{-# LANGUAGE BangPatterns , FlexibleContexts , FlexibleInstances , ParallelListComp , TypeFamilies , TypeOperators #-} {-# OPTIONS_GHC -fno-warn-orphans #-} -- | Contains functions to compute and manipulate histograms as well as some -- images transformations which are histogram-based. -- -- Every polymorphic function is specialised for histograms of 'Int32', 'Double' -- and 'Float'. Other types can be specialized as every polymorphic function is -- declared @INLINABLE@. module Vision.Histogram ( -- * Types & helpers Histogram (..), HistogramShape (..), ToHistogram (..) , index, (!), linearIndex, map, assocs, pixToBin -- * Histogram computations , histogram, histogram2D, reduce, resize, cumulative, normalize -- * Images processing , equalizeImage -- * Histogram comparisons , compareCorrel, compareChi, compareIntersect, compareEMD ) where import Data.Int import Data.Vector.Storable (Vector) import Foreign.Storable (Storable) import Prelude hiding (map) import qualified Data.Vector.Storable as V import Vision.Image.Class (Pixel, MaskedImage, Image, ImagePixel, FunctorImage) import Vision.Image.Grey.Type (GreyPixel (..)) import Vision.Image.HSV.Type (HSVPixel (..)) import Vision.Image.RGBA.Type (RGBAPixel (..)) import Vision.Image.RGB.Type (RGBPixel (..)) import Vision.Primitive ( Z (..), (:.) (..), Shape (..), DIM1, DIM3, DIM4, DIM5, ix1, ix3, ix4 ) import qualified Vision.Image.Class as I -- There is no rule to simplify the conversion from Int32 to Double and Float -- when using realToFrac. Both conversions are using a temporary yet useless -- Rational value. {-# RULES "realToFrac/Int32->Double" realToFrac = fromIntegral :: Int32 -> Double "realToFrac/Int32->Float" realToFrac = fromIntegral :: Int32 -> Float #-} -- Types ----------------------------------------------------------------------- data Histogram sh a = Histogram { shape :: !sh , vector :: !(Vector a) -- ^ Values of the histogram in row-major order. } deriving (Eq, Ord, Show) -- | Subclass of 'Shape' which defines how to resize a shape so it will fit -- inside a resized histogram. class Shape sh => HistogramShape sh where -- | Given a number of bins of an histogram, reduces an index so it will be -- mapped to a bin. toBin :: sh -- ^ The number of bins we are mapping to. -> sh -- ^ The number of possible values of the original index. -> sh -- ^ The original index. -> sh -- ^ The index of the bin in the histogram. instance HistogramShape Z where toBin _ _ _ = Z {-# INLINE toBin #-} instance HistogramShape sh => HistogramShape (sh :. Int) where toBin !(shBins :. bins) !(shMaxBins :. maxBins) !(shIx :. ix) | bins == maxBins = inner :. ix | otherwise = inner :. (ix * bins `quot` maxBins) where inner = toBin shBins shMaxBins shIx {-# INLINE toBin #-} -- | This class defines how many dimensions a histogram will have and what will -- be the default number of bins. class (Pixel p, Shape (PixelValueSpace p)) => ToHistogram p where -- | Gives the value space of a pixel. Single-channel pixels will be 'DIM1' -- whereas three-channels pixels will be 'DIM3'. -- This is used to determine the rank of the generated histogram. type PixelValueSpace p -- | Converts a pixel to an index. pixToIndex :: p -> PixelValueSpace p -- | Returns the maximum number of different values an index can take for -- each dimension of the histogram (aka. the maximum index returned by -- 'pixToIndex' plus one). domainSize :: p -> PixelValueSpace p instance ToHistogram GreyPixel where type PixelValueSpace GreyPixel = DIM1 pixToIndex !(GreyPixel val) = ix1 $ int val {-# INLINE pixToIndex #-} domainSize _ = ix1 256 instance ToHistogram RGBAPixel where type PixelValueSpace RGBAPixel = DIM4 pixToIndex !(RGBAPixel r g b a) = ix4 (int r) (int g) (int b) (int a) {-# INLINE pixToIndex #-} domainSize _ = ix4 256 256 256 256 instance ToHistogram RGBPixel where type PixelValueSpace RGBPixel = DIM3 pixToIndex !(RGBPixel r g b) = ix3 (int r) (int g) (int b) {-# INLINE pixToIndex #-} domainSize _ = ix3 256 256 256 instance ToHistogram HSVPixel where type PixelValueSpace HSVPixel = DIM3 pixToIndex !(HSVPixel h s v) = ix3 (int h) (int s) (int v) {-# INLINE pixToIndex #-} domainSize _ = ix3 180 256 256 -- Functions ------------------------------------------------------------------- index :: (Shape sh, Storable a) => Histogram sh a -> sh -> a index !hist = linearIndex hist . toLinearIndex (shape hist) {-# INLINE index #-} -- | Alias of 'index'. (!) :: (Shape sh, Storable a) => Histogram sh a -> sh -> a (!) = index {-# INLINE (!) #-} -- | Returns the value at the index as if the histogram was a single dimension -- vector (row-major representation). linearIndex :: (Shape sh, Storable a) => Histogram sh a -> Int -> a linearIndex !hist = (V.!) (vector hist) {-# INLINE linearIndex #-} map :: (Storable a, Storable b) => (a -> b) -> Histogram sh a -> Histogram sh b map f !(Histogram sh vec) = Histogram sh (V.map f vec) {-# INLINE map #-} -- | Returns all index/value pairs from the histogram. assocs :: (Shape sh, Storable a) => Histogram sh a -> [(sh, a)] assocs !(Histogram sh vec) = [ (ix, v) | ix <- shapeList sh | v <- V.toList vec ] {-# INLINE assocs #-} -- | Given the number of bins of an histogram and a given pixel, returns the -- corresponding bin. pixToBin :: (HistogramShape (PixelValueSpace p), ToHistogram p) => PixelValueSpace p -> p -> PixelValueSpace p pixToBin size p = let !domain = domainSize p in toBin size domain $! pixToIndex p {-# INLINE pixToBin #-} -- | Computes an histogram from a (possibly) multi-channel image. -- -- If the size of the histogram is not given, there will be as many bins as the -- range of values of pixels of the original image (see 'domainSize'). -- -- If the size of the histogram is specified, every bin of a given dimension -- will be of the same size (uniform histogram). histogram :: ( MaskedImage i, ToHistogram (ImagePixel i), Storable a, Num a , HistogramShape (PixelValueSpace (ImagePixel i))) => Maybe (PixelValueSpace (ImagePixel i)) -> i -> Histogram (PixelValueSpace (ImagePixel i)) a histogram mSize img = let initial = V.replicate nBins 0 ones = V.replicate nPixs 1 ixs = V.map toIndex (I.values img) in Histogram size (V.accumulate_ (+) initial ixs ones) where !size = case mSize of Just s -> s Nothing -> domainSize (I.pixel img) !nChans = I.nChannels img !nPixs = shapeLength (I.shape img) * nChans !nBins = shapeLength size toIndex !p = toLinearIndex size $! case mSize of Just _ -> pixToBin size p Nothing -> pixToIndex p {-# INLINE toIndex #-} {-# INLINABLE histogram #-} -- | Similar to 'histogram' but adds two dimensions for the y and x-coordinates -- of the sampled points. This way, the histogram will map different regions of -- the original image. -- -- For example, an 'RGB' image will be mapped as -- @'Z' ':.' red channel ':.' green channel ':.' blue channel ':.' y region -- ':.' x region@. -- -- As there is no reason to create an histogram as large as the number of pixels -- of the image, a size is always needed. histogram2D :: ( Image i, ToHistogram (ImagePixel i), Storable a, Num a , HistogramShape (PixelValueSpace (ImagePixel i))) => (PixelValueSpace (ImagePixel i)) :. Int :. Int -> i -> Histogram ((PixelValueSpace (ImagePixel i)) :. Int :. Int) a histogram2D size img = let initial = V.replicate nBins 0 ones = V.replicate nPixs 1 imgIxs = V.iterateN nPixs (shapeSucc imgSize) shapeZero ixs = V.zipWith toIndex imgIxs (I.vector img) in Histogram size (V.accumulate_ (+) initial ixs ones) where !imgSize@(Z :. h :. w) = I.shape img !maxSize = domainSize (I.pixel img) :. h :. w !nChans = I.nChannels img !nPixs = shapeLength (I.shape img) * nChans !nBins = shapeLength size toIndex !(Z :. y :. x) !p = let !ix = (pixToIndex p) :. y :. x in toLinearIndex size $! toBin size maxSize ix {-# INLINE toIndex #-} {-# INLINABLE histogram2D #-} -- Reshaping ------------------------------------------------------------------- -- | Reduces a 2D histogram to its linear representation. See 'resize' for a -- reduction of the number of bins of an histogram. -- -- @'histogram' == 'reduce' . 'histogram2D'@ reduce :: (HistogramShape sh, Storable a, Num a) => Histogram (sh :. Int :. Int) a -> Histogram sh a reduce !(Histogram sh vec) = let !(sh' :. h :. w) = sh !len2D = h * w !vec' = V.unfoldrN (shapeLength sh') step vec step !rest = let (!channels, !rest') = V.splitAt len2D rest in Just (V.sum channels, rest') in Histogram sh' vec' {-# SPECIALIZE reduce :: Histogram DIM5 Int32 -> Histogram DIM3 Int32 , Histogram DIM5 Double -> Histogram DIM3 Double , Histogram DIM5 Float -> Histogram DIM3 Float , Histogram DIM3 Int32 -> Histogram DIM1 Int32 , Histogram DIM3 Double -> Histogram DIM1 Double , Histogram DIM3 Float -> Histogram DIM1 Float #-} {-# INLINABLE reduce #-} -- | Resizes an histogram to another index shape. See 'reduce' for a reduction -- of the number of dimensions of an histogram. resize :: (HistogramShape sh, Storable a, Num a) => sh -> Histogram sh a -> Histogram sh a resize !sh' (Histogram sh vec) = let initial = V.replicate (shapeLength sh') 0 -- TODO: In this scheme, indexes are computed for each bin of the -- original histogram. It's sub-optimal as some parts of those indexes -- (lower dimensions) don't change at each bin. reIndex = toLinearIndex sh' . toBin sh' sh . fromLinearIndex sh ixs = V.map reIndex $ V.enumFromN 0 (shapeLength sh) in Histogram sh' (V.accumulate_ (+) initial ixs vec) -- Normalisation --------------------------------------------------------------- -- | Computes the cumulative histogram of another single dimension histogram. -- -- @C(i) = SUM H(j)@ for each @j@ in @[0..i]@ where @C@ is the cumulative -- histogram, and @H@ the original histogram. cumulative :: (Storable a, Num a) => Histogram DIM1 a -> Histogram DIM1 a cumulative (Histogram sh vec) = Histogram sh (V.scanl1' (+) vec) {-# SPECIALIZE cumulative :: Histogram DIM1 Int32 -> Histogram DIM1 Int32 , Histogram DIM1 Double -> Histogram DIM1 Double , Histogram DIM1 Float -> Histogram DIM1 Float #-} {-# INLINABLE cumulative #-} -- | Normalizes the histogram so that the sum of the histogram bins is equal to -- the given value (normalisation by the @L1@ norm). -- -- This is useful to compare two histograms which have been computed from images -- with a different number of pixels. normalize :: (Storable a, Real a, Storable b, Fractional b) => b -> Histogram sh a -> Histogram sh b normalize norm !hist@(Histogram _ vec) = let !ratio = norm / realToFrac (V.sum vec) equalizeVal !val = realToFrac val * ratio {-# INLINE equalizeVal #-} in map equalizeVal hist {-# SPECIALIZE normalize :: Double -> Histogram sh Int32 -> Histogram sh Double , Float -> Histogram sh Int32 -> Histogram sh Float , Double -> Histogram sh Double -> Histogram sh Double , Float -> Histogram sh Double -> Histogram sh Float , Double -> Histogram sh Float -> Histogram sh Double , Float -> Histogram sh Float -> Histogram sh Float #-} {-# INLINABLE normalize #-} -- | Equalizes a single channel image by equalising its histogram. -- -- The algorithm equalizes the brightness and increases the contrast of the -- image by mapping each pixel values to the value at the index of the -- cumulative @L1@-normalized histogram : -- -- @N(x, y) = H(I(x, y))@ where @N@ is the equalized image, @I@ is the image and -- @H@ the cumulative of the histogram normalized over an @L1@ norm. -- -- See <https://en.wikipedia.org/wiki/Histogram_equalization>. equalizeImage :: ( FunctorImage i i, Integral (ImagePixel i) , ToHistogram (ImagePixel i) , PixelValueSpace (ImagePixel i) ~ DIM1) => i -> i equalizeImage img = I.map equalizePixel img where hist = histogram Nothing img :: Histogram DIM1 Int32 Z :. nBins = shape hist cumNormalized = cumulative $ normalize (double nBins) hist !cumNormalized' = map round cumNormalized :: Histogram DIM1 Int32 equalizePixel !val = fromIntegral $ cumNormalized' ! ix1 (int val) {-# INLINE equalizePixel #-} {-# INLINABLE equalizeImage #-} -- Comparisons ----------------------------------------------------------------- -- | Computes the /Pearson\'s correlation coefficient/ between each -- corresponding bins of the two histograms. -- -- A value of 1 implies a perfect correlation, a value of -1 a perfect -- opposition and a value of 0 no correlation at all. -- -- @'compareCorrel' = SUM [ (H1(i) - µ(H1)) (H1(2) - µ(H2)) ] -- / ( SQRT [ SUM [ (H1(i) - µ(H1))^2 ] ] -- * SQRT [ SUM [ (H2(i) - µ(H2))^2 ] ] )@ -- -- Where @µ(H)@ is the average value of the histogram @H@. -- -- See <http://en.wikipedia.org/wiki/Pearson_correlation_coefficient>. compareCorrel :: (Shape sh, Storable a, Real a, Storable b, Eq b, Floating b) => Histogram sh a -> Histogram sh a -> b compareCorrel (Histogram sh1 vec1) (Histogram sh2 vec2) | sh1 /= sh2 = error "Histograms are not of equal size." | denominat == 0 = 1 | otherwise = numerat / denominat where numerat = V.sum $ V.zipWith (*) diff1 diff2 denominat = sqrt (V.sum (V.map square diff1)) * sqrt (V.sum (V.map square diff2)) diff1 = V.map (\v1 -> realToFrac v1 - avg1) vec1 diff2 = V.map (\v2 -> realToFrac v2 - avg2) vec2 (avg1, avg2) = (avg vec1, avg vec2) avg !vec = realToFrac (V.sum vec) / realToFrac (V.length vec) {-# SPECIALIZE compareCorrel :: Shape sh => Histogram sh Int32 -> Histogram sh Int32 -> Double , Shape sh => Histogram sh Int32 -> Histogram sh Int32 -> Float , Shape sh => Histogram sh Double -> Histogram sh Double -> Double , Shape sh => Histogram sh Double -> Histogram sh Double -> Float , Shape sh => Histogram sh Float -> Histogram sh Float -> Double , Shape sh => Histogram sh Float -> Histogram sh Float -> Float #-} {-# INLINABLE compareCorrel #-} -- | Computes the Chi-squared distance between two histograms. -- -- A value of 0 indicates a perfect match. -- -- @'compareChi' = SUM (d(i))@ for each indice @i@ of the histograms where -- @d(i) = 2 * ((H1(i) - H2(i))^2 / (H1(i) + H2(i)))@. compareChi :: (Shape sh, Storable a, Real a, Storable b, Fractional b) => Histogram sh a -> Histogram sh a -> b compareChi (Histogram sh1 vec1) (Histogram sh2 vec2) | sh1 /= sh2 = error "Histograms are not of equal size." | otherwise = (V.sum $ V.zipWith step vec1 vec2) * 2 where step !v1 !v2 = let !denom = v1 + v2 in if denom == 0 then 0 else realToFrac (square (v1 - v2)) / realToFrac denom {-# INLINE step #-} {-# SPECIALIZE compareChi :: Shape sh => Histogram sh Int32 -> Histogram sh Int32 -> Double , Shape sh => Histogram sh Int32 -> Histogram sh Int32 -> Float , Shape sh => Histogram sh Double -> Histogram sh Double -> Double , Shape sh => Histogram sh Double -> Histogram sh Double -> Float , Shape sh => Histogram sh Float -> Histogram sh Float -> Double , Shape sh => Histogram sh Float -> Histogram sh Float -> Float #-} {-# INLINABLE compareChi #-} -- | Computes the intersection of the two histograms. -- -- The higher the score is, the best the match is. -- -- @'compareIntersect' = SUM (min(H1(i), H2(i))@ for each indice @i@ of the -- histograms. compareIntersect :: (Shape sh, Storable a, Num a, Ord a) => Histogram sh a -> Histogram sh a -> a compareIntersect (Histogram sh1 vec1) (Histogram sh2 vec2) | sh1 /= sh2 = error "Histograms are not of equal size." | otherwise = V.sum $ V.zipWith min vec1 vec2 {-# SPECIALIZE compareIntersect :: Shape sh => Histogram sh Int32 -> Histogram sh Int32 -> Int32 , Shape sh => Histogram sh Double -> Histogram sh Double -> Double , Shape sh => Histogram sh Float -> Histogram sh Float -> Float #-} {-# INLINABLE compareIntersect #-} -- | Computed the /Earth mover's distance/ between two histograms. -- -- Current algorithm only supports histograms of one dimension. -- -- See <https://en.wikipedia.org/wiki/Earth_mover's_distance>. compareEMD :: (Num a, Storable a) => Histogram DIM1 a -> Histogram DIM1 a -> a compareEMD hist1@(Histogram sh1 _) hist2@(Histogram sh2 _) | sh1 /= sh2 = error "Histograms are not of equal size." | otherwise = let Histogram _ vec1 = cumulative hist1 Histogram _ vec2 = cumulative hist2 in V.sum $ V.zipWith (\v1 v2 -> abs (v1 - v2)) vec1 vec2 {-# SPECIALIZE compareEMD :: Histogram DIM1 Int32 -> Histogram DIM1 Int32 -> Int32 , Histogram DIM1 Double -> Histogram DIM1 Double -> Double , Histogram DIM1 Float -> Histogram DIM1 Float -> Float #-} {-# INLINABLE compareEMD #-} square :: Num a => a -> a square a = a * a double :: Integral a => a -> Double double= fromIntegral int :: Integral a => a -> Int int = fromIntegral