GHC.StgToCmm.Prim ( cgOpApp, cgPrimOp, -- internal(ish), used by cgCase to get code for a -- comparison without also turning it into a Bool. shouldInlinePrimOp ) where #include "HsVersions.h" import GhcPrelude hiding ((<*>)) import GHC.StgToCmm.Layout import GHC.StgToCmm.Foreign import GHC.StgToCmm.Env import GHC.StgToCmm.Monad import GHC.StgToCmm.Utils import GHC.StgToCmm.Ticky import GHC.StgToCmm.Heap import GHC.StgToCmm.Prof ( costCentreFrom ) import DynFlags import GHC.Platform import BasicTypes import BlockId import MkGraph import StgSyn import Cmm import Module ( rtsUnitId ) import Type ( Type, tyConAppTyCon ) import TyCon import CLabel import CmmUtils import PrimOp import SMRep import FastString import Outputable import Util import Data.Maybe import Data.Bits ((.&.), bit) import Control.Monad (liftM, when, unless) ------------------------------------------------------------------------ -- Primitive operations and foreign calls ------------------------------------------------------------------------ {- Note [Foreign call results] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ A foreign call always returns an unboxed tuple of results, one of which is the state token. This seems to happen even for pure calls. Even if we returned a single result for pure calls, it'd still be right to wrap it in a singleton unboxed tuple, because the result might be a Haskell closure pointer, we don't want to evaluate it. -} ---------------------------------- cgOpApp :: StgOp -- The op -> [StgArg] -- Arguments -> Type -- Result type (always an unboxed tuple) -> FCode ReturnKind -- Foreign calls cgOpApp (StgFCallOp fcall ty) stg_args res_ty = cgForeignCall fcall ty stg_args res_ty -- Note [Foreign call results] cgOpApp (StgPrimOp primop) args res_ty = do dflags <- getDynFlags cmm_args <- getNonVoidArgAmodes args case emitPrimOp dflags primop cmm_args of PrimopCmmEmit_External -> do -- out-of-line let fun = CmmLit (CmmLabel (mkRtsPrimOpLabel primop)) emitCall (NativeNodeCall, NativeReturn) fun cmm_args PrimopCmmEmit_Raw f -> do exprs <- f res_ty emitReturn exprs PrimopCmmEmit_IntoRegs f -- inline | ReturnsPrim VoidRep <- result_info -> do f [] emitReturn [] | ReturnsPrim rep <- result_info -> do dflags <- getDynFlags res <- newTemp (primRepCmmType dflags rep) f [res] emitReturn [CmmReg (CmmLocal res)] | ReturnsAlg tycon <- result_info, isUnboxedTupleTyCon tycon -> do (regs, _hints) <- newUnboxedTupleRegs res_ty f regs emitReturn (map (CmmReg . CmmLocal) regs) | otherwise -> panic "cgPrimop" where result_info = getPrimOpResultInfo primop cgOpApp (StgPrimCallOp primcall) args _res_ty = do { cmm_args <- getNonVoidArgAmodes args ; let fun = CmmLit (CmmLabel (mkPrimCallLabel primcall)) ; emitCall (NativeNodeCall, NativeReturn) fun cmm_args } -- | Interpret the argument as an unsigned value, assuming the value -- is given in two-complement form in the given width. -- -- Example: @asUnsigned W64 (-1)@ is 18446744073709551615. -- -- This function is used to work around the fact that many array -- primops take Int# arguments, but we interpret them as unsigned -- quantities in the code gen. This means that we have to be careful -- every time we work on e.g. a CmmInt literal that corresponds to the -- array size, as it might contain a negative Integer value if the -- user passed a value larger than 2^(wORD_SIZE_IN_BITS-1) as the Int# -- literal. asUnsigned :: Width -> Integer -> Integer asUnsigned w n = n .&. (bit (widthInBits w) - 1) --------------------------------------------------- cgPrimOp :: [LocalReg] -- where to put the results -> PrimOp -- the op -> [StgArg] -- arguments -> FCode () cgPrimOp results op args = do dflags <- getDynFlags arg_exprs <- getNonVoidArgAmodes args case emitPrimOp dflags op arg_exprs of PrimopCmmEmit_External -> panic "External prim op" PrimopCmmEmit_Raw _ -> panic "caller should handle TagToEnum themselves" PrimopCmmEmit_IntoRegs f -> f results ------------------------------------------------------------------------ -- Emitting code for a primop ------------------------------------------------------------------------ shouldInlinePrimOp :: DynFlags -> PrimOp -> [CmmExpr] -> Bool shouldInlinePrimOp dflags op args = case emitPrimOp dflags op args of PrimopCmmEmit_External -> False PrimopCmmEmit_IntoRegs _ -> True PrimopCmmEmit_Raw _ -> True -- TODO: Several primop implementations (e.g. 'doNewByteArrayOp') use -- ByteOff (or some other fixed width signed type) to represent -- array sizes or indices. This means that these will overflow for -- large enough sizes. -- TODO: Several primops, such as 'copyArray#', only have an inline -- implementation (below) but could possibly have both an inline -- implementation and an out-of-line implementation, just like -- 'newArray#'. This would lower the amount of code generated, -- hopefully without a performance impact (needs to be measured). -- | The big function handling all the primops. -- -- In the simple case, there is just one implementation, and we emit that. -- -- In more complex cases, there is a foreign call (out of line) fallback. This -- might happen e.g. if there's enough static information, such as statically -- know arguments. emitPrimOp :: DynFlags -> PrimOp -- ^ The primop -> [CmmExpr] -- ^ The primop arguments -> PrimopCmmEmit emitPrimOp dflags = \case NewByteArrayOp_Char -> \case [(CmmLit (CmmInt n w))] | asUnsigned w n <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> doNewByteArrayOp res (fromInteger n) _ -> PrimopCmmEmit_External NewArrayOp -> \case [(CmmLit (CmmInt n w)), init] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \[res] -> doNewArrayOp res (arrPtrsRep dflags (fromInteger n)) mkMAP_DIRTY_infoLabel [ (mkIntExpr dflags (fromInteger n), fixedHdrSize dflags + oFFSET_StgMutArrPtrs_ptrs dflags) , (mkIntExpr dflags (nonHdrSizeW (arrPtrsRep dflags (fromInteger n))), fixedHdrSize dflags + oFFSET_StgMutArrPtrs_size dflags) ] (fromInteger n) init _ -> PrimopCmmEmit_External CopyArrayOp -> \case [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] -> opAllDone $ \ [] -> doCopyArrayOp src src_off dst dst_off (fromInteger n) _ -> PrimopCmmEmit_External CopyMutableArrayOp -> \case [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] -> opAllDone $ \ [] -> doCopyMutableArrayOp src src_off dst dst_off (fromInteger n) _ -> PrimopCmmEmit_External CopyArrayArrayOp -> \case [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] -> opAllDone $ \ [] -> doCopyArrayOp src src_off dst dst_off (fromInteger n) _ -> PrimopCmmEmit_External CopyMutableArrayArrayOp -> \case [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] -> opAllDone $ \ [] -> doCopyMutableArrayOp src src_off dst dst_off (fromInteger n) _ -> PrimopCmmEmit_External CloneArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneArray mkMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External CloneMutableArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneArray mkMAP_DIRTY_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External FreezeArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneArray mkMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External ThawArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneArray mkMAP_DIRTY_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External NewSmallArrayOp -> \case [(CmmLit (CmmInt n w)), init] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> doNewArrayOp res (smallArrPtrsRep (fromInteger n)) mkSMAP_DIRTY_infoLabel [ (mkIntExpr dflags (fromInteger n), fixedHdrSize dflags + oFFSET_StgSmallMutArrPtrs_ptrs dflags) ] (fromInteger n) init _ -> PrimopCmmEmit_External CopySmallArrayOp -> \case [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] -> opAllDone $ \ [] -> doCopySmallArrayOp src src_off dst dst_off (fromInteger n) _ -> PrimopCmmEmit_External CopySmallMutableArrayOp -> \case [src, src_off, dst, dst_off, (CmmLit (CmmInt n _))] -> opAllDone $ \ [] -> doCopySmallMutableArrayOp src src_off dst dst_off (fromInteger n) _ -> PrimopCmmEmit_External CloneSmallArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External CloneSmallMutableArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_DIRTY_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External FreezeSmallArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_FROZEN_CLEAN_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External ThawSmallArrayOp -> \case [src, src_off, (CmmLit (CmmInt n w))] | wordsToBytes dflags (asUnsigned w n) <= fromIntegral (maxInlineAllocSize dflags) -> opAllDone $ \ [res] -> emitCloneSmallArray mkSMAP_DIRTY_infoLabel res src src_off (fromInteger n) _ -> PrimopCmmEmit_External -- First we handle various awkward cases specially. ParOp -> \[arg] -> opAllDone $ \[res] -> do -- for now, just implement this in a C function -- later, we might want to inline it. emitCCall [(res,NoHint)] (CmmLit (CmmLabel (mkForeignLabel (fsLit "newSpark") Nothing ForeignLabelInExternalPackage IsFunction))) [(baseExpr, AddrHint), (arg,AddrHint)] SparkOp -> \[arg] -> opAllDone $ \[res] -> do -- returns the value of arg in res. We're going to therefore -- refer to arg twice (once to pass to newSpark(), and once to -- assign to res), so put it in a temporary. tmp <- assignTemp arg tmp2 <- newTemp (bWord dflags) emitCCall [(tmp2,NoHint)] (CmmLit (CmmLabel (mkForeignLabel (fsLit "newSpark") Nothing ForeignLabelInExternalPackage IsFunction))) [(baseExpr, AddrHint), ((CmmReg (CmmLocal tmp)), AddrHint)] emitAssign (CmmLocal res) (CmmReg (CmmLocal tmp)) GetCCSOfOp -> \[arg] -> opAllDone $ \[res] -> do let val | gopt Opt_SccProfilingOn dflags = costCentreFrom dflags (cmmUntag dflags arg) | otherwise = CmmLit (zeroCLit dflags) emitAssign (CmmLocal res) val GetCurrentCCSOp -> \[_] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) cccsExpr MyThreadIdOp -> \[] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) currentTSOExpr ReadMutVarOp -> \[mutv] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) (cmmLoadIndexW dflags mutv (fixedHdrSizeW dflags) (gcWord dflags)) WriteMutVarOp -> \[mutv, var] -> opAllDone $ \res@[] -> do old_val <- CmmLocal <$> newTemp (cmmExprType dflags var) emitAssign old_val (cmmLoadIndexW dflags mutv (fixedHdrSizeW dflags) (gcWord dflags)) -- Without this write barrier, other CPUs may see this pointer before -- the writes for the closure it points to have occurred. -- Note that this also must come after we read the old value to ensure -- that the read of old_val comes before another core's write to the -- MutVar's value. emitPrimCall res MO_WriteBarrier [] emitStore (cmmOffsetW dflags mutv (fixedHdrSizeW dflags)) var emitCCall [{-no results-}] (CmmLit (CmmLabel mkDirty_MUT_VAR_Label)) [(baseExpr, AddrHint), (mutv, AddrHint), (CmmReg old_val, AddrHint)] -- #define sizzeofByteArrayzh(r,a) \ -- r = ((StgArrBytes *)(a))->bytes SizeofByteArrayOp -> \[arg] -> opAllDone $ \[res] -> do emit $ mkAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags)) -- #define sizzeofMutableByteArrayzh(r,a) \ -- r = ((StgArrBytes *)(a))->bytes SizeofMutableByteArrayOp -> emitPrimOp dflags SizeofByteArrayOp -- #define getSizzeofMutableByteArrayzh(r,a) \ -- r = ((StgArrBytes *)(a))->bytes GetSizeofMutableByteArrayOp -> \[arg] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags)) -- #define touchzh(o) /* nothing */ TouchOp -> \args@[_] -> opAllDone $ \res@[] -> do emitPrimCall res MO_Touch args -- #define byteArrayContentszh(r,a) r = BYTE_ARR_CTS(a) ByteArrayContents_Char -> \[arg] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) (cmmOffsetB dflags arg (arrWordsHdrSize dflags)) -- #define stableNameToIntzh(r,s) (r = ((StgStableName *)s)->sn) StableNameToIntOp -> \[arg] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags) (bWord dflags)) ReallyUnsafePtrEqualityOp -> \[arg1, arg2] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) (CmmMachOp (mo_wordEq dflags) [arg1,arg2]) -- #define addrToHValuezh(r,a) r=(P_)a AddrToAnyOp -> \[arg] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) arg -- #define hvalueToAddrzh(r, a) r=(W_)a AnyToAddrOp -> \[arg] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) arg {- Freezing arrays-of-ptrs requires changing an info table, for the benefit of the generational collector. It needs to scavenge mutable objects, even if they are in old space. When they become immutable, they can be removed from this scavenge list. -} -- #define unsafeFreezzeArrayzh(r,a) -- { -- SET_INFO((StgClosure *)a,&stg_MUT_ARR_PTRS_FROZEN_DIRTY_info); -- r = a; -- } UnsafeFreezeArrayOp -> \[arg] -> opAllDone $ \[res] -> do emit $ catAGraphs [ setInfo arg (CmmLit (CmmLabel mkMAP_FROZEN_DIRTY_infoLabel)), mkAssign (CmmLocal res) arg ] UnsafeFreezeArrayArrayOp -> \[arg] -> opAllDone $ \[res] -> do emit $ catAGraphs [ setInfo arg (CmmLit (CmmLabel mkMAP_FROZEN_DIRTY_infoLabel)), mkAssign (CmmLocal res) arg ] UnsafeFreezeSmallArrayOp -> \[arg] -> opAllDone $ \[res] -> do emit $ catAGraphs [ setInfo arg (CmmLit (CmmLabel mkSMAP_FROZEN_DIRTY_infoLabel)), mkAssign (CmmLocal res) arg ] -- #define unsafeFreezzeByteArrayzh(r,a) r=(a) UnsafeFreezeByteArrayOp -> \[arg] -> opAllDone $ \[res] -> do emitAssign (CmmLocal res) arg -- Reading/writing pointer arrays ReadArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix IndexArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix WriteArrayOp -> \[obj, ix, v] -> opAllDone $ \[] -> do doWritePtrArrayOp obj ix v IndexArrayArrayOp_ByteArray -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix IndexArrayArrayOp_ArrayArray -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix ReadArrayArrayOp_ByteArray -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix ReadArrayArrayOp_MutableByteArray -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix ReadArrayArrayOp_ArrayArray -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix ReadArrayArrayOp_MutableArrayArray -> \[obj, ix] -> opAllDone $ \[res] -> do doReadPtrArrayOp res obj ix WriteArrayArrayOp_ByteArray -> \[obj,ix,v] -> opAllDone $ \[] -> do doWritePtrArrayOp obj ix v WriteArrayArrayOp_MutableByteArray -> \[obj,ix,v] -> opAllDone $ \[] -> do doWritePtrArrayOp obj ix v WriteArrayArrayOp_ArrayArray -> \[obj,ix,v] -> opAllDone $ \[] -> do doWritePtrArrayOp obj ix v WriteArrayArrayOp_MutableArrayArray -> \[obj,ix,v] -> opAllDone $ \[] -> do doWritePtrArrayOp obj ix v ReadSmallArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do doReadSmallPtrArrayOp res obj ix IndexSmallArrayOp -> \[obj, ix] -> opAllDone $ \[res] -> do doReadSmallPtrArrayOp res obj ix WriteSmallArrayOp -> \[obj,ix,v] -> opAllDone $ \[] -> do doWriteSmallPtrArrayOp obj ix v -- Getting the size of pointer arrays SizeofArrayOp -> \[arg] -> opAllDone $ \[res] -> do emit $ mkAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags + bytesToWordsRoundUp dflags (oFFSET_StgMutArrPtrs_ptrs dflags)) (bWord dflags)) SizeofMutableArrayOp -> emitPrimOp dflags SizeofArrayOp SizeofArrayArrayOp -> emitPrimOp dflags SizeofArrayOp SizeofMutableArrayArrayOp -> emitPrimOp dflags SizeofArrayOp SizeofSmallArrayOp -> \[arg] -> opAllDone $ \[res] -> do emit $ mkAssign (CmmLocal res) (cmmLoadIndexW dflags arg (fixedHdrSizeW dflags + bytesToWordsRoundUp dflags (oFFSET_StgSmallMutArrPtrs_ptrs dflags)) (bWord dflags)) SizeofSmallMutableArrayOp -> emitPrimOp dflags SizeofSmallArrayOp GetSizeofSmallMutableArrayOp -> emitPrimOp dflags SizeofSmallArrayOp -- IndexXXXoffAddr IndexOffAddrOp_Char -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args IndexOffAddrOp_WideChar -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args IndexOffAddrOp_Int -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args IndexOffAddrOp_Word -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args IndexOffAddrOp_Addr -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args IndexOffAddrOp_Float -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing f32 res args IndexOffAddrOp_Double -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing f64 res args IndexOffAddrOp_StablePtr -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args IndexOffAddrOp_Int8 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_s_8ToWord dflags)) b8 res args IndexOffAddrOp_Int16 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_s_16ToWord dflags)) b16 res args IndexOffAddrOp_Int32 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_s_32ToWord dflags)) b32 res args IndexOffAddrOp_Int64 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing b64 res args IndexOffAddrOp_Word8 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args IndexOffAddrOp_Word16 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_16ToWord dflags)) b16 res args IndexOffAddrOp_Word32 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args IndexOffAddrOp_Word64 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing b64 res args -- ReadXXXoffAddr, which are identical, for our purposes, to IndexXXXoffAddr. ReadOffAddrOp_Char -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args ReadOffAddrOp_WideChar -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args ReadOffAddrOp_Int -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args ReadOffAddrOp_Word -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args ReadOffAddrOp_Addr -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args ReadOffAddrOp_Float -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing f32 res args ReadOffAddrOp_Double -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing f64 res args ReadOffAddrOp_StablePtr -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing (bWord dflags) res args ReadOffAddrOp_Int8 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_s_8ToWord dflags)) b8 res args ReadOffAddrOp_Int16 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_s_16ToWord dflags)) b16 res args ReadOffAddrOp_Int32 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_s_32ToWord dflags)) b32 res args ReadOffAddrOp_Int64 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing b64 res args ReadOffAddrOp_Word8 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_8ToWord dflags)) b8 res args ReadOffAddrOp_Word16 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_16ToWord dflags)) b16 res args ReadOffAddrOp_Word32 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp (Just (mo_u_32ToWord dflags)) b32 res args ReadOffAddrOp_Word64 -> \args -> opAllDone $ \res -> do doIndexOffAddrOp Nothing b64 res args -- IndexXXXArray IndexByteArrayOp_Char -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args IndexByteArrayOp_WideChar -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args IndexByteArrayOp_Int -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args IndexByteArrayOp_Word -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args IndexByteArrayOp_Addr -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args IndexByteArrayOp_Float -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing f32 res args IndexByteArrayOp_Double -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing f64 res args IndexByteArrayOp_StablePtr -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args IndexByteArrayOp_Int8 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_s_8ToWord dflags)) b8 res args IndexByteArrayOp_Int16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_s_16ToWord dflags)) b16 res args IndexByteArrayOp_Int32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_s_32ToWord dflags)) b32 res args IndexByteArrayOp_Int64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing b64 res args IndexByteArrayOp_Word8 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args IndexByteArrayOp_Word16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_16ToWord dflags)) b16 res args IndexByteArrayOp_Word32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args IndexByteArrayOp_Word64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing b64 res args -- ReadXXXArray, identical to IndexXXXArray. ReadByteArrayOp_Char -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args ReadByteArrayOp_WideChar -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args ReadByteArrayOp_Int -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args ReadByteArrayOp_Word -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args ReadByteArrayOp_Addr -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args ReadByteArrayOp_Float -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing f32 res args ReadByteArrayOp_Double -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing f64 res args ReadByteArrayOp_StablePtr -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing (bWord dflags) res args ReadByteArrayOp_Int8 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_s_8ToWord dflags)) b8 res args ReadByteArrayOp_Int16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_s_16ToWord dflags)) b16 res args ReadByteArrayOp_Int32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_s_32ToWord dflags)) b32 res args ReadByteArrayOp_Int64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing b64 res args ReadByteArrayOp_Word8 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_8ToWord dflags)) b8 res args ReadByteArrayOp_Word16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_16ToWord dflags)) b16 res args ReadByteArrayOp_Word32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp (Just (mo_u_32ToWord dflags)) b32 res args ReadByteArrayOp_Word64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOp Nothing b64 res args -- IndexWord8ArrayAsXXX IndexByteArrayOp_Word8AsChar -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_8ToWord dflags)) b8 b8 res args IndexByteArrayOp_Word8AsWideChar -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args IndexByteArrayOp_Word8AsInt -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args IndexByteArrayOp_Word8AsWord -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args IndexByteArrayOp_Word8AsAddr -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args IndexByteArrayOp_Word8AsFloat -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing f32 b8 res args IndexByteArrayOp_Word8AsDouble -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing f64 b8 res args IndexByteArrayOp_Word8AsStablePtr -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args IndexByteArrayOp_Word8AsInt16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_s_16ToWord dflags)) b16 b8 res args IndexByteArrayOp_Word8AsInt32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_s_32ToWord dflags)) b32 b8 res args IndexByteArrayOp_Word8AsInt64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing b64 b8 res args IndexByteArrayOp_Word8AsWord16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_16ToWord dflags)) b16 b8 res args IndexByteArrayOp_Word8AsWord32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args IndexByteArrayOp_Word8AsWord64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing b64 b8 res args -- ReadInt8ArrayAsXXX, identical to IndexInt8ArrayAsXXX ReadByteArrayOp_Word8AsChar -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_8ToWord dflags)) b8 b8 res args ReadByteArrayOp_Word8AsWideChar -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args ReadByteArrayOp_Word8AsInt -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args ReadByteArrayOp_Word8AsWord -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args ReadByteArrayOp_Word8AsAddr -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args ReadByteArrayOp_Word8AsFloat -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing f32 b8 res args ReadByteArrayOp_Word8AsDouble -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing f64 b8 res args ReadByteArrayOp_Word8AsStablePtr -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing (bWord dflags) b8 res args ReadByteArrayOp_Word8AsInt16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_s_16ToWord dflags)) b16 b8 res args ReadByteArrayOp_Word8AsInt32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_s_32ToWord dflags)) b32 b8 res args ReadByteArrayOp_Word8AsInt64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing b64 b8 res args ReadByteArrayOp_Word8AsWord16 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_16ToWord dflags)) b16 b8 res args ReadByteArrayOp_Word8AsWord32 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs (Just (mo_u_32ToWord dflags)) b32 b8 res args ReadByteArrayOp_Word8AsWord64 -> \args -> opAllDone $ \res -> do doIndexByteArrayOpAs Nothing b64 b8 res args -- WriteXXXoffAddr WriteOffAddrOp_Char -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo8 dflags)) b8 res args WriteOffAddrOp_WideChar -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args WriteOffAddrOp_Int -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing (bWord dflags) res args WriteOffAddrOp_Word -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing (bWord dflags) res args WriteOffAddrOp_Addr -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing (bWord dflags) res args WriteOffAddrOp_Float -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing f32 res args WriteOffAddrOp_Double -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing f64 res args WriteOffAddrOp_StablePtr -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing (bWord dflags) res args WriteOffAddrOp_Int8 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo8 dflags)) b8 res args WriteOffAddrOp_Int16 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo16 dflags)) b16 res args WriteOffAddrOp_Int32 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args WriteOffAddrOp_Int64 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing b64 res args WriteOffAddrOp_Word8 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo8 dflags)) b8 res args WriteOffAddrOp_Word16 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo16 dflags)) b16 res args WriteOffAddrOp_Word32 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp (Just (mo_WordTo32 dflags)) b32 res args WriteOffAddrOp_Word64 -> \args -> opAllDone $ \res -> do doWriteOffAddrOp Nothing b64 res args -- WriteXXXArray WriteByteArrayOp_Char -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args WriteByteArrayOp_WideChar -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args WriteByteArrayOp_Int -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing (bWord dflags) res args WriteByteArrayOp_Word -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing (bWord dflags) res args WriteByteArrayOp_Addr -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing (bWord dflags) res args WriteByteArrayOp_Float -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing f32 res args WriteByteArrayOp_Double -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing f64 res args WriteByteArrayOp_StablePtr -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing (bWord dflags) res args WriteByteArrayOp_Int8 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args WriteByteArrayOp_Int16 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b16 res args WriteByteArrayOp_Int32 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args WriteByteArrayOp_Int64 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b64 res args WriteByteArrayOp_Word8 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args WriteByteArrayOp_Word16 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b16 res args WriteByteArrayOp_Word32 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b32 res args WriteByteArrayOp_Word64 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b64 res args -- WriteInt8ArrayAsXXX WriteByteArrayOp_Word8AsChar -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo8 dflags)) b8 res args WriteByteArrayOp_Word8AsWideChar -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args WriteByteArrayOp_Word8AsInt -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args WriteByteArrayOp_Word8AsWord -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args WriteByteArrayOp_Word8AsAddr -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args WriteByteArrayOp_Word8AsFloat -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args WriteByteArrayOp_Word8AsDouble -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args WriteByteArrayOp_Word8AsStablePtr -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args WriteByteArrayOp_Word8AsInt16 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b8 res args WriteByteArrayOp_Word8AsInt32 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args WriteByteArrayOp_Word8AsInt64 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args WriteByteArrayOp_Word8AsWord16 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo16 dflags)) b8 res args WriteByteArrayOp_Word8AsWord32 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp (Just (mo_WordTo32 dflags)) b8 res args WriteByteArrayOp_Word8AsWord64 -> \args -> opAllDone $ \res -> do doWriteByteArrayOp Nothing b8 res args -- Copying and setting byte arrays CopyByteArrayOp -> \[src,src_off,dst,dst_off,n] -> opAllDone $ \[] -> do doCopyByteArrayOp src src_off dst dst_off n CopyMutableByteArrayOp -> \[src,src_off,dst,dst_off,n] -> opAllDone $ \[] -> do doCopyMutableByteArrayOp src src_off dst dst_off n CopyByteArrayToAddrOp -> \[src,src_off,dst,n] -> opAllDone $ \[] -> do doCopyByteArrayToAddrOp src src_off dst n CopyMutableByteArrayToAddrOp -> \[src,src_off,dst,n] -> opAllDone $ \[] -> do doCopyMutableByteArrayToAddrOp src src_off dst n CopyAddrToByteArrayOp -> \[src,dst,dst_off,n] -> opAllDone $ \[] -> do doCopyAddrToByteArrayOp src dst dst_off n SetByteArrayOp -> \[ba,off,len,c] -> opAllDone $ \[] -> do doSetByteArrayOp ba off len c -- Comparing byte arrays CompareByteArraysOp -> \[ba1,ba1_off,ba2,ba2_off,n] -> opAllDone $ \[res] -> do doCompareByteArraysOp res ba1 ba1_off ba2 ba2_off n BSwap16Op -> \[w] -> opAllDone $ \[res] -> do emitBSwapCall res w W16 BSwap32Op -> \[w] -> opAllDone $ \[res] -> do emitBSwapCall res w W32 BSwap64Op -> \[w] -> opAllDone $ \[res] -> do emitBSwapCall res w W64 BSwapOp -> \[w] -> opAllDone $ \[res] -> do emitBSwapCall res w (wordWidth dflags) BRev8Op -> \[w] -> opAllDone $ \[res] -> do emitBRevCall res w W8 BRev16Op -> \[w] -> opAllDone $ \[res] -> do emitBRevCall res w W16 BRev32Op -> \[w] -> opAllDone $ \[res] -> do emitBRevCall res w W32 BRev64Op -> \[w] -> opAllDone $ \[res] -> do emitBRevCall res w W64 BRevOp -> \[w] -> opAllDone $ \[res] -> do emitBRevCall res w (wordWidth dflags) -- Population count PopCnt8Op -> \[w] -> opAllDone $ \[res] -> do emitPopCntCall res w W8 PopCnt16Op -> \[w] -> opAllDone $ \[res] -> do emitPopCntCall res w W16 PopCnt32Op -> \[w] -> opAllDone $ \[res] -> do emitPopCntCall res w W32 PopCnt64Op -> \[w] -> opAllDone $ \[res] -> do emitPopCntCall res w W64 PopCntOp -> \[w] -> opAllDone $ \[res] -> do emitPopCntCall res w (wordWidth dflags) -- Parallel bit deposit Pdep8Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPdepCall res src mask W8 Pdep16Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPdepCall res src mask W16 Pdep32Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPdepCall res src mask W32 Pdep64Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPdepCall res src mask W64 PdepOp -> \[src, mask] -> opAllDone $ \[res] -> do emitPdepCall res src mask (wordWidth dflags) -- Parallel bit extract Pext8Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPextCall res src mask W8 Pext16Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPextCall res src mask W16 Pext32Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPextCall res src mask W32 Pext64Op -> \[src, mask] -> opAllDone $ \[res] -> do emitPextCall res src mask W64 PextOp -> \[src, mask] -> opAllDone $ \[res] -> do emitPextCall res src mask (wordWidth dflags) -- count leading zeros Clz8Op -> \[w] -> opAllDone $ \[res] -> do emitClzCall res w W8 Clz16Op -> \[w] -> opAllDone $ \[res] -> do emitClzCall res w W16 Clz32Op -> \[w] -> opAllDone $ \[res] -> do emitClzCall res w W32 Clz64Op -> \[w] -> opAllDone $ \[res] -> do emitClzCall res w W64 ClzOp -> \[w] -> opAllDone $ \[res] -> do emitClzCall res w (wordWidth dflags) -- count trailing zeros Ctz8Op -> \[w] -> opAllDone $ \[res] -> do emitCtzCall res w W8 Ctz16Op -> \[w] -> opAllDone $ \[res] -> do emitCtzCall res w W16 Ctz32Op -> \[w] -> opAllDone $ \[res] -> do emitCtzCall res w W32 Ctz64Op -> \[w] -> opAllDone $ \[res] -> do emitCtzCall res w W64 CtzOp -> \[w] -> opAllDone $ \[res] -> do emitCtzCall res w (wordWidth dflags) -- Unsigned int to floating point conversions Word2FloatOp -> \[w] -> opAllDone $ \[res] -> do emitPrimCall [res] (MO_UF_Conv W32) [w] Word2DoubleOp -> \[w] -> opAllDone $ \[res] -> do emitPrimCall [res] (MO_UF_Conv W64) [w] -- SIMD primops (VecBroadcastOp vcat n w) -> \[e] -> opAllDone $ \[res] -> do checkVecCompatibility dflags vcat n w doVecPackOp (vecElemInjectCast dflags vcat w) ty zeros (replicate n e) res where zeros :: CmmExpr zeros = CmmLit $ CmmVec (replicate n zero) zero :: CmmLit zero = case vcat of IntVec -> CmmInt 0 w WordVec -> CmmInt 0 w FloatVec -> CmmFloat 0 w ty :: CmmType ty = vecVmmType vcat n w (VecPackOp vcat n w) -> \es -> opAllDone $ \[res] -> do checkVecCompatibility dflags vcat n w when (es `lengthIsNot` n) $ panic "emitPrimOp: VecPackOp has wrong number of arguments" doVecPackOp (vecElemInjectCast dflags vcat w) ty zeros es res where zeros :: CmmExpr zeros = CmmLit $ CmmVec (replicate n zero) zero :: CmmLit zero = case vcat of IntVec -> CmmInt 0 w WordVec -> CmmInt 0 w FloatVec -> CmmFloat 0 w ty :: CmmType ty = vecVmmType vcat n w (VecUnpackOp vcat n w) -> \[arg] -> opAllDone $ \res -> do checkVecCompatibility dflags vcat n w when (res `lengthIsNot` n) $ panic "emitPrimOp: VecUnpackOp has wrong number of results" doVecUnpackOp (vecElemProjectCast dflags vcat w) ty arg res where ty :: CmmType ty = vecVmmType vcat n w (VecInsertOp vcat n w) -> \[v,e,i] -> opAllDone $ \[res] -> do checkVecCompatibility dflags vcat n w doVecInsertOp (vecElemInjectCast dflags vcat w) ty v e i res where ty :: CmmType ty = vecVmmType vcat n w (VecIndexByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexByteArrayOp Nothing ty res0 args where ty :: CmmType ty = vecVmmType vcat n w (VecReadByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexByteArrayOp Nothing ty res0 args where ty :: CmmType ty = vecVmmType vcat n w (VecWriteByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doWriteByteArrayOp Nothing ty res0 args where ty :: CmmType ty = vecVmmType vcat n w (VecIndexOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexOffAddrOp Nothing ty res0 args where ty :: CmmType ty = vecVmmType vcat n w (VecReadOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexOffAddrOp Nothing ty res0 args where ty :: CmmType ty = vecVmmType vcat n w (VecWriteOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doWriteOffAddrOp Nothing ty res0 args where ty :: CmmType ty = vecVmmType vcat n w (VecIndexScalarByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexByteArrayOpAs Nothing vecty ty res0 args where vecty :: CmmType vecty = vecVmmType vcat n w ty :: CmmType ty = vecCmmCat vcat w (VecReadScalarByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexByteArrayOpAs Nothing vecty ty res0 args where vecty :: CmmType vecty = vecVmmType vcat n w ty :: CmmType ty = vecCmmCat vcat w (VecWriteScalarByteArrayOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doWriteByteArrayOp Nothing ty res0 args where ty :: CmmType ty = vecCmmCat vcat w (VecIndexScalarOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexOffAddrOpAs Nothing vecty ty res0 args where vecty :: CmmType vecty = vecVmmType vcat n w ty :: CmmType ty = vecCmmCat vcat w (VecReadScalarOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doIndexOffAddrOpAs Nothing vecty ty res0 args where vecty :: CmmType vecty = vecVmmType vcat n w ty :: CmmType ty = vecCmmCat vcat w (VecWriteScalarOffAddrOp vcat n w) -> \args -> opAllDone $ \res0 -> do checkVecCompatibility dflags vcat n w doWriteOffAddrOp Nothing ty res0 args where ty :: CmmType ty = vecCmmCat vcat w -- Prefetch PrefetchByteArrayOp3 -> \args -> opAllDone $ \[] -> do doPrefetchByteArrayOp 3 args PrefetchMutableByteArrayOp3 -> \args -> opAllDone $ \[] -> do doPrefetchMutableByteArrayOp 3 args PrefetchAddrOp3 -> \args -> opAllDone $ \[] -> do doPrefetchAddrOp 3 args PrefetchValueOp3 -> \args -> opAllDone $ \[] -> do doPrefetchValueOp 3 args PrefetchByteArrayOp2 -> \args -> opAllDone $ \[] -> do doPrefetchByteArrayOp 2 args PrefetchMutableByteArrayOp2 -> \args -> opAllDone $ \[] -> do doPrefetchMutableByteArrayOp 2 args PrefetchAddrOp2 -> \args -> opAllDone $ \[] -> do doPrefetchAddrOp 2 args PrefetchValueOp2 -> \args -> opAllDone $ \[] -> do doPrefetchValueOp 2 args PrefetchByteArrayOp1 -> \args -> opAllDone $ \[] -> do doPrefetchByteArrayOp 1 args PrefetchMutableByteArrayOp1 -> \args -> opAllDone $ \[] -> do doPrefetchMutableByteArrayOp 1 args PrefetchAddrOp1 -> \args -> opAllDone $ \[] -> do doPrefetchAddrOp 1 args PrefetchValueOp1 -> \args -> opAllDone $ \[] -> do doPrefetchValueOp 1 args PrefetchByteArrayOp0 -> \args -> opAllDone $ \[] -> do doPrefetchByteArrayOp 0 args PrefetchMutableByteArrayOp0 -> \args -> opAllDone $ \[] -> do doPrefetchMutableByteArrayOp 0 args PrefetchAddrOp0 -> \args -> opAllDone $ \[] -> do doPrefetchAddrOp 0 args PrefetchValueOp0 -> \args -> opAllDone $ \[] -> do doPrefetchValueOp 0 args -- Atomic read-modify-write FetchAddByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do doAtomicRMW res AMO_Add mba ix (bWord dflags) n FetchSubByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do doAtomicRMW res AMO_Sub mba ix (bWord dflags) n FetchAndByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do doAtomicRMW res AMO_And mba ix (bWord dflags) n FetchNandByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do doAtomicRMW res AMO_Nand mba ix (bWord dflags) n FetchOrByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do doAtomicRMW res AMO_Or mba ix (bWord dflags) n FetchXorByteArrayOp_Int -> \[mba, ix, n] -> opAllDone $ \[res] -> do doAtomicRMW res AMO_Xor mba ix (bWord dflags) n AtomicReadByteArrayOp_Int -> \[mba, ix] -> opAllDone $ \[res] -> do doAtomicReadByteArray res mba ix (bWord dflags) AtomicWriteByteArrayOp_Int -> \[mba, ix, val] -> opAllDone $ \[] -> do doAtomicWriteByteArray mba ix (bWord dflags) val CasByteArrayOp_Int -> \[mba, ix, old, new] -> opAllDone $ \[res] -> do doCasByteArray res mba ix (bWord dflags) old new -- The rest just translate straightforwardly Int2WordOp -> \args -> opNop args Word2IntOp -> \args -> opNop args Int2AddrOp -> \args -> opNop args Addr2IntOp -> \args -> opNop args ChrOp -> \args -> opNop args -- Int# and Char# are rep'd the same OrdOp -> \args -> opNop args Narrow8IntOp -> \args -> opNarrow dflags args (MO_SS_Conv, W8) Narrow16IntOp -> \args -> opNarrow dflags args (MO_SS_Conv, W16) Narrow32IntOp -> \args -> opNarrow dflags args (MO_SS_Conv, W32) Narrow8WordOp -> \args -> opNarrow dflags args (MO_UU_Conv, W8) Narrow16WordOp -> \args -> opNarrow dflags args (MO_UU_Conv, W16) Narrow32WordOp -> \args -> opNarrow dflags args (MO_UU_Conv, W32) DoublePowerOp -> \args -> opCallish args MO_F64_Pwr DoubleSinOp -> \args -> opCallish args MO_F64_Sin DoubleCosOp -> \args -> opCallish args MO_F64_Cos DoubleTanOp -> \args -> opCallish args MO_F64_Tan DoubleSinhOp -> \args -> opCallish args MO_F64_Sinh DoubleCoshOp -> \args -> opCallish args MO_F64_Cosh DoubleTanhOp -> \args -> opCallish args MO_F64_Tanh DoubleAsinOp -> \args -> opCallish args MO_F64_Asin DoubleAcosOp -> \args -> opCallish args MO_F64_Acos DoubleAtanOp -> \args -> opCallish args MO_F64_Atan DoubleAsinhOp -> \args -> opCallish args MO_F64_Asinh DoubleAcoshOp -> \args -> opCallish args MO_F64_Acosh DoubleAtanhOp -> \args -> opCallish args MO_F64_Atanh DoubleLogOp -> \args -> opCallish args MO_F64_Log DoubleLog1POp -> \args -> opCallish args MO_F64_Log1P DoubleExpOp -> \args -> opCallish args MO_F64_Exp DoubleExpM1Op -> \args -> opCallish args MO_F64_ExpM1 DoubleSqrtOp -> \args -> opCallish args MO_F64_Sqrt FloatPowerOp -> \args -> opCallish args MO_F32_Pwr FloatSinOp -> \args -> opCallish args MO_F32_Sin FloatCosOp -> \args -> opCallish args MO_F32_Cos FloatTanOp -> \args -> opCallish args MO_F32_Tan FloatSinhOp -> \args -> opCallish args MO_F32_Sinh FloatCoshOp -> \args -> opCallish args MO_F32_Cosh FloatTanhOp -> \args -> opCallish args MO_F32_Tanh FloatAsinOp -> \args -> opCallish args MO_F32_Asin FloatAcosOp -> \args -> opCallish args MO_F32_Acos FloatAtanOp -> \args -> opCallish args MO_F32_Atan FloatAsinhOp -> \args -> opCallish args MO_F32_Asinh FloatAcoshOp -> \args -> opCallish args MO_F32_Acosh FloatAtanhOp -> \args -> opCallish args MO_F32_Atanh FloatLogOp -> \args -> opCallish args MO_F32_Log FloatLog1POp -> \args -> opCallish args MO_F32_Log1P FloatExpOp -> \args -> opCallish args MO_F32_Exp FloatExpM1Op -> \args -> opCallish args MO_F32_ExpM1 FloatSqrtOp -> \args -> opCallish args MO_F32_Sqrt -- Native word signless ops IntAddOp -> \args -> opTranslate args (mo_wordAdd dflags) IntSubOp -> \args -> opTranslate args (mo_wordSub dflags) WordAddOp -> \args -> opTranslate args (mo_wordAdd dflags) WordSubOp -> \args -> opTranslate args (mo_wordSub dflags) AddrAddOp -> \args -> opTranslate args (mo_wordAdd dflags) AddrSubOp -> \args -> opTranslate args (mo_wordSub dflags) IntEqOp -> \args -> opTranslate args (mo_wordEq dflags) IntNeOp -> \args -> opTranslate args (mo_wordNe dflags) WordEqOp -> \args -> opTranslate args (mo_wordEq dflags) WordNeOp -> \args -> opTranslate args (mo_wordNe dflags) AddrEqOp -> \args -> opTranslate args (mo_wordEq dflags) AddrNeOp -> \args -> opTranslate args (mo_wordNe dflags) AndOp -> \args -> opTranslate args (mo_wordAnd dflags) OrOp -> \args -> opTranslate args (mo_wordOr dflags) XorOp -> \args -> opTranslate args (mo_wordXor dflags) NotOp -> \args -> opTranslate args (mo_wordNot dflags) SllOp -> \args -> opTranslate args (mo_wordShl dflags) SrlOp -> \args -> opTranslate args (mo_wordUShr dflags) AddrRemOp -> \args -> opTranslate args (mo_wordURem dflags) -- Native word signed ops IntMulOp -> \args -> opTranslate args (mo_wordMul dflags) IntMulMayOfloOp -> \args -> opTranslate args (MO_S_MulMayOflo (wordWidth dflags)) IntQuotOp -> \args -> opTranslate args (mo_wordSQuot dflags) IntRemOp -> \args -> opTranslate args (mo_wordSRem dflags) IntNegOp -> \args -> opTranslate args (mo_wordSNeg dflags) IntGeOp -> \args -> opTranslate args (mo_wordSGe dflags) IntLeOp -> \args -> opTranslate args (mo_wordSLe dflags) IntGtOp -> \args -> opTranslate args (mo_wordSGt dflags) IntLtOp -> \args -> opTranslate args (mo_wordSLt dflags) AndIOp -> \args -> opTranslate args (mo_wordAnd dflags) OrIOp -> \args -> opTranslate args (mo_wordOr dflags) XorIOp -> \args -> opTranslate args (mo_wordXor dflags) NotIOp -> \args -> opTranslate args (mo_wordNot dflags) ISllOp -> \args -> opTranslate args (mo_wordShl dflags) ISraOp -> \args -> opTranslate args (mo_wordSShr dflags) ISrlOp -> \args -> opTranslate args (mo_wordUShr dflags) -- Native word unsigned ops WordGeOp -> \args -> opTranslate args (mo_wordUGe dflags) WordLeOp -> \args -> opTranslate args (mo_wordULe dflags) WordGtOp -> \args -> opTranslate args (mo_wordUGt dflags) WordLtOp -> \args -> opTranslate args (mo_wordULt dflags) WordMulOp -> \args -> opTranslate args (mo_wordMul dflags) WordQuotOp -> \args -> opTranslate args (mo_wordUQuot dflags) WordRemOp -> \args -> opTranslate args (mo_wordURem dflags) AddrGeOp -> \args -> opTranslate args (mo_wordUGe dflags) AddrLeOp -> \args -> opTranslate args (mo_wordULe dflags) AddrGtOp -> \args -> opTranslate args (mo_wordUGt dflags) AddrLtOp -> \args -> opTranslate args (mo_wordULt dflags) -- Int8# signed ops Int8Extend -> \args -> opTranslate args (MO_SS_Conv W8 (wordWidth dflags)) Int8Narrow -> \args -> opTranslate args (MO_SS_Conv (wordWidth dflags) W8) Int8NegOp -> \args -> opTranslate args (MO_S_Neg W8) Int8AddOp -> \args -> opTranslate args (MO_Add W8) Int8SubOp -> \args -> opTranslate args (MO_Sub W8) Int8MulOp -> \args -> opTranslate args (MO_Mul W8) Int8QuotOp -> \args -> opTranslate args (MO_S_Quot W8) Int8RemOp -> \args -> opTranslate args (MO_S_Rem W8) Int8EqOp -> \args -> opTranslate args (MO_Eq W8) Int8GeOp -> \args -> opTranslate args (MO_S_Ge W8) Int8GtOp -> \args -> opTranslate args (MO_S_Gt W8) Int8LeOp -> \args -> opTranslate args (MO_S_Le W8) Int8LtOp -> \args -> opTranslate args (MO_S_Lt W8) Int8NeOp -> \args -> opTranslate args (MO_Ne W8) -- Word8# unsigned ops Word8Extend -> \args -> opTranslate args (MO_UU_Conv W8 (wordWidth dflags)) Word8Narrow -> \args -> opTranslate args (MO_UU_Conv (wordWidth dflags) W8) Word8NotOp -> \args -> opTranslate args (MO_Not W8) Word8AddOp -> \args -> opTranslate args (MO_Add W8) Word8SubOp -> \args -> opTranslate args (MO_Sub W8) Word8MulOp -> \args -> opTranslate args (MO_Mul W8) Word8QuotOp -> \args -> opTranslate args (MO_U_Quot W8) Word8RemOp -> \args -> opTranslate args (MO_U_Rem W8) Word8EqOp -> \args -> opTranslate args (MO_Eq W8) Word8GeOp -> \args -> opTranslate args (MO_U_Ge W8) Word8GtOp -> \args -> opTranslate args (MO_U_Gt W8) Word8LeOp -> \args -> opTranslate args (MO_U_Le W8) Word8LtOp -> \args -> opTranslate args (MO_U_Lt W8) Word8NeOp -> \args -> opTranslate args (MO_Ne W8) -- Int16# signed ops Int16Extend -> \args -> opTranslate args (MO_SS_Conv W16 (wordWidth dflags)) Int16Narrow -> \args -> opTranslate args (MO_SS_Conv (wordWidth dflags) W16) Int16NegOp -> \args -> opTranslate args (MO_S_Neg W16) Int16AddOp -> \args -> opTranslate args (MO_Add W16) Int16SubOp -> \args -> opTranslate args (MO_Sub W16) Int16MulOp -> \args -> opTranslate args (MO_Mul W16) Int16QuotOp -> \args -> opTranslate args (MO_S_Quot W16) Int16RemOp -> \args -> opTranslate args (MO_S_Rem W16) Int16EqOp -> \args -> opTranslate args (MO_Eq W16) Int16GeOp -> \args -> opTranslate args (MO_S_Ge W16) Int16GtOp -> \args -> opTranslate args (MO_S_Gt W16) Int16LeOp -> \args -> opTranslate args (MO_S_Le W16) Int16LtOp -> \args -> opTranslate args (MO_S_Lt W16) Int16NeOp -> \args -> opTranslate args (MO_Ne W16) -- Word16# unsigned ops Word16Extend -> \args -> opTranslate args (MO_UU_Conv W16 (wordWidth dflags)) Word16Narrow -> \args -> opTranslate args (MO_UU_Conv (wordWidth dflags) W16) Word16NotOp -> \args -> opTranslate args (MO_Not W16) Word16AddOp -> \args -> opTranslate args (MO_Add W16) Word16SubOp -> \args -> opTranslate args (MO_Sub W16) Word16MulOp -> \args -> opTranslate args (MO_Mul W16) Word16QuotOp -> \args -> opTranslate args (MO_U_Quot W16) Word16RemOp -> \args -> opTranslate args (MO_U_Rem W16) Word16EqOp -> \args -> opTranslate args (MO_Eq W16) Word16GeOp -> \args -> opTranslate args (MO_U_Ge W16) Word16GtOp -> \args -> opTranslate args (MO_U_Gt W16) Word16LeOp -> \args -> opTranslate args (MO_U_Le W16) Word16LtOp -> \args -> opTranslate args (MO_U_Lt W16) Word16NeOp -> \args -> opTranslate args (MO_Ne W16) -- Char# ops CharEqOp -> \args -> opTranslate args (MO_Eq (wordWidth dflags)) CharNeOp -> \args -> opTranslate args (MO_Ne (wordWidth dflags)) CharGeOp -> \args -> opTranslate args (MO_U_Ge (wordWidth dflags)) CharLeOp -> \args -> opTranslate args (MO_U_Le (wordWidth dflags)) CharGtOp -> \args -> opTranslate args (MO_U_Gt (wordWidth dflags)) CharLtOp -> \args -> opTranslate args (MO_U_Lt (wordWidth dflags)) -- Double ops DoubleEqOp -> \args -> opTranslate args (MO_F_Eq W64) DoubleNeOp -> \args -> opTranslate args (MO_F_Ne W64) DoubleGeOp -> \args -> opTranslate args (MO_F_Ge W64) DoubleLeOp -> \args -> opTranslate args (MO_F_Le W64) DoubleGtOp -> \args -> opTranslate args (MO_F_Gt W64) DoubleLtOp -> \args -> opTranslate args (MO_F_Lt W64) DoubleAddOp -> \args -> opTranslate args (MO_F_Add W64) DoubleSubOp -> \args -> opTranslate args (MO_F_Sub W64) DoubleMulOp -> \args -> opTranslate args (MO_F_Mul W64) DoubleDivOp -> \args -> opTranslate args (MO_F_Quot W64) DoubleNegOp -> \args -> opTranslate args (MO_F_Neg W64) -- Float ops FloatEqOp -> \args -> opTranslate args (MO_F_Eq W32) FloatNeOp -> \args -> opTranslate args (MO_F_Ne W32) FloatGeOp -> \args -> opTranslate args (MO_F_Ge W32) FloatLeOp -> \args -> opTranslate args (MO_F_Le W32) FloatGtOp -> \args -> opTranslate args (MO_F_Gt W32) FloatLtOp -> \args -> opTranslate args (MO_F_Lt W32) FloatAddOp -> \args -> opTranslate args (MO_F_Add W32) FloatSubOp -> \args -> opTranslate args (MO_F_Sub W32) FloatMulOp -> \args -> opTranslate args (MO_F_Mul W32) FloatDivOp -> \args -> opTranslate args (MO_F_Quot W32) FloatNegOp -> \args -> opTranslate args (MO_F_Neg W32) -- Vector ops (VecAddOp FloatVec n w) -> \args -> opTranslate args (MO_VF_Add n w) (VecSubOp FloatVec n w) -> \args -> opTranslate args (MO_VF_Sub n w) (VecMulOp FloatVec n w) -> \args -> opTranslate args (MO_VF_Mul n w) (VecDivOp FloatVec n w) -> \args -> opTranslate args (MO_VF_Quot n w) (VecQuotOp FloatVec _ _) -> \_ -> panic "unsupported primop" (VecRemOp FloatVec _ _) -> \_ -> panic "unsupported primop" (VecNegOp FloatVec n w) -> \args -> opTranslate args (MO_VF_Neg n w) (VecAddOp IntVec n w) -> \args -> opTranslate args (MO_V_Add n w) (VecSubOp IntVec n w) -> \args -> opTranslate args (MO_V_Sub n w) (VecMulOp IntVec n w) -> \args -> opTranslate args (MO_V_Mul n w) (VecDivOp IntVec _ _) -> \_ -> panic "unsupported primop" (VecQuotOp IntVec n w) -> \args -> opTranslate args (MO_VS_Quot n w) (VecRemOp IntVec n w) -> \args -> opTranslate args (MO_VS_Rem n w) (VecNegOp IntVec n w) -> \args -> opTranslate args (MO_VS_Neg n w) (VecAddOp WordVec n w) -> \args -> opTranslate args (MO_V_Add n w) (VecSubOp WordVec n w) -> \args -> opTranslate args (MO_V_Sub n w) (VecMulOp WordVec n w) -> \args -> opTranslate args (MO_V_Mul n w) (VecDivOp WordVec _ _) -> \_ -> panic "unsupported primop" (VecQuotOp WordVec n w) -> \args -> opTranslate args (MO_VU_Quot n w) (VecRemOp WordVec n w) -> \args -> opTranslate args (MO_VU_Rem n w) (VecNegOp WordVec _ _) -> \_ -> panic "unsupported primop" -- Conversions Int2DoubleOp -> \args -> opTranslate args (MO_SF_Conv (wordWidth dflags) W64) Double2IntOp -> \args -> opTranslate args (MO_FS_Conv W64 (wordWidth dflags)) Int2FloatOp -> \args -> opTranslate args (MO_SF_Conv (wordWidth dflags) W32) Float2IntOp -> \args -> opTranslate args (MO_FS_Conv W32 (wordWidth dflags)) Float2DoubleOp -> \args -> opTranslate args (MO_FF_Conv W32 W64) Double2FloatOp -> \args -> opTranslate args (MO_FF_Conv W64 W32) -- Word comparisons masquerading as more exotic things. SameMutVarOp -> \args -> opTranslate args (mo_wordEq dflags) SameMVarOp -> \args -> opTranslate args (mo_wordEq dflags) SameMutableArrayOp -> \args -> opTranslate args (mo_wordEq dflags) SameMutableByteArrayOp -> \args -> opTranslate args (mo_wordEq dflags) SameMutableArrayArrayOp -> \args -> opTranslate args (mo_wordEq dflags) SameSmallMutableArrayOp -> \args -> opTranslate args (mo_wordEq dflags) SameTVarOp -> \args -> opTranslate args (mo_wordEq dflags) EqStablePtrOp -> \args -> opTranslate args (mo_wordEq dflags) -- See Note [Comparing stable names] EqStableNameOp -> \args -> opTranslate args (mo_wordEq dflags) IntQuotRemOp -> \args -> opCallishHandledLater args $ if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args) then Left (MO_S_QuotRem (wordWidth dflags)) else Right (genericIntQuotRemOp (wordWidth dflags)) Int8QuotRemOp -> \args -> opCallishHandledLater args $ if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args) then Left (MO_S_QuotRem W8) else Right (genericIntQuotRemOp W8) Int16QuotRemOp -> \args -> opCallishHandledLater args $ if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args) then Left (MO_S_QuotRem W16) else Right (genericIntQuotRemOp W16) WordQuotRemOp -> \args -> opCallishHandledLater args $ if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args) then Left (MO_U_QuotRem (wordWidth dflags)) else Right (genericWordQuotRemOp (wordWidth dflags)) WordQuotRem2Op -> \args -> opCallishHandledLater args $ if (ncg && (x86ish || ppc)) || llvm then Left (MO_U_QuotRem2 (wordWidth dflags)) else Right (genericWordQuotRem2Op dflags) Word8QuotRemOp -> \args -> opCallishHandledLater args $ if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args) then Left (MO_U_QuotRem W8) else Right (genericWordQuotRemOp W8) Word16QuotRemOp -> \args -> opCallishHandledLater args $ if ncg && (x86ish || ppc) && not (quotRemCanBeOptimized args) then Left (MO_U_QuotRem W16) else Right (genericWordQuotRemOp W16) WordAdd2Op -> \args -> opCallishHandledLater args $ if (ncg && (x86ish || ppc)) || llvm then Left (MO_Add2 (wordWidth dflags)) else Right genericWordAdd2Op WordAddCOp -> \args -> opCallishHandledLater args $ if (ncg && (x86ish || ppc)) || llvm then Left (MO_AddWordC (wordWidth dflags)) else Right genericWordAddCOp WordSubCOp -> \args -> opCallishHandledLater args $ if (ncg && (x86ish || ppc)) || llvm then Left (MO_SubWordC (wordWidth dflags)) else Right genericWordSubCOp IntAddCOp -> \args -> opCallishHandledLater args $ if (ncg && (x86ish || ppc)) || llvm then Left (MO_AddIntC (wordWidth dflags)) else Right genericIntAddCOp IntSubCOp -> \args -> opCallishHandledLater args $ if (ncg && (x86ish || ppc)) || llvm then Left (MO_SubIntC (wordWidth dflags)) else Right genericIntSubCOp WordMul2Op -> \args -> opCallishHandledLater args $ if ncg && (x86ish || ppc) || llvm then Left (MO_U_Mul2 (wordWidth dflags)) else Right genericWordMul2Op FloatFabsOp -> \args -> opCallishHandledLater args $ if (ncg && x86ish || ppc) || llvm then Left MO_F32_Fabs else Right $ genericFabsOp W32 DoubleFabsOp -> \args -> opCallishHandledLater args $ if (ncg && x86ish || ppc) || llvm then Left MO_F64_Fabs else Right $ genericFabsOp W64 -- tagToEnum# is special: we need to pull the constructor -- out of the table, and perform an appropriate return. TagToEnumOp -> \[amode] -> PrimopCmmEmit_Raw $ \res_ty -> do -- If you're reading this code in the attempt to figure -- out why the compiler panic'ed here, it is probably because -- you used tagToEnum# in a non-monomorphic setting, e.g., -- intToTg :: Enum a => Int -> a ; intToTg (I# x#) = tagToEnum# x# -- That won't work. let tycon = tyConAppTyCon res_ty MASSERT(isEnumerationTyCon tycon) dflags <- getDynFlags pure [tagToClosure dflags tycon amode] -- Out of line primops. -- TODO compiler need not know about these UnsafeThawArrayOp -> alwaysExternal CasArrayOp -> alwaysExternal UnsafeThawSmallArrayOp -> alwaysExternal CasSmallArrayOp -> alwaysExternal NewPinnedByteArrayOp_Char -> alwaysExternal NewAlignedPinnedByteArrayOp_Char -> alwaysExternal MutableByteArrayIsPinnedOp -> alwaysExternal DoubleDecode_2IntOp -> alwaysExternal DoubleDecode_Int64Op -> alwaysExternal FloatDecode_IntOp -> alwaysExternal ByteArrayIsPinnedOp -> alwaysExternal ShrinkMutableByteArrayOp_Char -> alwaysExternal ResizeMutableByteArrayOp_Char -> alwaysExternal ShrinkSmallMutableArrayOp_Char -> alwaysExternal NewArrayArrayOp -> alwaysExternal NewMutVarOp -> alwaysExternal AtomicModifyMutVar2Op -> alwaysExternal AtomicModifyMutVar_Op -> alwaysExternal CasMutVarOp -> alwaysExternal CatchOp -> alwaysExternal RaiseOp -> alwaysExternal RaiseIOOp -> alwaysExternal MaskAsyncExceptionsOp -> alwaysExternal MaskUninterruptibleOp -> alwaysExternal UnmaskAsyncExceptionsOp -> alwaysExternal MaskStatus -> alwaysExternal AtomicallyOp -> alwaysExternal RetryOp -> alwaysExternal CatchRetryOp -> alwaysExternal CatchSTMOp -> alwaysExternal NewTVarOp -> alwaysExternal ReadTVarOp -> alwaysExternal ReadTVarIOOp -> alwaysExternal WriteTVarOp -> alwaysExternal NewMVarOp -> alwaysExternal TakeMVarOp -> alwaysExternal TryTakeMVarOp -> alwaysExternal PutMVarOp -> alwaysExternal TryPutMVarOp -> alwaysExternal ReadMVarOp -> alwaysExternal TryReadMVarOp -> alwaysExternal IsEmptyMVarOp -> alwaysExternal DelayOp -> alwaysExternal WaitReadOp -> alwaysExternal WaitWriteOp -> alwaysExternal ForkOp -> alwaysExternal ForkOnOp -> alwaysExternal KillThreadOp -> alwaysExternal YieldOp -> alwaysExternal LabelThreadOp -> alwaysExternal IsCurrentThreadBoundOp -> alwaysExternal NoDuplicateOp -> alwaysExternal ThreadStatusOp -> alwaysExternal MkWeakOp -> alwaysExternal MkWeakNoFinalizerOp -> alwaysExternal AddCFinalizerToWeakOp -> alwaysExternal DeRefWeakOp -> alwaysExternal FinalizeWeakOp -> alwaysExternal MakeStablePtrOp -> alwaysExternal DeRefStablePtrOp -> alwaysExternal MakeStableNameOp -> alwaysExternal CompactNewOp -> alwaysExternal CompactResizeOp -> alwaysExternal CompactContainsOp -> alwaysExternal CompactContainsAnyOp -> alwaysExternal CompactGetFirstBlockOp -> alwaysExternal CompactGetNextBlockOp -> alwaysExternal CompactAllocateBlockOp -> alwaysExternal CompactFixupPointersOp -> alwaysExternal CompactAdd -> alwaysExternal CompactAddWithSharing -> alwaysExternal CompactSize -> alwaysExternal SeqOp -> alwaysExternal GetSparkOp -> alwaysExternal NumSparks -> alwaysExternal DataToTagOp -> alwaysExternal MkApUpd0_Op -> alwaysExternal NewBCOOp -> alwaysExternal UnpackClosureOp -> alwaysExternal ClosureSizeOp -> alwaysExternal GetApStackValOp -> alwaysExternal ClearCCSOp -> alwaysExternal TraceEventOp -> alwaysExternal TraceEventBinaryOp -> alwaysExternal TraceMarkerOp -> alwaysExternal SetThreadAllocationCounter -> alwaysExternal where alwaysExternal = \_ -> PrimopCmmEmit_External -- Note [QuotRem optimization] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- `quot` and `rem` with constant divisor can be implemented with fast bit-ops -- (shift, .&.). -- -- Currently we only support optimization (performed in CmmOpt) when the -- constant is a power of 2. #9041 tracks the implementation of the general -- optimization. -- -- `quotRem` can be optimized in the same way. However as it returns two values, -- it is implemented as a "callish" primop which is harder to match and -- to transform later on. For simplicity, the current implementation detects cases -- that can be optimized (see `quotRemCanBeOptimized`) and converts STG quotRem -- primop into two CMM quot and rem primops. quotRemCanBeOptimized = \case [_, CmmLit (CmmInt n _) ] -> isJust (exactLog2 n) _ -> False ncg = case hscTarget dflags of HscAsm -> True _ -> False llvm = case hscTarget dflags of HscLlvm -> True _ -> False x86ish = case platformArch (targetPlatform dflags) of ArchX86 -> True ArchX86_64 -> True _ -> False ppc = case platformArch (targetPlatform dflags) of ArchPPC -> True ArchPPC_64 _ -> True _ -> False data PrimopCmmEmit = PrimopCmmEmit_External | PrimopCmmEmit_IntoRegs ([LocalReg] -- where to put the results -> FCode ()) -- | Manual escape hatch, this is just for the '@TagToEnum@' -- primop for now. It would be nice to remove this special case but that is -- future work. | PrimopCmmEmit_Raw (Type -- the return type, some primops are specialized to it -> FCode [CmmExpr]) -- just for TagToEnum for now opNop :: [CmmExpr] -> PrimopCmmEmit opNop args = PrimopCmmEmit_IntoRegs $ \[res] -> emitAssign (CmmLocal res) arg where [arg] = args opNarrow :: DynFlags -> [CmmExpr] -> (Width -> Width -> MachOp, Width) -> PrimopCmmEmit opNarrow dflags args (mop, rep) = PrimopCmmEmit_IntoRegs $ \[res] -> emitAssign (CmmLocal res) $ CmmMachOp (mop rep (wordWidth dflags)) [CmmMachOp (mop (wordWidth dflags) rep) [arg]] where [arg] = args -- | These primops are implemented by CallishMachOps, because they sometimes -- turn into foreign calls depending on the backend. opCallish :: [CmmExpr] -> CallishMachOp -> PrimopCmmEmit opCallish args prim = PrimopCmmEmit_IntoRegs $ \[res] -> emitPrimCall [res] prim args opTranslate :: [CmmExpr] -> MachOp -> PrimopCmmEmit opTranslate args mop = PrimopCmmEmit_IntoRegs $ \[res] -> do let stmt = mkAssign (CmmLocal res) (CmmMachOp mop args) emit stmt -- | Basically a "manual" case, rather than one of the common repetitive forms -- above. The results are a parameter to the returned function so we know the -- choice of variant never depends on them. opCallishHandledLater :: [CmmExpr] -> Either CallishMachOp GenericOp -> PrimopCmmEmit opCallishHandledLater args callOrNot = PrimopCmmEmit_IntoRegs $ \res0 -> case callOrNot of Left op -> emit $ mkUnsafeCall (PrimTarget op) res0 args Right gen -> gen res0 args opAllDone :: ([LocalReg] -- where to put the results -> FCode ()) -> PrimopCmmEmit opAllDone f = PrimopCmmEmit_IntoRegs $ f type GenericOp = [CmmFormal] -> [CmmActual] -> FCode () genericIntQuotRemOp :: Width -> GenericOp genericIntQuotRemOp width [res_q, res_r] [arg_x, arg_y] = emit $ mkAssign (CmmLocal res_q) (CmmMachOp (MO_S_Quot width) [arg_x, arg_y]) <*> mkAssign (CmmLocal res_r) (CmmMachOp (MO_S_Rem width) [arg_x, arg_y]) genericIntQuotRemOp _ _ _ = panic "genericIntQuotRemOp" genericWordQuotRemOp :: Width -> GenericOp genericWordQuotRemOp width [res_q, res_r] [arg_x, arg_y] = emit $ mkAssign (CmmLocal res_q) (CmmMachOp (MO_U_Quot width) [arg_x, arg_y]) <*> mkAssign (CmmLocal res_r) (CmmMachOp (MO_U_Rem width) [arg_x, arg_y]) genericWordQuotRemOp _ _ _ = panic "genericWordQuotRemOp" genericWordQuotRem2Op :: DynFlags -> GenericOp genericWordQuotRem2Op dflags [res_q, res_r] [arg_x_high, arg_x_low, arg_y] = emit =<< f (widthInBits (wordWidth dflags)) zero arg_x_high arg_x_low where ty = cmmExprType dflags arg_x_high shl x i = CmmMachOp (MO_Shl (wordWidth dflags)) [x, i] shr x i = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, i] or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y] ge x y = CmmMachOp (MO_U_Ge (wordWidth dflags)) [x, y] ne x y = CmmMachOp (MO_Ne (wordWidth dflags)) [x, y] minus x y = CmmMachOp (MO_Sub (wordWidth dflags)) [x, y] times x y = CmmMachOp (MO_Mul (wordWidth dflags)) [x, y] zero = lit 0 one = lit 1 negone = lit (fromIntegral (widthInBits (wordWidth dflags)) - 1) lit i = CmmLit (CmmInt i (wordWidth dflags)) f :: Int -> CmmExpr -> CmmExpr -> CmmExpr -> FCode CmmAGraph f 0 acc high _ = return (mkAssign (CmmLocal res_q) acc <*> mkAssign (CmmLocal res_r) high) f i acc high low = do roverflowedBit <- newTemp ty rhigh' <- newTemp ty rhigh'' <- newTemp ty rlow' <- newTemp ty risge <- newTemp ty racc' <- newTemp ty let high' = CmmReg (CmmLocal rhigh') isge = CmmReg (CmmLocal risge) overflowedBit = CmmReg (CmmLocal roverflowedBit) let this = catAGraphs [mkAssign (CmmLocal roverflowedBit) (shr high negone), mkAssign (CmmLocal rhigh') (or (shl high one) (shr low negone)), mkAssign (CmmLocal rlow') (shl low one), mkAssign (CmmLocal risge) (or (overflowedBit `ne` zero) (high' `ge` arg_y)), mkAssign (CmmLocal rhigh'') (high' `minus` (arg_y `times` isge)), mkAssign (CmmLocal racc') (or (shl acc one) isge)] rest <- f (i - 1) (CmmReg (CmmLocal racc')) (CmmReg (CmmLocal rhigh'')) (CmmReg (CmmLocal rlow')) return (this <*> rest) genericWordQuotRem2Op _ _ _ = panic "genericWordQuotRem2Op" genericWordAdd2Op :: GenericOp genericWordAdd2Op [res_h, res_l] [arg_x, arg_y] = do dflags <- getDynFlags r1 <- newTemp (cmmExprType dflags arg_x) r2 <- newTemp (cmmExprType dflags arg_x) let topHalf x = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, hww] toTopHalf x = CmmMachOp (MO_Shl (wordWidth dflags)) [x, hww] bottomHalf x = CmmMachOp (MO_And (wordWidth dflags)) [x, hwm] add x y = CmmMachOp (MO_Add (wordWidth dflags)) [x, y] or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y] hww = CmmLit (CmmInt (fromIntegral (widthInBits (halfWordWidth dflags))) (wordWidth dflags)) hwm = CmmLit (CmmInt (halfWordMask dflags) (wordWidth dflags)) emit $ catAGraphs [mkAssign (CmmLocal r1) (add (bottomHalf arg_x) (bottomHalf arg_y)), mkAssign (CmmLocal r2) (add (topHalf (CmmReg (CmmLocal r1))) (add (topHalf arg_x) (topHalf arg_y))), mkAssign (CmmLocal res_h) (topHalf (CmmReg (CmmLocal r2))), mkAssign (CmmLocal res_l) (or (toTopHalf (CmmReg (CmmLocal r2))) (bottomHalf (CmmReg (CmmLocal r1))))] genericWordAdd2Op _ _ = panic "genericWordAdd2Op" -- | Implements branchless recovery of the carry flag @c@ by checking the -- leftmost bits of both inputs @a@ and @b@ and result @r = a + b@: -- -- @ -- c = a&b | (a|b)&~r -- @ -- -- https://brodowsky.it-sky.net/2015/04/02/how-to-recover-the-carry-bit/ genericWordAddCOp :: GenericOp genericWordAddCOp [res_r, res_c] [aa, bb] = do dflags <- getDynFlags emit $ catAGraphs [ mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordAdd dflags) [aa,bb]), mkAssign (CmmLocal res_c) $ CmmMachOp (mo_wordUShr dflags) [ CmmMachOp (mo_wordOr dflags) [ CmmMachOp (mo_wordAnd dflags) [aa,bb], CmmMachOp (mo_wordAnd dflags) [ CmmMachOp (mo_wordOr dflags) [aa,bb], CmmMachOp (mo_wordNot dflags) [CmmReg (CmmLocal res_r)] ] ], mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1) ] ] genericWordAddCOp _ _ = panic "genericWordAddCOp" -- | Implements branchless recovery of the carry flag @c@ by checking the -- leftmost bits of both inputs @a@ and @b@ and result @r = a - b@: -- -- @ -- c = ~a&b | (~a|b)&r -- @ -- -- https://brodowsky.it-sky.net/2015/04/02/how-to-recover-the-carry-bit/ genericWordSubCOp :: GenericOp genericWordSubCOp [res_r, res_c] [aa, bb] = do dflags <- getDynFlags emit $ catAGraphs [ mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordSub dflags) [aa,bb]), mkAssign (CmmLocal res_c) $ CmmMachOp (mo_wordUShr dflags) [ CmmMachOp (mo_wordOr dflags) [ CmmMachOp (mo_wordAnd dflags) [ CmmMachOp (mo_wordNot dflags) [aa], bb ], CmmMachOp (mo_wordAnd dflags) [ CmmMachOp (mo_wordOr dflags) [ CmmMachOp (mo_wordNot dflags) [aa], bb ], CmmReg (CmmLocal res_r) ] ], mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1) ] ] genericWordSubCOp _ _ = panic "genericWordSubCOp" genericIntAddCOp :: GenericOp genericIntAddCOp [res_r, res_c] [aa, bb] {- With some bit-twiddling, we can define int{Add,Sub}Czh portably in C, and without needing any comparisons. This may not be the fastest way to do it - if you have better code, please send it! --SDM Return : r = a + b, c = 0 if no overflow, 1 on overflow. We currently don't make use of the r value if c is != 0 (i.e. overflow), we just convert to big integers and try again. This could be improved by making r and c the correct values for plugging into a new J#. { r = ((I_)(a)) + ((I_)(b)); \ c = ((StgWord)(~(((I_)(a))^((I_)(b))) & (((I_)(a))^r))) \ >> (BITS_IN (I_) - 1); \ } Wading through the mass of bracketry, it seems to reduce to: c = ( (~(a^b)) & (a^r) ) >>unsigned (BITS_IN(I_)-1) -} = do dflags <- getDynFlags emit $ catAGraphs [ mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordAdd dflags) [aa,bb]), mkAssign (CmmLocal res_c) $ CmmMachOp (mo_wordUShr dflags) [ CmmMachOp (mo_wordAnd dflags) [ CmmMachOp (mo_wordNot dflags) [CmmMachOp (mo_wordXor dflags) [aa,bb]], CmmMachOp (mo_wordXor dflags) [aa, CmmReg (CmmLocal res_r)] ], mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1) ] ] genericIntAddCOp _ _ = panic "genericIntAddCOp" genericIntSubCOp :: GenericOp genericIntSubCOp [res_r, res_c] [aa, bb] {- Similarly: #define subIntCzh(r,c,a,b) \ { r = ((I_)(a)) - ((I_)(b)); \ c = ((StgWord)((((I_)(a))^((I_)(b))) & (((I_)(a))^r))) \ >> (BITS_IN (I_) - 1); \ } c = ((a^b) & (a^r)) >>unsigned (BITS_IN(I_)-1) -} = do dflags <- getDynFlags emit $ catAGraphs [ mkAssign (CmmLocal res_r) (CmmMachOp (mo_wordSub dflags) [aa,bb]), mkAssign (CmmLocal res_c) $ CmmMachOp (mo_wordUShr dflags) [ CmmMachOp (mo_wordAnd dflags) [ CmmMachOp (mo_wordXor dflags) [aa,bb], CmmMachOp (mo_wordXor dflags) [aa, CmmReg (CmmLocal res_r)] ], mkIntExpr dflags (wORD_SIZE_IN_BITS dflags - 1) ] ] genericIntSubCOp _ _ = panic "genericIntSubCOp" genericWordMul2Op :: GenericOp genericWordMul2Op [res_h, res_l] [arg_x, arg_y] = do dflags <- getDynFlags let t = cmmExprType dflags arg_x xlyl <- liftM CmmLocal $ newTemp t xlyh <- liftM CmmLocal $ newTemp t xhyl <- liftM CmmLocal $ newTemp t r <- liftM CmmLocal $ newTemp t -- This generic implementation is very simple and slow. We might -- well be able to do better, but for now this at least works. let topHalf x = CmmMachOp (MO_U_Shr (wordWidth dflags)) [x, hww] toTopHalf x = CmmMachOp (MO_Shl (wordWidth dflags)) [x, hww] bottomHalf x = CmmMachOp (MO_And (wordWidth dflags)) [x, hwm] add x y = CmmMachOp (MO_Add (wordWidth dflags)) [x, y] sum = foldl1 add mul x y = CmmMachOp (MO_Mul (wordWidth dflags)) [x, y] or x y = CmmMachOp (MO_Or (wordWidth dflags)) [x, y] hww = CmmLit (CmmInt (fromIntegral (widthInBits (halfWordWidth dflags))) (wordWidth dflags)) hwm = CmmLit (CmmInt (halfWordMask dflags) (wordWidth dflags)) emit $ catAGraphs [mkAssign xlyl (mul (bottomHalf arg_x) (bottomHalf arg_y)), mkAssign xlyh (mul (bottomHalf arg_x) (topHalf arg_y)), mkAssign xhyl (mul (topHalf arg_x) (bottomHalf arg_y)), mkAssign r (sum [topHalf (CmmReg xlyl), bottomHalf (CmmReg xhyl), bottomHalf (CmmReg xlyh)]), mkAssign (CmmLocal res_l) (or (bottomHalf (CmmReg xlyl)) (toTopHalf (CmmReg r))), mkAssign (CmmLocal res_h) (sum [mul (topHalf arg_x) (topHalf arg_y), topHalf (CmmReg xhyl), topHalf (CmmReg xlyh), topHalf (CmmReg r)])] genericWordMul2Op _ _ = panic "genericWordMul2Op" -- This replicates what we had in libraries/base/GHC/Float.hs: -- -- abs x | x == 0 = 0 -- handles (-0.0) -- | x > 0 = x -- | otherwise = negateFloat x genericFabsOp :: Width -> GenericOp genericFabsOp w [res_r] [aa] = do dflags <- getDynFlags let zero = CmmLit (CmmFloat 0 w) eq x y = CmmMachOp (MO_F_Eq w) [x, y] gt x y = CmmMachOp (MO_F_Gt w) [x, y] neg x = CmmMachOp (MO_F_Neg w) [x] g1 = catAGraphs [mkAssign (CmmLocal res_r) zero] g2 = catAGraphs [mkAssign (CmmLocal res_r) aa] res_t <- CmmLocal <$> newTemp (cmmExprType dflags aa) let g3 = catAGraphs [mkAssign res_t aa, mkAssign (CmmLocal res_r) (neg (CmmReg res_t))] g4 <- mkCmmIfThenElse (gt aa zero) g2 g3 emit =<< mkCmmIfThenElse (eq aa zero) g1 g4 genericFabsOp _ _ _ = panic "genericFabsOp" -- Note [Comparing stable names] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- A StableName# is actually a pointer to a stable name object (SNO) -- containing an index into the stable name table (SNT). We -- used to compare StableName#s by following the pointers to the -- SNOs and checking whether they held the same SNT indices. However, -- this is not necessary: there is a one-to-one correspondence -- between SNOs and entries in the SNT, so simple pointer equality -- does the trick. ------------------------------------------------------------------------------ -- Helpers for translating various minor variants of array indexing. doIndexOffAddrOp :: Maybe MachOp -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode () doIndexOffAddrOp maybe_post_read_cast rep [res] [addr,idx] = mkBasicIndexedRead 0 maybe_post_read_cast rep res addr rep idx doIndexOffAddrOp _ _ _ _ = panic "GHC.StgToCmm.Prim: doIndexOffAddrOp" doIndexOffAddrOpAs :: Maybe MachOp -> CmmType -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode () doIndexOffAddrOpAs maybe_post_read_cast rep idx_rep [res] [addr,idx] = mkBasicIndexedRead 0 maybe_post_read_cast rep res addr idx_rep idx doIndexOffAddrOpAs _ _ _ _ _ = panic "GHC.StgToCmm.Prim: doIndexOffAddrOpAs" doIndexByteArrayOp :: Maybe MachOp -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode () doIndexByteArrayOp maybe_post_read_cast rep [res] [addr,idx] = do dflags <- getDynFlags mkBasicIndexedRead (arrWordsHdrSize dflags) maybe_post_read_cast rep res addr rep idx doIndexByteArrayOp _ _ _ _ = panic "GHC.StgToCmm.Prim: doIndexByteArrayOp" doIndexByteArrayOpAs :: Maybe MachOp -> CmmType -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode () doIndexByteArrayOpAs maybe_post_read_cast rep idx_rep [res] [addr,idx] = do dflags <- getDynFlags mkBasicIndexedRead (arrWordsHdrSize dflags) maybe_post_read_cast rep res addr idx_rep idx doIndexByteArrayOpAs _ _ _ _ _ = panic "GHC.StgToCmm.Prim: doIndexByteArrayOpAs" doReadPtrArrayOp :: LocalReg -> CmmExpr -> CmmExpr -> FCode () doReadPtrArrayOp res addr idx = do dflags <- getDynFlags mkBasicIndexedRead (arrPtrsHdrSize dflags) Nothing (gcWord dflags) res addr (gcWord dflags) idx doWriteOffAddrOp :: Maybe MachOp -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode () doWriteOffAddrOp maybe_pre_write_cast idx_ty [] [addr,idx,val] = mkBasicIndexedWrite 0 maybe_pre_write_cast addr idx_ty idx val doWriteOffAddrOp _ _ _ _ = panic "GHC.StgToCmm.Prim: doWriteOffAddrOp" doWriteByteArrayOp :: Maybe MachOp -> CmmType -> [LocalReg] -> [CmmExpr] -> FCode () doWriteByteArrayOp maybe_pre_write_cast idx_ty [] [addr,idx,val] = do dflags <- getDynFlags mkBasicIndexedWrite (arrWordsHdrSize dflags) maybe_pre_write_cast addr idx_ty idx val doWriteByteArrayOp _ _ _ _ = panic "GHC.StgToCmm.Prim: doWriteByteArrayOp" doWritePtrArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> FCode () doWritePtrArrayOp addr idx val = do dflags <- getDynFlags let ty = cmmExprType dflags val hdr_size = arrPtrsHdrSize dflags -- Update remembered set for non-moving collector whenUpdRemSetEnabled dflags $ emitUpdRemSetPush (cmmLoadIndexOffExpr dflags hdr_size ty addr ty idx) -- This write barrier is to ensure that the heap writes to the object -- referred to by val have happened before we write val into the array. -- See #12469 for details. emitPrimCall [] MO_WriteBarrier [] mkBasicIndexedWrite hdr_size Nothing addr ty idx val emit (setInfo addr (CmmLit (CmmLabel mkMAP_DIRTY_infoLabel))) -- the write barrier. We must write a byte into the mark table: -- bits8[a + header_size + StgMutArrPtrs_size(a) + x >> N] emit $ mkStore ( cmmOffsetExpr dflags (cmmOffsetExprW dflags (cmmOffsetB dflags addr hdr_size) (loadArrPtrsSize dflags addr)) (CmmMachOp (mo_wordUShr dflags) [idx, mkIntExpr dflags (mUT_ARR_PTRS_CARD_BITS dflags)]) ) (CmmLit (CmmInt 1 W8)) loadArrPtrsSize :: DynFlags -> CmmExpr -> CmmExpr loadArrPtrsSize dflags addr = CmmLoad (cmmOffsetB dflags addr off) (bWord dflags) where off = fixedHdrSize dflags + oFFSET_StgMutArrPtrs_ptrs dflags mkBasicIndexedRead :: ByteOff -- Initial offset in bytes -> Maybe MachOp -- Optional result cast -> CmmType -- Type of element we are accessing -> LocalReg -- Destination -> CmmExpr -- Base address -> CmmType -- Type of element by which we are indexing -> CmmExpr -- Index -> FCode () mkBasicIndexedRead off Nothing ty res base idx_ty idx = do dflags <- getDynFlags emitAssign (CmmLocal res) (cmmLoadIndexOffExpr dflags off ty base idx_ty idx) mkBasicIndexedRead off (Just cast) ty res base idx_ty idx = do dflags <- getDynFlags emitAssign (CmmLocal res) (CmmMachOp cast [ cmmLoadIndexOffExpr dflags off ty base idx_ty idx]) mkBasicIndexedWrite :: ByteOff -- Initial offset in bytes -> Maybe MachOp -- Optional value cast -> CmmExpr -- Base address -> CmmType -- Type of element by which we are indexing -> CmmExpr -- Index -> CmmExpr -- Value to write -> FCode () mkBasicIndexedWrite off Nothing base idx_ty idx val = do dflags <- getDynFlags emitStore (cmmIndexOffExpr dflags off (typeWidth idx_ty) base idx) val mkBasicIndexedWrite off (Just cast) base idx_ty idx val = mkBasicIndexedWrite off Nothing base idx_ty idx (CmmMachOp cast [val]) -- ---------------------------------------------------------------------------- -- Misc utils cmmIndexOffExpr :: DynFlags -> ByteOff -- Initial offset in bytes -> Width -- Width of element by which we are indexing -> CmmExpr -- Base address -> CmmExpr -- Index -> CmmExpr cmmIndexOffExpr dflags off width base idx = cmmIndexExpr dflags width (cmmOffsetB dflags base off) idx cmmLoadIndexOffExpr :: DynFlags -> ByteOff -- Initial offset in bytes -> CmmType -- Type of element we are accessing -> CmmExpr -- Base address -> CmmType -- Type of element by which we are indexing -> CmmExpr -- Index -> CmmExpr cmmLoadIndexOffExpr dflags off ty base idx_ty idx = CmmLoad (cmmIndexOffExpr dflags off (typeWidth idx_ty) base idx) ty setInfo :: CmmExpr -> CmmExpr -> CmmAGraph setInfo closure_ptr info_ptr = mkStore closure_ptr info_ptr ------------------------------------------------------------------------------ -- Helpers for translating vector primops. vecVmmType :: PrimOpVecCat -> Length -> Width -> CmmType vecVmmType pocat n w = vec n (vecCmmCat pocat w) vecCmmCat :: PrimOpVecCat -> Width -> CmmType vecCmmCat IntVec = cmmBits vecCmmCat WordVec = cmmBits vecCmmCat FloatVec = cmmFloat vecElemInjectCast :: DynFlags -> PrimOpVecCat -> Width -> Maybe MachOp vecElemInjectCast _ FloatVec _ = Nothing vecElemInjectCast dflags IntVec W8 = Just (mo_WordTo8 dflags) vecElemInjectCast dflags IntVec W16 = Just (mo_WordTo16 dflags) vecElemInjectCast dflags IntVec W32 = Just (mo_WordTo32 dflags) vecElemInjectCast _ IntVec W64 = Nothing vecElemInjectCast dflags WordVec W8 = Just (mo_WordTo8 dflags) vecElemInjectCast dflags WordVec W16 = Just (mo_WordTo16 dflags) vecElemInjectCast dflags WordVec W32 = Just (mo_WordTo32 dflags) vecElemInjectCast _ WordVec W64 = Nothing vecElemInjectCast _ _ _ = Nothing vecElemProjectCast :: DynFlags -> PrimOpVecCat -> Width -> Maybe MachOp vecElemProjectCast _ FloatVec _ = Nothing vecElemProjectCast dflags IntVec W8 = Just (mo_s_8ToWord dflags) vecElemProjectCast dflags IntVec W16 = Just (mo_s_16ToWord dflags) vecElemProjectCast dflags IntVec W32 = Just (mo_s_32ToWord dflags) vecElemProjectCast _ IntVec W64 = Nothing vecElemProjectCast dflags WordVec W8 = Just (mo_u_8ToWord dflags) vecElemProjectCast dflags WordVec W16 = Just (mo_u_16ToWord dflags) vecElemProjectCast dflags WordVec W32 = Just (mo_u_32ToWord dflags) vecElemProjectCast _ WordVec W64 = Nothing vecElemProjectCast _ _ _ = Nothing -- NOTE [SIMD Design for the future] -- Check to make sure that we can generate code for the specified vector type -- given the current set of dynamic flags. -- Currently these checks are specific to x86 and x86_64 architecture. -- This should be fixed! -- In particular, -- 1) Add better support for other architectures! (this may require a redesign) -- 2) Decouple design choices from LLVM's pseudo SIMD model! -- The high level LLVM naive rep makes per CPU family SIMD generation is own -- optimization problem, and hides important differences in eg ARM vs x86_64 simd -- 3) Depending on the architecture, the SIMD registers may also support general -- computations on Float/Double/Word/Int scalars, but currently on -- for example x86_64, we always put Word/Int (or sized) in GPR -- (general purpose) registers. Would relaxing that allow for -- useful optimization opportunities? -- Phrased differently, it is worth experimenting with supporting -- different register mapping strategies than we currently have, especially if -- someday we want SIMD to be a first class denizen in GHC along with scalar -- values! -- The current design with respect to register mapping of scalars could -- very well be the best,but exploring the design space and doing careful -- measurments is the only only way to validate that. -- In some next generation CPU ISAs, notably RISC V, the SIMD extension -- includes support for a sort of run time CPU dependent vectorization parameter, -- where a loop may act upon a single scalar each iteration OR some 2,4,8 ... -- element chunk! Time will tell if that direction sees wide adoption, -- but it is from that context that unifying our handling of simd and scalars -- may benefit. It is not likely to benefit current architectures, though -- it may very well be a design perspective that helps guide improving the NCG. checkVecCompatibility :: DynFlags -> PrimOpVecCat -> Length -> Width -> FCode () checkVecCompatibility dflags vcat l w = do when (hscTarget dflags /= HscLlvm) $ do sorry $ unlines ["SIMD vector instructions require the LLVM back-end." ,"Please use -fllvm."] check vecWidth vcat l w where check :: Width -> PrimOpVecCat -> Length -> Width -> FCode () check W128 FloatVec 4 W32 | not (isSseEnabled dflags) = sorry $ "128-bit wide single-precision floating point " ++ "SIMD vector instructions require at least -msse." check W128 _ _ _ | not (isSse2Enabled dflags) = sorry $ "128-bit wide integer and double precision " ++ "SIMD vector instructions require at least -msse2." check W256 FloatVec _ _ | not (isAvxEnabled dflags) = sorry $ "256-bit wide floating point " ++ "SIMD vector instructions require at least -mavx." check W256 _ _ _ | not (isAvx2Enabled dflags) = sorry $ "256-bit wide integer " ++ "SIMD vector instructions require at least -mavx2." check W512 _ _ _ | not (isAvx512fEnabled dflags) = sorry $ "512-bit wide " ++ "SIMD vector instructions require -mavx512f." check _ _ _ _ = return () vecWidth = typeWidth (vecVmmType vcat l w) ------------------------------------------------------------------------------ -- Helpers for translating vector packing and unpacking. doVecPackOp :: Maybe MachOp -- Cast from element to vector component -> CmmType -- Type of vector -> CmmExpr -- Initial vector -> [CmmExpr] -- Elements -> CmmFormal -- Destination for result -> FCode () doVecPackOp maybe_pre_write_cast ty z es res = do dst <- newTemp ty emitAssign (CmmLocal dst) z vecPack dst es 0 where vecPack :: CmmFormal -> [CmmExpr] -> Int -> FCode () vecPack src [] _ = emitAssign (CmmLocal res) (CmmReg (CmmLocal src)) vecPack src (e : es) i = do dst <- newTemp ty if isFloatType (vecElemType ty) then emitAssign (CmmLocal dst) (CmmMachOp (MO_VF_Insert len wid) [CmmReg (CmmLocal src), cast e, iLit]) else emitAssign (CmmLocal dst) (CmmMachOp (MO_V_Insert len wid) [CmmReg (CmmLocal src), cast e, iLit]) vecPack dst es (i + 1) where -- vector indices are always 32-bits iLit = CmmLit (CmmInt (toInteger i) W32) cast :: CmmExpr -> CmmExpr cast val = case maybe_pre_write_cast of Nothing -> val Just cast -> CmmMachOp cast [val] len :: Length len = vecLength ty wid :: Width wid = typeWidth (vecElemType ty) doVecUnpackOp :: Maybe MachOp -- Cast from vector component to element result -> CmmType -- Type of vector -> CmmExpr -- Vector -> [CmmFormal] -- Element results -> FCode () doVecUnpackOp maybe_post_read_cast ty e res = vecUnpack res 0 where vecUnpack :: [CmmFormal] -> Int -> FCode () vecUnpack [] _ = return () vecUnpack (r : rs) i = do if isFloatType (vecElemType ty) then emitAssign (CmmLocal r) (cast (CmmMachOp (MO_VF_Extract len wid) [e, iLit])) else emitAssign (CmmLocal r) (cast (CmmMachOp (MO_V_Extract len wid) [e, iLit])) vecUnpack rs (i + 1) where -- vector indices are always 32-bits iLit = CmmLit (CmmInt (toInteger i) W32) cast :: CmmExpr -> CmmExpr cast val = case maybe_post_read_cast of Nothing -> val Just cast -> CmmMachOp cast [val] len :: Length len = vecLength ty wid :: Width wid = typeWidth (vecElemType ty) doVecInsertOp :: Maybe MachOp -- Cast from element to vector component -> CmmType -- Vector type -> CmmExpr -- Source vector -> CmmExpr -- Element -> CmmExpr -- Index at which to insert element -> CmmFormal -- Destination for result -> FCode () doVecInsertOp maybe_pre_write_cast ty src e idx res = do dflags <- getDynFlags -- vector indices are always 32-bits let idx' :: CmmExpr idx' = CmmMachOp (MO_SS_Conv (wordWidth dflags) W32) [idx] if isFloatType (vecElemType ty) then emitAssign (CmmLocal res) (CmmMachOp (MO_VF_Insert len wid) [src, cast e, idx']) else emitAssign (CmmLocal res) (CmmMachOp (MO_V_Insert len wid) [src, cast e, idx']) where cast :: CmmExpr -> CmmExpr cast val = case maybe_pre_write_cast of Nothing -> val Just cast -> CmmMachOp cast [val] len :: Length len = vecLength ty wid :: Width wid = typeWidth (vecElemType ty) ------------------------------------------------------------------------------ -- Helpers for translating prefetching. -- | Translate byte array prefetch operations into proper primcalls. doPrefetchByteArrayOp :: Int -> [CmmExpr] -> FCode () doPrefetchByteArrayOp locality [addr,idx] = do dflags <- getDynFlags mkBasicPrefetch locality (arrWordsHdrSize dflags) addr idx doPrefetchByteArrayOp _ _ = panic "GHC.StgToCmm.Prim: doPrefetchByteArrayOp" -- | Translate mutable byte array prefetch operations into proper primcalls. doPrefetchMutableByteArrayOp :: Int -> [CmmExpr] -> FCode () doPrefetchMutableByteArrayOp locality [addr,idx] = do dflags <- getDynFlags mkBasicPrefetch locality (arrWordsHdrSize dflags) addr idx doPrefetchMutableByteArrayOp _ _ = panic "GHC.StgToCmm.Prim: doPrefetchByteArrayOp" -- | Translate address prefetch operations into proper primcalls. doPrefetchAddrOp ::Int -> [CmmExpr] -> FCode () doPrefetchAddrOp locality [addr,idx] = mkBasicPrefetch locality 0 addr idx doPrefetchAddrOp _ _ = panic "GHC.StgToCmm.Prim: doPrefetchAddrOp" -- | Translate value prefetch operations into proper primcalls. doPrefetchValueOp :: Int -> [CmmExpr] -> FCode () doPrefetchValueOp locality [addr] = do dflags <- getDynFlags mkBasicPrefetch locality 0 addr (CmmLit (CmmInt 0 (wordWidth dflags))) doPrefetchValueOp _ _ = panic "GHC.StgToCmm.Prim: doPrefetchValueOp" -- | helper to generate prefetch primcalls mkBasicPrefetch :: Int -- Locality level 0-3 -> ByteOff -- Initial offset in bytes -> CmmExpr -- Base address -> CmmExpr -- Index -> FCode () mkBasicPrefetch locality off base idx = do dflags <- getDynFlags emitPrimCall [] (MO_Prefetch_Data locality) [cmmIndexExpr dflags W8 (cmmOffsetB dflags base off) idx] return () -- ---------------------------------------------------------------------------- -- Allocating byte arrays -- | Takes a register to return the newly allocated array in and the -- size of the new array in bytes. Allocates a new -- 'MutableByteArray#'. doNewByteArrayOp :: CmmFormal -> ByteOff -> FCode () doNewByteArrayOp res_r n = do dflags <- getDynFlags let info_ptr = mkLblExpr mkArrWords_infoLabel rep = arrWordsRep dflags n tickyAllocPrim (mkIntExpr dflags (arrWordsHdrSize dflags)) (mkIntExpr dflags (nonHdrSize dflags rep)) (zeroExpr dflags) let hdr_size = fixedHdrSize dflags base <- allocHeapClosure rep info_ptr cccsExpr [ (mkIntExpr dflags n, hdr_size + oFFSET_StgArrBytes_bytes dflags) ] emit $ mkAssign (CmmLocal res_r) base -- ---------------------------------------------------------------------------- -- Comparing byte arrays doCompareByteArraysOp :: LocalReg -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () doCompareByteArraysOp res ba1 ba1_off ba2 ba2_off n = do dflags <- getDynFlags ba1_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba1 (arrWordsHdrSize dflags)) ba1_off ba2_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba2 (arrWordsHdrSize dflags)) ba2_off -- short-cut in case of equal pointers avoiding a costly -- subroutine call to the memcmp(3) routine; the Cmm logic below -- results in assembly code being generated for -- -- cmpPrefix10 :: ByteArray# -> ByteArray# -> Int# -- cmpPrefix10 ba1 ba2 = compareByteArrays# ba1 0# ba2 0# 10# -- -- that looks like -- -- leaq 16(%r14),%rax -- leaq 16(%rsi),%rbx -- xorl %ecx,%ecx -- cmpq %rbx,%rax -- je l_ptr_eq -- -- ; NB: the common case (unequal pointers) falls-through -- ; the conditional jump, and therefore matches the -- ; usual static branch prediction convention of modern cpus -- -- subq $8,%rsp -- movq %rbx,%rsi -- movq %rax,%rdi -- movl $10,%edx -- xorl %eax,%eax -- call memcmp -- addq $8,%rsp -- movslq %eax,%rax -- movq %rax,%rcx -- l_ptr_eq: -- movq %rcx,%rbx -- jmp *(%rbp) l_ptr_eq <- newBlockId l_ptr_ne <- newBlockId emit (mkAssign (CmmLocal res) (zeroExpr dflags)) emit (mkCbranch (cmmEqWord dflags ba1_p ba2_p) l_ptr_eq l_ptr_ne (Just False)) emitLabel l_ptr_ne emitMemcmpCall res ba1_p ba2_p n 1 emitLabel l_ptr_eq -- ---------------------------------------------------------------------------- -- Copying byte arrays -- | Takes a source 'ByteArray#', an offset in the source array, a -- destination 'MutableByteArray#', an offset into the destination -- array, and the number of bytes to copy. Copies the given number of -- bytes from the source array to the destination array. doCopyByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () doCopyByteArrayOp = emitCopyByteArray copy where -- Copy data (we assume the arrays aren't overlapping since -- they're of different types) copy _src _dst dst_p src_p bytes align = emitMemcpyCall dst_p src_p bytes align -- | Takes a source 'MutableByteArray#', an offset in the source -- array, a destination 'MutableByteArray#', an offset into the -- destination array, and the number of bytes to copy. Copies the -- given number of bytes from the source array to the destination -- array. doCopyMutableByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () doCopyMutableByteArrayOp = emitCopyByteArray copy where -- The only time the memory might overlap is when the two arrays -- we were provided are the same array! -- TODO: Optimize branch for common case of no aliasing. copy src dst dst_p src_p bytes align = do dflags <- getDynFlags (moveCall, cpyCall) <- forkAltPair (getCode $ emitMemmoveCall dst_p src_p bytes align) (getCode $ emitMemcpyCall dst_p src_p bytes align) emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall emitCopyByteArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> Alignment -> FCode ()) -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () emitCopyByteArray copy src src_off dst dst_off n = do dflags <- getDynFlags let byteArrayAlignment = wordAlignment dflags srcOffAlignment = cmmExprAlignment src_off dstOffAlignment = cmmExprAlignment dst_off align = minimum [byteArrayAlignment, srcOffAlignment, dstOffAlignment] dst_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags dst (arrWordsHdrSize dflags)) dst_off src_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags src (arrWordsHdrSize dflags)) src_off copy src dst dst_p src_p n align -- | Takes a source 'ByteArray#', an offset in the source array, a -- destination 'Addr#', and the number of bytes to copy. Copies the given -- number of bytes from the source array to the destination memory region. doCopyByteArrayToAddrOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () doCopyByteArrayToAddrOp src src_off dst_p bytes = do -- Use memcpy (we are allowed to assume the arrays aren't overlapping) dflags <- getDynFlags src_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags src (arrWordsHdrSize dflags)) src_off emitMemcpyCall dst_p src_p bytes (mkAlignment 1) -- | Takes a source 'MutableByteArray#', an offset in the source array, a -- destination 'Addr#', and the number of bytes to copy. Copies the given -- number of bytes from the source array to the destination memory region. doCopyMutableByteArrayToAddrOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () doCopyMutableByteArrayToAddrOp = doCopyByteArrayToAddrOp -- | Takes a source 'Addr#', a destination 'MutableByteArray#', an offset into -- the destination array, and the number of bytes to copy. Copies the given -- number of bytes from the source memory region to the destination array. doCopyAddrToByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () doCopyAddrToByteArrayOp src_p dst dst_off bytes = do -- Use memcpy (we are allowed to assume the arrays aren't overlapping) dflags <- getDynFlags dst_p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags dst (arrWordsHdrSize dflags)) dst_off emitMemcpyCall dst_p src_p bytes (mkAlignment 1) -- ---------------------------------------------------------------------------- -- Setting byte arrays -- | Takes a 'MutableByteArray#', an offset into the array, a length, -- and a byte, and sets each of the selected bytes in the array to the -- character. doSetByteArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> FCode () doSetByteArrayOp ba off len c = do dflags <- getDynFlags let byteArrayAlignment = wordAlignment dflags -- known since BA is allocated on heap offsetAlignment = cmmExprAlignment off align = min byteArrayAlignment offsetAlignment p <- assignTempE $ cmmOffsetExpr dflags (cmmOffsetB dflags ba (arrWordsHdrSize dflags)) off emitMemsetCall p c len align -- ---------------------------------------------------------------------------- -- Allocating arrays -- | Allocate a new array. doNewArrayOp :: CmmFormal -- ^ return register -> SMRep -- ^ representation of the array -> CLabel -- ^ info pointer -> [(CmmExpr, ByteOff)] -- ^ header payload -> WordOff -- ^ array size -> CmmExpr -- ^ initial element -> FCode () doNewArrayOp res_r rep info payload n init = do dflags <- getDynFlags let info_ptr = mkLblExpr info tickyAllocPrim (mkIntExpr dflags (hdrSize dflags rep)) (mkIntExpr dflags (nonHdrSize dflags rep)) (zeroExpr dflags) base <- allocHeapClosure rep info_ptr cccsExpr payload arr <- CmmLocal `fmap` newTemp (bWord dflags) emit $ mkAssign arr base -- Initialise all elements of the array let mkOff off = cmmOffsetW dflags (CmmReg arr) (hdrSizeW dflags rep + off) initialization = [ mkStore (mkOff off) init | off <- [0.. n - 1] ] emit (catAGraphs initialization) emit $ mkAssign (CmmLocal res_r) (CmmReg arr) -- ---------------------------------------------------------------------------- -- Copying pointer arrays -- EZY: This code has an unusually high amount of assignTemp calls, seen -- nowhere else in the code generator. This is mostly because these -- "primitive" ops result in a surprisingly large amount of code. It -- will likely be worthwhile to optimize what is emitted here, so that -- our optimization passes don't waste time repeatedly optimizing the -- same bits of code. -- More closely imitates 'assignTemp' from the old code generator, which -- returns a CmmExpr rather than a LocalReg. assignTempE :: CmmExpr -> FCode CmmExpr assignTempE e = do t <- assignTemp e return (CmmReg (CmmLocal t)) -- | Takes a source 'Array#', an offset in the source array, a -- destination 'MutableArray#', an offset into the destination array, -- and the number of elements to copy. Copies the given number of -- elements from the source array to the destination array. doCopyArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff -> FCode () doCopyArrayOp = emitCopyArray copy where -- Copy data (we assume the arrays aren't overlapping since -- they're of different types) copy _src _dst dst_p src_p bytes = do dflags <- getDynFlags emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes) (wordAlignment dflags) -- | Takes a source 'MutableArray#', an offset in the source array, a -- destination 'MutableArray#', an offset into the destination array, -- and the number of elements to copy. Copies the given number of -- elements from the source array to the destination array. doCopyMutableArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff -> FCode () doCopyMutableArrayOp = emitCopyArray copy where -- The only time the memory might overlap is when the two arrays -- we were provided are the same array! -- TODO: Optimize branch for common case of no aliasing. copy src dst dst_p src_p bytes = do dflags <- getDynFlags (moveCall, cpyCall) <- forkAltPair (getCode $ emitMemmoveCall dst_p src_p (mkIntExpr dflags bytes) (wordAlignment dflags)) (getCode $ emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes) (wordAlignment dflags)) emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall emitCopyArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> ByteOff -> FCode ()) -- ^ copy function -> CmmExpr -- ^ source array -> CmmExpr -- ^ offset in source array -> CmmExpr -- ^ destination array -> CmmExpr -- ^ offset in destination array -> WordOff -- ^ number of elements to copy -> FCode () emitCopyArray copy src0 src_off dst0 dst_off0 n = when (n /= 0) $ do dflags <- getDynFlags -- Passed as arguments (be careful) src <- assignTempE src0 dst <- assignTempE dst0 dst_off <- assignTempE dst_off0 -- Nonmoving collector write barrier emitCopyUpdRemSetPush dflags (arrPtrsHdrSizeW dflags) dst dst_off n -- Set the dirty bit in the header. emit (setInfo dst (CmmLit (CmmLabel mkMAP_DIRTY_infoLabel))) dst_elems_p <- assignTempE $ cmmOffsetB dflags dst (arrPtrsHdrSize dflags) dst_p <- assignTempE $ cmmOffsetExprW dflags dst_elems_p dst_off src_p <- assignTempE $ cmmOffsetExprW dflags (cmmOffsetB dflags src (arrPtrsHdrSize dflags)) src_off let bytes = wordsToBytes dflags n copy src dst dst_p src_p bytes -- The base address of the destination card table dst_cards_p <- assignTempE $ cmmOffsetExprW dflags dst_elems_p (loadArrPtrsSize dflags dst) emitSetCards dst_off dst_cards_p n doCopySmallArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff -> FCode () doCopySmallArrayOp = emitCopySmallArray copy where -- Copy data (we assume the arrays aren't overlapping since -- they're of different types) copy _src _dst dst_p src_p bytes = do dflags <- getDynFlags emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes) (wordAlignment dflags) doCopySmallMutableArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> WordOff -> FCode () doCopySmallMutableArrayOp = emitCopySmallArray copy where -- The only time the memory might overlap is when the two arrays -- we were provided are the same array! -- TODO: Optimize branch for common case of no aliasing. copy src dst dst_p src_p bytes = do dflags <- getDynFlags (moveCall, cpyCall) <- forkAltPair (getCode $ emitMemmoveCall dst_p src_p (mkIntExpr dflags bytes) (wordAlignment dflags)) (getCode $ emitMemcpyCall dst_p src_p (mkIntExpr dflags bytes) (wordAlignment dflags)) emit =<< mkCmmIfThenElse (cmmEqWord dflags src dst) moveCall cpyCall emitCopySmallArray :: (CmmExpr -> CmmExpr -> CmmExpr -> CmmExpr -> ByteOff -> FCode ()) -- ^ copy function -> CmmExpr -- ^ source array -> CmmExpr -- ^ offset in source array -> CmmExpr -- ^ destination array -> CmmExpr -- ^ offset in destination array -> WordOff -- ^ number of elements to copy -> FCode () emitCopySmallArray copy src0 src_off dst0 dst_off n = when (n /= 0) $ do dflags <- getDynFlags -- Passed as arguments (be careful) src <- assignTempE src0 dst <- assignTempE dst0 -- Nonmoving collector write barrier emitCopyUpdRemSetPush dflags (smallArrPtrsHdrSizeW dflags) dst dst_off n -- Set the dirty bit in the header. emit (setInfo dst (CmmLit (CmmLabel mkSMAP_DIRTY_infoLabel))) dst_p <- assignTempE $ cmmOffsetExprW dflags (cmmOffsetB dflags dst (smallArrPtrsHdrSize dflags)) dst_off src_p <- assignTempE $ cmmOffsetExprW dflags (cmmOffsetB dflags src (smallArrPtrsHdrSize dflags)) src_off let bytes = wordsToBytes dflags n copy src dst dst_p src_p bytes -- | Takes an info table label, a register to return the newly -- allocated array in, a source array, an offset in the source array, -- and the number of elements to copy. Allocates a new array and -- initializes it from the source array. emitCloneArray :: CLabel -> CmmFormal -> CmmExpr -> CmmExpr -> WordOff -> FCode () emitCloneArray info_p res_r src src_off n = do dflags <- getDynFlags let info_ptr = mkLblExpr info_p rep = arrPtrsRep dflags n tickyAllocPrim (mkIntExpr dflags (arrPtrsHdrSize dflags)) (mkIntExpr dflags (nonHdrSize dflags rep)) (zeroExpr dflags) let hdr_size = fixedHdrSize dflags base <- allocHeapClosure rep info_ptr cccsExpr [ (mkIntExpr dflags n, hdr_size + oFFSET_StgMutArrPtrs_ptrs dflags) , (mkIntExpr dflags (nonHdrSizeW rep), hdr_size + oFFSET_StgMutArrPtrs_size dflags) ] arr <- CmmLocal `fmap` newTemp (bWord dflags) emit $ mkAssign arr base dst_p <- assignTempE $ cmmOffsetB dflags (CmmReg arr) (arrPtrsHdrSize dflags) src_p <- assignTempE $ cmmOffsetExprW dflags src (cmmAddWord dflags (mkIntExpr dflags (arrPtrsHdrSizeW dflags)) src_off) emitMemcpyCall dst_p src_p (mkIntExpr dflags (wordsToBytes dflags n)) (wordAlignment dflags) emit $ mkAssign (CmmLocal res_r) (CmmReg arr) -- | Takes an info table label, a register to return the newly -- allocated array in, a source array, an offset in the source array, -- and the number of elements to copy. Allocates a new array and -- initializes it from the source array. emitCloneSmallArray :: CLabel -> CmmFormal -> CmmExpr -> CmmExpr -> WordOff -> FCode () emitCloneSmallArray info_p res_r src src_off n = do dflags <- getDynFlags let info_ptr = mkLblExpr info_p rep = smallArrPtrsRep n tickyAllocPrim (mkIntExpr dflags (smallArrPtrsHdrSize dflags)) (mkIntExpr dflags (nonHdrSize dflags rep)) (zeroExpr dflags) let hdr_size = fixedHdrSize dflags base <- allocHeapClosure rep info_ptr cccsExpr [ (mkIntExpr dflags n, hdr_size + oFFSET_StgSmallMutArrPtrs_ptrs dflags) ] arr <- CmmLocal `fmap` newTemp (bWord dflags) emit $ mkAssign arr base dst_p <- assignTempE $ cmmOffsetB dflags (CmmReg arr) (smallArrPtrsHdrSize dflags) src_p <- assignTempE $ cmmOffsetExprW dflags src (cmmAddWord dflags (mkIntExpr dflags (smallArrPtrsHdrSizeW dflags)) src_off) emitMemcpyCall dst_p src_p (mkIntExpr dflags (wordsToBytes dflags n)) (wordAlignment dflags) emit $ mkAssign (CmmLocal res_r) (CmmReg arr) -- | Takes and offset in the destination array, the base address of -- the card table, and the number of elements affected (*not* the -- number of cards). The number of elements may not be zero. -- Marks the relevant cards as dirty. emitSetCards :: CmmExpr -> CmmExpr -> WordOff -> FCode () emitSetCards dst_start dst_cards_start n = do dflags <- getDynFlags start_card <- assignTempE $ cardCmm dflags dst_start let end_card = cardCmm dflags (cmmSubWord dflags (cmmAddWord dflags dst_start (mkIntExpr dflags n)) (mkIntExpr dflags 1)) emitMemsetCall (cmmAddWord dflags dst_cards_start start_card) (mkIntExpr dflags 1) (cmmAddWord dflags (cmmSubWord dflags end_card start_card) (mkIntExpr dflags 1)) (mkAlignment 1) -- no alignment (1 byte) -- Convert an element index to a card index cardCmm :: DynFlags -> CmmExpr -> CmmExpr cardCmm dflags i = cmmUShrWord dflags i (mkIntExpr dflags (mUT_ARR_PTRS_CARD_BITS dflags)) ------------------------------------------------------------------------------ -- SmallArray PrimOp implementations doReadSmallPtrArrayOp :: LocalReg -> CmmExpr -> CmmExpr -> FCode () doReadSmallPtrArrayOp res addr idx = do dflags <- getDynFlags mkBasicIndexedRead (smallArrPtrsHdrSize dflags) Nothing (gcWord dflags) res addr (gcWord dflags) idx doWriteSmallPtrArrayOp :: CmmExpr -> CmmExpr -> CmmExpr -> FCode () doWriteSmallPtrArrayOp addr idx val = do dflags <- getDynFlags let ty = cmmExprType dflags val -- Update remembered set for non-moving collector tmp <- newTemp ty mkBasicIndexedRead (smallArrPtrsHdrSize dflags) Nothing ty tmp addr ty idx whenUpdRemSetEnabled dflags $ emitUpdRemSetPush (CmmReg (CmmLocal tmp)) emitPrimCall [] MO_WriteBarrier [] -- #12469 mkBasicIndexedWrite (smallArrPtrsHdrSize dflags) Nothing addr ty idx val emit (setInfo addr (CmmLit (CmmLabel mkSMAP_DIRTY_infoLabel))) ------------------------------------------------------------------------------ -- Atomic read-modify-write -- | Emit an atomic modification to a byte array element. The result -- reg contains that previous value of the element. Implies a full -- memory barrier. doAtomicRMW :: LocalReg -- ^ Result reg -> AtomicMachOp -- ^ Atomic op (e.g. add) -> CmmExpr -- ^ MutableByteArray# -> CmmExpr -- ^ Index -> CmmType -- ^ Type of element by which we are indexing -> CmmExpr -- ^ Op argument (e.g. amount to add) -> FCode () doAtomicRMW res amop mba idx idx_ty n = do dflags <- getDynFlags let width = typeWidth idx_ty addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags) width mba idx emitPrimCall [ res ] (MO_AtomicRMW width amop) [ addr, n ] -- | Emit an atomic read to a byte array that acts as a memory barrier. doAtomicReadByteArray :: LocalReg -- ^ Result reg -> CmmExpr -- ^ MutableByteArray# -> CmmExpr -- ^ Index -> CmmType -- ^ Type of element by which we are indexing -> FCode () doAtomicReadByteArray res mba idx idx_ty = do dflags <- getDynFlags let width = typeWidth idx_ty addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags) width mba idx emitPrimCall [ res ] (MO_AtomicRead width) [ addr ] -- | Emit an atomic write to a byte array that acts as a memory barrier. doAtomicWriteByteArray :: CmmExpr -- ^ MutableByteArray# -> CmmExpr -- ^ Index -> CmmType -- ^ Type of element by which we are indexing -> CmmExpr -- ^ Value to write -> FCode () doAtomicWriteByteArray mba idx idx_ty val = do dflags <- getDynFlags let width = typeWidth idx_ty addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags) width mba idx emitPrimCall [ {- no results -} ] (MO_AtomicWrite width) [ addr, val ] doCasByteArray :: LocalReg -- ^ Result reg -> CmmExpr -- ^ MutableByteArray# -> CmmExpr -- ^ Index -> CmmType -- ^ Type of element by which we are indexing -> CmmExpr -- ^ Old value -> CmmExpr -- ^ New value -> FCode () doCasByteArray res mba idx idx_ty old new = do dflags <- getDynFlags let width = (typeWidth idx_ty) addr = cmmIndexOffExpr dflags (arrWordsHdrSize dflags) width mba idx emitPrimCall [ res ] (MO_Cmpxchg width) [ addr, old, new ] ------------------------------------------------------------------------------ -- Helpers for emitting function calls -- | Emit a call to @memcpy@. emitMemcpyCall :: CmmExpr -> CmmExpr -> CmmExpr -> Alignment -> FCode () emitMemcpyCall dst src n align = do emitPrimCall [ {-no results-} ] (MO_Memcpy (alignmentBytes align)) [ dst, src, n ] -- | Emit a call to @memmove@. emitMemmoveCall :: CmmExpr -> CmmExpr -> CmmExpr -> Alignment -> FCode () emitMemmoveCall dst src n align = do emitPrimCall [ {- no results -} ] (MO_Memmove (alignmentBytes align)) [ dst, src, n ] -- | Emit a call to @memset@. The second argument must fit inside an -- unsigned char. emitMemsetCall :: CmmExpr -> CmmExpr -> CmmExpr -> Alignment -> FCode () emitMemsetCall dst c n align = do emitPrimCall [ {- no results -} ] (MO_Memset (alignmentBytes align)) [ dst, c, n ] emitMemcmpCall :: LocalReg -> CmmExpr -> CmmExpr -> CmmExpr -> Int -> FCode () emitMemcmpCall res ptr1 ptr2 n align = do -- 'MO_Memcmp' is assumed to return an 32bit 'CInt' because all -- code-gens currently call out to the @memcmp(3)@ C function. -- This was easier than moving the sign-extensions into -- all the code-gens. dflags <- getDynFlags let is32Bit = typeWidth (localRegType res) == W32 cres <- if is32Bit then return res else newTemp b32 emitPrimCall [ cres ] (MO_Memcmp align) [ ptr1, ptr2, n ] unless is32Bit $ do emit $ mkAssign (CmmLocal res) (CmmMachOp (mo_s_32ToWord dflags) [(CmmReg (CmmLocal cres))]) emitBSwapCall :: LocalReg -> CmmExpr -> Width -> FCode () emitBSwapCall res x width = do emitPrimCall [ res ] (MO_BSwap width) [ x ] emitBRevCall :: LocalReg -> CmmExpr -> Width -> FCode () emitBRevCall res x width = do emitPrimCall [ res ] (MO_BRev width) [ x ] emitPopCntCall :: LocalReg -> CmmExpr -> Width -> FCode () emitPopCntCall res x width = do emitPrimCall [ res ] (MO_PopCnt width) [ x ] emitPdepCall :: LocalReg -> CmmExpr -> CmmExpr -> Width -> FCode () emitPdepCall res x y width = do emitPrimCall [ res ] (MO_Pdep width) [ x, y ] emitPextCall :: LocalReg -> CmmExpr -> CmmExpr -> Width -> FCode () emitPextCall res x y width = do emitPrimCall [ res ] (MO_Pext width) [ x, y ] emitClzCall :: LocalReg -> CmmExpr -> Width -> FCode () emitClzCall res x width = do emitPrimCall [ res ] (MO_Clz width) [ x ] emitCtzCall :: LocalReg -> CmmExpr -> Width -> FCode () emitCtzCall res x width = do emitPrimCall [ res ] (MO_Ctz width) [ x ] --------------------------------------------------------------------------- -- Pushing to the update remembered set --------------------------------------------------------------------------- -- | Push a range of pointer-array elements that are about to be copied over to -- the update remembered set. emitCopyUpdRemSetPush :: DynFlags -> WordOff -- ^ array header size -> CmmExpr -- ^ destination array -> CmmExpr -- ^ offset in destination array (in words) -> Int -- ^ number of elements to copy -> FCode () emitCopyUpdRemSetPush _dflags _hdr_size _dst _dst_off 0 = return () emitCopyUpdRemSetPush dflags hdr_size dst dst_off n = whenUpdRemSetEnabled dflags $ do updfr_off <- getUpdFrameOff graph <- mkCall lbl (NativeNodeCall,NativeReturn) [] args updfr_off [] emit graph where lbl = mkLblExpr $ mkPrimCallLabel $ PrimCall (fsLit "stg_copyArray_barrier") rtsUnitId args = [ mkIntExpr dflags hdr_size , dst , dst_off , mkIntExpr dflags n ]