{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} module Parser (parseProp) where import Proposition import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts import Control.Applicative(Applicative(..)) import Control.Monad (ap) -- parser produced by Happy Version 1.19.5 newtype HappyAbsSyn t4 = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn4 :: t4 -> (HappyAbsSyn t4) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn t4) -> t4 happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} happyInTok :: (Token) -> (HappyAbsSyn t4) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn t4) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x01\x00\xfe\xff\x01\x00\x08\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00\x11\x00\x00\x00\x19\x00\x1f\x00\x1f\x00\x02\x00\xfd\xff\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x27\x00\x00\x00\x21\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x00\x00\x00\x13\x00\x12\x00\x10\x00\x0a\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\xf7\xff\xf6\xff\xf5\xff\x00\x00\xfd\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\xff\xf8\xff\xf9\xff\xfa\xff\xfb\xff\xfc\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x04\x00\x01\x00\x02\x00\x03\x00\x00\x00\x04\x00\x05\x00\x0a\x00\x08\x00\x00\x00\x0a\x00\x04\x00\x05\x00\x06\x00\x07\x00\x00\x00\x09\x00\x00\x00\x00\x00\x0c\x00\x04\x00\x05\x00\x06\x00\x07\x00\xff\xff\x09\x00\x00\x00\x0b\x00\x04\x00\x05\x00\x06\x00\x07\x00\x00\x00\x09\x00\x04\x00\x05\x00\x06\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x0a\x00\x05\x00\x06\x00\x07\x00\x10\x00\x0a\x00\x0b\x00\x03\x00\x08\x00\x11\x00\x03\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x12\x00\x0e\x00\x13\x00\x14\x00\xff\xff\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x00\x00\x0e\x00\x08\x00\x10\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0e\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 10) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10) ] happy_n_terms = 13 :: Int happy_n_nonterms = 1 :: Int happyReduce_1 = happySpecReduce_3 0# happyReduction_1 happyReduction_1 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_2 of { happy_var_2 -> happyIn4 (happy_var_2 )} happyReduce_2 = happySpecReduce_2 0# happyReduction_2 happyReduction_2 happy_x_2 happy_x_1 = case happyOut4 happy_x_2 of { happy_var_2 -> happyIn4 (neg happy_var_2 )} happyReduce_3 = happySpecReduce_3 0# happyReduction_3 happyReduction_3 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 ((happy_var_1 /\ happy_var_3) )}} happyReduce_4 = happySpecReduce_3 0# happyReduction_4 happyReduction_4 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 ((happy_var_1 \/ happy_var_3) )}} happyReduce_5 = happySpecReduce_3 0# happyReduction_5 happyReduction_5 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 ((happy_var_1 ==> happy_var_3) )}} happyReduce_6 = happySpecReduce_3 0# happyReduction_6 happyReduction_6 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 ((happy_var_1 <== happy_var_3) )}} happyReduce_7 = happySpecReduce_3 0# happyReduction_7 happyReduction_7 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 ((happy_var_1 <=> happy_var_3) )}} happyReduce_8 = happySpecReduce_1 0# happyReduction_8 happyReduction_8 happy_x_1 = happyIn4 (T ) happyReduce_9 = happySpecReduce_1 0# happyReduction_9 happyReduction_9 happy_x_1 = happyIn4 (F ) happyReduce_10 = happySpecReduce_1 0# happyReduction_10 happyReduction_10 happy_x_1 = case happyOutTok happy_x_1 of { (TokenVar happy_var_1) -> happyIn4 (Atom happy_var_1 )} happyNewToken action sts stk [] = happyDoAction 12# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { TokenT -> cont 1#; TokenF -> cont 2#; TokenVar happy_dollar_dollar -> cont 3#; TokenAnd -> cont 4#; TokenOr -> cont 5#; TokenImp -> cont 6#; TokenBImp -> cont 7#; TokenNot -> cont 8#; TokenEq -> cont 9#; TokenOB -> cont 10#; TokenCB -> cont 11#; _ -> happyError' (tk:tks) } happyError_ 12# tk tks = happyError' tks happyError_ _ tk tks = happyError' (tk:tks) happyThen :: () => E a -> (a -> E b) -> E b happyThen = (thenE) happyReturn :: () => a -> E a happyReturn = (returnE) happyThen1 m k tks = (thenE) m (\a -> k a tks) happyReturn1 :: () => a -> b -> E a happyReturn1 = \a tks -> (returnE) a happyError' :: () => [(Token)] -> E a happyError' = parseError parse tks = happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x)) happySeq = happyDontSeq -- Used for error handling data E a = Ok a | Failed String thenE :: E a -> (a -> E b) -> E b m `thenE` k = case m of Ok a -> k a Failed e -> Failed e returnE :: a -> E a returnE a = Ok a failE :: String -> E a failE err = Failed err catchE :: E a -> (String -> E a) -> E a catchE m k = case m of Ok a -> Ok a Failed e -> k e parseError _ = failE "Parse error" data Token = TokenT | TokenF | TokenAnd | TokenOr | TokenImp | TokenBImp | TokenNot | TokenEq | TokenOB | TokenCB | TokenVar String deriving Show tokenize :: String -> [Token] tokenize [] = [] tokenize ('/':'\\':cs) = TokenAnd : tokenize cs tokenize ('&':cs) = TokenAnd : tokenize cs tokenize ('\\':'/':cs) = TokenOr : tokenize cs tokenize ('|':cs) = TokenOr : tokenize cs tokenize ('<':'-':'>':cs) = TokenEq : tokenize cs tokenize ('<':'=':'>':cs) = TokenEq : tokenize cs tokenize ('-':'>':cs) = TokenImp : tokenize cs tokenize ('=':'>':cs) = TokenImp : tokenize cs tokenize ('<':'-':cs) = TokenBImp : tokenize cs tokenize ('<':'=':cs) = TokenBImp : tokenize cs tokenize ('-':cs) = TokenNot : tokenize cs tokenize ('~':cs) = TokenNot : tokenize cs tokenize ('(':cs) = TokenOB : tokenize cs tokenize (')':cs) = TokenCB : tokenize cs tokenize ('T':cs) = TokenT : tokenize cs tokenize ('F':cs) = TokenF : tokenize cs tokenize input@(c:cs) | isVarChar c = TokenVar var : tokenize rest where isVarChar = (`elem` "abcdefghijklmnopqrstuvwxyz1234567890") (var, rest) = span isVarChar input -- just skip unrecognizable characters tokenize (_:cs) = tokenize cs parseProp str = case parse $ tokenize str of Ok p -> Right p Failed s -> Left s {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "" #-} {-# LINE 11 "" #-} # 1 "/usr/include/stdc-predef.h" 1 3 4 # 17 "/usr/include/stdc-predef.h" 3 4 {-# LINE 11 "" #-} {-# LINE 1 "/usr/lib/ghc-8.0.2/include/ghcversion.h" #-} {-# LINE 11 "" #-} {-# LINE 1 "/tmp/ghc3409_0/ghc_2.h" #-} {-# LINE 11 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 13 "templates/GenericTemplate.hs" #-} -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif {-# LINE 46 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList {-# LINE 67 "templates/GenericTemplate.hs" #-} {-# LINE 77 "templates/GenericTemplate.hs" #-} {-# LINE 86 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 170 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.