The Language GF

BNF-converter

January 7, 2006

This document was automatically generated by the BNF-Converter. It was
generated together with the lexer, the parser, and the abstract syntax mod-
ule, which guarantees that the document matches with the implementation
of the language (provided no hand-hacking has taken place).

The lexical structure of GF

Identifiers

Identifiers (Ident) are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters _ ’, reserved words
excluded.

Literals

Integer literals (Int) are nonempty sequences of digits.

String literals (String) have the form "z", where x is any sequence of any
characters except " unless preceded by \.

Double-precision float literals (Double) have the structure indicated by the
regular expression (digit) + . (digit) + (‘e’*-?(digit)+)? i.e. two sequences
of digits separated by a decimal point, optionally followed by an unsigned
or negative exponent.

(%2

LString literals are recognized by the regular expression ” ({anychar)—")x

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in GF are the following:

Lin PType Str

Strs Tok Type
abstract case cat
concrete data def
flags fn fun
grammar in include
incomplete instance interface
let lin lincat
lindef lintype of

open oper out
package param pattern
pre printname resource
reuse strs table
tokenizer transfer union
var variants where
with

The symbols used in GF are the following:

[N,
~

®— % \/ 32
+
+
l

Comments

Single-line comments begin with ——.
Multiple-line comments are enclosed with {— and —}.

The syntactic structure of GF

Non-terminals are enclosed between (and). The symbols ::= (production),
| (union) and e (empty rule) belong to the BNF notation. All other symbols
are terminals.

(Grammar) == (ListModDef)

(ListModDef) == €
| (ModDef) (ListModDef)
(ModDef) == (ModDef) ;

] grammar (Ident) = { abstract = (Ident) ; (ListConcSpec) }
] (CompIMod) (ModType) = (ModBody)

(ConcSpec) = (Ident) = (ConcExp)
(ListConcSpec) == ¢

| (ConcSpec)

| (ConcSpec) ; (ListConcSpec)
(ConcExp) == (Ident) (ListTransfer)
(ListTransfer) == €

| (Transfer) (ListTransfer)

(Transfer) := (transfer in (Open))
] (transfer out (Open))

(ModType) := abstract (Ident)
| resource (Ident)
| interface (Ident)
| concrete (Ident) of (Ident)
| instance (Ident) of (Ident)
| transfer (Ident) : (Open) —> (Open)

(ModBody) := (Extend) (Opens) { (ListTopDef) }
(Ident) with (ListOpen)

(ListIncluded) ** (Ident) with (ListOpen)
reuse (Ident)

union (ListIncluded)

(ListTopDef) == €
| (TopDef) (ListTopDef)
(Extend) := (ListIncluded) **
| €
(ListOpen) == €
| (Open)

| (Open) , (ListOpen)

(Opens) == ¢
| open (ListOpen) in

(Open) |
|

(ComplMod)

(QualOpen)

(ListIncluded)

(Included)

(Def) =

(CatDef)

(Ident)

((QualOpen) (Ident))

((QualOpen) (Ident) = (Ident))
= €

| incomplete

= €
| incomplete
| interface

n= €

| (Included)

| (Included) , (ListIncluded)

= (Ident)

(Ident) [(ListIdent)]
(Ident) — [(Listldent)]

ListName) : (Exp)
ListName) = (Exp)

Name) (ListPatt) = (Exp)
ListName) : (Exp) = (Exp)

= cat (ListCatDef)

fun (ListFunDef)

data (ListFunDef)

def (ListDef)

data (ListDataDef)

transfer (ListDef)

param (ListParDef)

oper (ListDef)

lincat (ListPrintDef)
lindef (ListDef)

lin (ListDef)

printname cat (ListPrintDef)
printname fun (ListPrintDef)
flags (ListFlagDef)
printname (ListPrintDef)
lintype (ListDef)

pattern (ListDef)

package (Ident) = { (ListTopDef) } ;
var (ListDef)

tokenizer (Ident) ;

= (Ident) (ListDDecl)

[(Ident) (ListDDecl)]
[(Ident) (ListDDecl) 1 { (Integer) }

(FunDef) == (Listldent) : (Exp)

(DataDef) == (Ident) = (ListDataConstr)
(DataConstr) == (Ident)
| (Ident) . (Ident)
(ListDataConstr) == ¢
| (DataConstr)
| (DataConstr) | (ListDataConstr)
(ParDef) := (Ident) = (ListParConstr)
| (Ident) = (in (Ident))
] (Ident)
(ParConstr) == (Ident) (ListDDecl)
(PrintDef) == (ListName) = (Exp)
(FlagDef) := (Ident) = (Ident)
(ListDef) == (Def) ;
| (Def) ; (ListDef)
(ListCatDef) = (CatDef) ;
] (CatDef) ; (ListCatDef)
(ListFunDef) ::= (FunDef) ;
| (FunDef) ; (ListFunDef)
(ListDataDef) ::= (DataDef) ;
| (DataDef) ; (ListDataDef)
(ListParDef) ::= (ParDef) ;
| (ParDef) ; (ListParDef)
(ListPrintDef) ::= (PrintDef) ;
| (PrintDef) ; (ListPrintDef)
(ListFlagDef) ::= (FlagDef) ;
| (FlagDef) ; (ListFlagDef)
(ListParConstr) == €
| (ParConstr)
| (ParConstr) | (ListParConstr)
(ListIdent) := (Ident)

| (Ident) , (Listldent)

(Name) == (Ident)
] [(Ident)]

(ListName) := (Name)
\ (Name) , (ListName)

(LocDef) == (Listldent) : (Exp)
| (ListIdent) = (Exp)
| (Listldent) : (Exp) = (Exp)

(ListLocDef) := €
(LocDef)
(LocDef) ; (ListLocDef)

|

|
(Exp6) == (Ident)

{ (Ident) }

% (Ident) %

[(Ident) (Exps)]
[(String) 1]
{ (ListLocDef) }
< (ListTupleComp) >
(in (Ident))
< (Exp) : (Exp) >
((Exp))
(LString)
(Exp5) == (Exp5) . (Label)
| { (Ident) . (Ident) }
| % (Ident) . (Ident)
| (Exp6)

|
!
|
|
|
|
|
|
| data
|
!
|
!
|
!
|
|

(Exp4) == (Exp4) (Exp5)

] table { (ListCase) }

| table (Exp6) { (ListCase) }
] table (Exp6) [(ListExp)]
| case (Exp) of { (ListCase) }
| variants { (ListExp) }
| pre { (Exp) ; (ListAltern) }
| strs { (ListExp) }

| (Ident) @ (Exp6)
| (Exps)
| Lin (Ident)

(Exp3) == (Exp3) ! (Exp4)

** (Expd)
+ (Expl)

(Exp) == (Expl) ++ (Exp)
| \ (ListBind) —> (Exp)

| \ \ (ListBind) => (Exp)

| (Decl) —> (Exp)

| (Exp3) => (Exp)

| let { (ListLocDef) } in (Exp)
| let (ListLocDef) in (Exp)

| (Exp3) where { (ListLocDef) }
| fn { (ListEquation) }

| in (Exp5) (String)

| (Expl)

(Exp2) == (Exp3)

(Patt2) == _
(Ident)

{ (Ident) }
(Ident) . (Ident)
(Integer)
(Double)
(String)
{ (ListPattAss) }

< (ListPattTupleComp) >
((Patt))

(Pattl) == (Ident) (ListPatt)
| (Ident) . (Ident) (ListPatt)
\ (Patt2) *
| (Ident) @ (Patt2)
| — (Patt2)
| (Patt2)
(Patt) == (Patt) | (Pattl)
| (Patt) + (Pattl)
] (Pattl)
(PattAss) == (Listldent) = (Patt)
(Label) == (Ident)
| $ (Integer)
(Sort) == Type
| PType
| Tok
| Str
| Strs
(ListPattAss) == ¢
| (PattAss)
| (PattAss) ; (ListPattAss)
(ListPatt) := (Patt2)
\ (Patt2) (ListPatt)
(Bind) == (Ident)
| -
(ListBind) == €
| (Bind)

| (Bind) , (ListBind)

(Decl) := ((ListBind) : (Exp))

| (Exp4)
(TupleComp) == (Exp)
(PattTupleComp) == (Patt)
(ListTupleComp) == ¢
| (TupleComp)
] (TupleComp) , (ListTupleComp)
(ListPattTupleComp) := €
| (PattTupleComp)
| (PattTupleComp) , (ListPattTupleComp)
(Case) == (Patt) => (Exp)
(ListCase) := (Case)
| (Case) ; (ListCase)
(Equation) == (ListPatt) —> (Exp)
(ListEquation) = €
| (Equation)
| (Equation) ; (ListEquation)
(Altern) == (Exp) / (Exp)
(ListAltern) == €
| (Altern)
| (Altern) ; (ListAltern)
(DDecl) == ((ListBind) : (Exp))
| (Exp6)
(ListDDecl) == ¢
| (DDecl) (ListDDecl)
(OldGrammar) == (Include) (ListTopDef)
(Include) == ¢

| include (ListFileName)

(FileName) == (String)
| (Ident)
| / (FileName)
| . (FileName)
| — (FileName)
| (Ident) (FileName)

(ListFileName) ::= (FileName) ;
| (FileName) ; (ListFileName)

10

