{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE DeriveDataTypeable #-} #ifndef MIN_VERSION_mtl #define MIN_VERSION_mtl(x,y,z) 1 #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.Iter -- Copyright : (C) 2013 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : MPTCs, fundeps -- -- Based on <http://www.ioc.ee/~tarmo/tday-veskisilla/uustalu-slides.pdf Capretta's Iterative Monad Transformer> -- -- Unlike 'Free', this is a true monad transformer. ---------------------------------------------------------------------------- module Control.Monad.Trans.Iter ( -- | -- Functions in Haskell are meant to be pure. For example, if an expression -- has type Int, there should exist a value of the type such that the expression -- can be replaced by that value in any context without changing the meaning -- of the program. -- -- Some computations may perform side effects (@unsafePerformIO@), throw an -- exception (using @error@); or not terminate -- (@let infinity = 1 + infinity in infinity@). -- -- While the 'IO' monad encapsulates side-effects, and the 'Either' -- monad encapsulates errors, the 'Iter' monad encapsulates -- non-termination. The 'IterT' transformer generalizes non-termination to any monadic -- computation. -- * The iterative monad transformer IterT(..) -- * Capretta's iterative monad , Iter, iter, runIter -- * Combinators , delay , hoistIterT , liftIter , cutoff , never , interleave, interleave_ -- * Consuming iterative monads , retract , fold , foldM -- * IterT ~ FreeT Identity , MonadFree(..) -- * Example -- $example ) where import Control.Applicative import Control.Monad (ap, liftM, MonadPlus(..), join) import Control.Monad.Fix import Control.Monad.Trans.Class import Control.Monad.Free.Class import Control.Monad.State.Class import Control.Monad.Error.Class import Control.Monad.Reader.Class import Control.Monad.Writer.Class import Control.Monad.Cont.Class import Control.Monad.IO.Class import Data.Bifunctor import Data.Bitraversable import Data.Either import Data.Functor.Bind hiding (join) import Data.Functor.Identity import Data.Foldable hiding (fold) import Data.Traversable hiding (mapM) import Data.Monoid import Data.Semigroup.Foldable import Data.Semigroup.Traversable import Data.Typeable #ifdef GHC_TYPEABLE import Data.Data #endif -- | The monad supporting iteration based over a base monad @m@. -- -- @ -- 'IterT' ~ 'FreeT' 'Identity' -- @ newtype IterT m a = IterT { runIterT :: m (Either a (IterT m a)) } #if __GLASGOW_HASKELL__ >= 707 deriving (Typeable) #endif -- | Plain iterative computations. type Iter = IterT Identity -- | Builds an iterative computation from one first step. -- -- prop> runIter . iter == id iter :: Either a (Iter a) -> Iter a iter = IterT . Identity {-# INLINE iter #-} -- | Executes the first step of an iterative computation -- -- prop> iter . runIter == id runIter :: Iter a -> Either a (Iter a) runIter = runIdentity . runIterT {-# INLINE runIter #-} instance Eq (m (Either a (IterT m a))) => Eq (IterT m a) where IterT m == IterT n = m == n instance Ord (m (Either a (IterT m a))) => Ord (IterT m a) where compare (IterT m) (IterT n) = compare m n instance Show (m (Either a (IterT m a))) => Show (IterT m a) where showsPrec d (IterT m) = showParen (d > 10) $ showString "IterT " . showsPrec 11 m instance Read (m (Either a (IterT m a))) => Read (IterT m a) where readsPrec d = readParen (d > 10) $ \r -> [ (IterT m,t) | ("IterT",s) <- lex r, (m,t) <- readsPrec 11 s] instance Monad m => Functor (IterT m) where fmap f = IterT . liftM (bimap f (fmap f)) . runIterT {-# INLINE fmap #-} instance Monad m => Applicative (IterT m) where pure = IterT . return . Left {-# INLINE pure #-} (<*>) = ap {-# INLINE (<*>) #-} instance Monad m => Monad (IterT m) where return = IterT . return . Left {-# INLINE return #-} IterT m >>= k = IterT $ m >>= either (runIterT . k) (return . Right . (>>= k)) {-# INLINE (>>=) #-} fail = IterT . fail {-# INLINE fail #-} instance Monad m => Apply (IterT m) where (<.>) = ap {-# INLINE (<.>) #-} instance Monad m => Bind (IterT m) where (>>-) = (>>=) {-# INLINE (>>-) #-} instance MonadFix m => MonadFix (IterT m) where mfix f = IterT $ mfix $ runIterT . f . either id (error "mfix (IterT m): Right") {-# INLINE mfix #-} instance MonadPlus m => Alternative (IterT m) where empty = IterT mzero {-# INLINE empty #-} IterT a <|> IterT b = IterT (mplus a b) {-# INLINE (<|>) #-} instance MonadPlus m => MonadPlus (IterT m) where mzero = IterT mzero {-# INLINE mzero #-} IterT a `mplus` IterT b = IterT (mplus a b) {-# INLINE mplus #-} instance MonadTrans IterT where lift = IterT . liftM Left {-# INLINE lift #-} instance Foldable m => Foldable (IterT m) where foldMap f = foldMap (either f (foldMap f)) . runIterT {-# INLINE foldMap #-} instance Foldable1 m => Foldable1 (IterT m) where foldMap1 f = foldMap1 (either f (foldMap1 f)) . runIterT {-# INLINE foldMap1 #-} instance (Monad m, Traversable m) => Traversable (IterT m) where traverse f (IterT m) = IterT <$> traverse (bitraverse f (traverse f)) m {-# INLINE traverse #-} instance (Monad m, Traversable1 m) => Traversable1 (IterT m) where traverse1 f (IterT m) = IterT <$> traverse1 go m where go (Left a) = Left <$> f a go (Right a) = Right <$> traverse1 f a {-# INLINE traverse1 #-} instance MonadReader e m => MonadReader e (IterT m) where ask = lift ask {-# INLINE ask #-} local f = hoistIterT (local f) {-# INLINE local #-} instance MonadWriter w m => MonadWriter w (IterT m) where tell = lift . tell {-# INLINE tell #-} listen (IterT m) = IterT $ liftM concat' $ listen (fmap listen `liftM` m) where concat' (Left x, w) = Left (x, w) concat' (Right y, w) = Right $ second (w <>) <$> y pass m = IterT . pass' . runIterT . hoistIterT clean $ listen m where clean = pass . liftM (\x -> (x, const mempty)) pass' = join . liftM g g (Left ((x, f), w)) = tell (f w) >> return (Left x) g (Right f) = return . Right . IterT . pass' . runIterT $ f #if MIN_VERSION_mtl(2,1,1) writer w = lift (writer w) {-# INLINE writer #-} #endif instance MonadState s m => MonadState s (IterT m) where get = lift get {-# INLINE get #-} put s = lift (put s) {-# INLINE put #-} #if MIN_VERSION_mtl(2,1,1) state f = lift (state f) {-# INLINE state #-} #endif instance MonadError e m => MonadError e (IterT m) where throwError = lift . throwError {-# INLINE throwError #-} IterT m `catchError` f = IterT $ liftM (fmap (`catchError` f)) m `catchError` (runIterT . f) instance MonadIO m => MonadIO (IterT m) where liftIO = lift . liftIO instance MonadCont m => MonadCont (IterT m) where callCC f = IterT $ callCC (\k -> runIterT $ f (lift . k . Left)) instance Monad m => MonadFree Identity (IterT m) where wrap = IterT . return . Right . runIdentity {-# INLINE wrap #-} -- | Adds an extra layer to a free monad value. -- -- In particular, for the iterative monad 'Iter', this makes the -- computation require one more step, without changing its final -- result. -- -- prop> runIter (delay ma) == Right ma delay :: (Monad f, MonadFree f m) => m a -> m a delay = wrap . return {-# INLINE delay #-} -- | -- 'retract' is the left inverse of 'lift' -- -- @ -- 'retract' . 'lift' = 'id' -- @ retract :: Monad m => IterT m a -> m a retract m = runIterT m >>= either return retract -- | Tear down a 'Free' 'Monad' using iteration. fold :: Monad m => (m a -> a) -> IterT m a -> a fold phi (IterT m) = phi (either id (fold phi) `liftM` m) -- | Like 'fold' with monadic result. foldM :: (Monad m, Monad n) => (m (n a) -> n a) -> IterT m a -> n a foldM phi (IterT m) = phi (either return (foldM phi) `liftM` m) -- | Lift a monad homomorphism from @m@ to @n@ into a Monad homomorphism from @'IterT' m@ to @'IterT' n@. hoistIterT :: Monad n => (forall a. m a -> n a) -> IterT m b -> IterT n b hoistIterT f (IterT as) = IterT (fmap (hoistIterT f) `liftM` f as) -- | Lifts a plain, non-terminating computation into a richer environment. -- 'liftIter' is a 'Monad' homomorphism. liftIter :: (Monad m) => Iter a -> IterT m a liftIter = hoistIterT (return . runIdentity) -- | A computation that never terminates never :: (Monad f, MonadFree f m) => m a never = delay never -- | Cuts off an iterative computation after a given number of -- steps. If the number of steps is 0 or less, no computation nor -- monadic effects will take place. -- -- The step where the final value is produced also counts towards the limit. -- -- Some examples (n ≥ 0): -- -- prop> cutoff 0 _ == return Nothing -- prop> cutoff (n+1) . return == return . Just -- prop> cutoff (n+1) . lift == lift . liftM Just -- prop> cutoff (n+1) . delay == delay . cutoff n -- prop> cutoff n never == iterate delay (return Nothing) !! n -- -- Calling 'retract . cutoff n' is always terminating, provided each of the -- steps in the iteration is terminating. cutoff :: (Monad m) => Integer -> IterT m a -> IterT m (Maybe a) cutoff n | n <= 0 = const $ return Nothing cutoff n = IterT . liftM (either (Left . Just) (Right . cutoff (n - 1))) . runIterT -- | Interleaves the steps of a finite list of iterative computations, and -- collects their results. -- -- The resulting computation has as many steps as the longest computation -- in the list. interleave :: Monad m => [IterT m a] -> IterT m [a] interleave ms = IterT $ do xs <- mapM runIterT ms if null (rights xs) then return . Left $ lefts xs else return . Right . interleave $ map (either return id) xs {-# INLINE interleave #-} -- | Interleaves the steps of a finite list of computations, and discards their -- results. -- -- The resulting computation has as many steps as the longest computation -- in the list. -- -- Equivalent to @void . interleave@. interleave_ :: (Monad m) => [IterT m a] -> IterT m () interleave_ [] = return () interleave_ xs = IterT $ liftM (Right . interleave_ . rights) $ mapM runIterT xs {-# INLINE interleave_ #-} instance (Monad m, Monoid a) => Monoid (IterT m a) where mempty = return mempty x `mappend` y = IterT $ do x' <- runIterT x y' <- runIterT y case (x', y') of ( Left a, Left b) -> return . Left $ a `mappend` b ( Left a, Right b) -> return . Right $ liftM (a `mappend`) b (Right a, Left b) -> return . Right $ liftM (`mappend` b) a (Right a, Right b) -> return . Right $ a `mappend` b mconcat = mconcat' . map Right where mconcat' :: (Monad m, Monoid a) => [Either a (IterT m a)] -> IterT m a mconcat' ms = IterT $ do xs <- mapM (either (return . Left) runIterT) ms case compact xs of [l@(Left _)] -> return l xs' -> return . Right $ mconcat' xs' {-# INLINE mconcat' #-} compact :: (Monoid a) => [Either a b] -> [Either a b] compact [] = [] compact (r@(Right _):xs) = r:(compact xs) compact ( Left a :xs) = compact' a xs compact' a [] = [Left a] compact' a (r@(Right _):xs) = (Left a):(r:(compact xs)) compact' a ( (Left a'):xs) = compact' (a <> a') xs #if defined(GHC_TYPEABLE) #if __GLASGOW_HASKELL__ < 707 instance Typeable1 m => Typeable1 (IterT m) where typeOf1 t = mkTyConApp freeTyCon [typeOf1 (f t)] where f :: IterT m a -> m a f = undefined freeTyCon :: TyCon #if __GLASGOW_HASKELL__ < 704 freeTyCon = mkTyCon "Control.Monad.Iter.IterT" #else freeTyCon = mkTyCon3 "free" "Control.Monad.Iter" "IterT" #endif {-# NOINLINE freeTyCon #-} #else #define Typeable1 Typeable #endif instance ( Typeable1 m, Typeable a , Data (m (Either a (IterT m a))) , Data a ) => Data (IterT m a) where gfoldl f z (IterT as) = z IterT `f` as toConstr IterT{} = iterConstr gunfold k z c = case constrIndex c of 1 -> k (z IterT) _ -> error "gunfold" dataTypeOf _ = iterDataType dataCast1 f = gcast1 f iterConstr :: Constr iterConstr = mkConstr iterDataType "IterT" [] Prefix {-# NOINLINE iterConstr #-} iterDataType :: DataType iterDataType = mkDataType "Control.Monad.Iter.IterT" [iterConstr] {-# NOINLINE iterDataType #-} #endif -- BEGIN MandelbrotIter.lhs {- $example This is literate Haskell! To run the example, open the source and copy this comment block into a new file with '.lhs' extension. Compiling to an executable file with the @-O2@ optimization level is recomended. For example: @ghc -o 'mandelbrot_iter' -O2 MandelbrotIter.lhs ; ./mandelbrot_iter@ @ \{\-\# LANGUAGE PackageImports \#\-\} @ > {-# LANGUAGE PackageImports #-} > import Control.Arrow > import Control.Monad.Trans.Iter > import "mtl" Control.Monad.Reader > import "mtl" Control.Monad.List > import "mtl" Control.Monad.Identity > import Control.Monad.IO.Class > import Data.Complex > import Graphics.HGL (runGraphics, Window, withPen, > line, RGB (RGB), RedrawMode (Unbuffered, DoubleBuffered), openWindowEx, > drawInWindow, mkPen, Style (Solid)) Some fractals can be defined by infinite sequences of complex numbers. For example, to render the <https://en.wikipedia.org/wiki/Mandelbrot_set Mandelbrot set>, the following sequence is generated for each point @c@ in the complex plane: @ z₀ = c z₁ = z₀² + c z₂ = z₁² + c … @ If, after some iterations, |z_i| ≥ 2, the point is not in the set. We can compute if a point is not in the Mandelbrot set this way: @ escaped :: Complex Double -> Int escaped c = loop 0 0 where loop z n = if (magnitude z) >= 2 then n else loop (z*z + c) (n+1) @ If @c@ is not in the Mandelbrot set, we get the number of iterations required to prove that fact. But, if @c@ is in the mandelbrot set, 'escaped' will run forever. We can use the 'Iter' monad to delimit this effect. By applying 'delay' before the recursive call, we decompose the computation into terminating steps. > escaped :: Complex Double -> Iter Int > escaped c = loop 0 0 where > loop z n = if (magnitude z) >= 2 then return n > else delay $ loop (z*z + c) (n+1) > If we draw each point on a canvas after it escapes, we can get a _negative_ image of the Mandelbrot set. Drawing pixels is a side-effect, so it should happen inside the IO monad. Also, we want to have an environment to store the size of the canvas, and the target window. By using 'IterT', we can add all these behaviours to our non-terminating computation. > data Canvas = Canvas { width :: Int, height :: Int, window :: Window } > > type FractalM a = IterT (ReaderT Canvas IO) a Any simple, non-terminating computation can be lifted into a richer environment. > escaped' :: Complex Double -> IterT (ReaderT Canvas IO) Int > escaped' = liftIter . escaped Then, to draw a point, we can just retrieve the number of iterations until it finishes, and draw it. The color will depend on the number of iterations. > mandelbrotPoint :: (Int, Int) -> FractalM () > mandelbrotPoint p = do > c <- scale p > n <- escaped' c > let color = if (even n) then RGB 0 0 255 -- Blue > else RGB 0 0 127 -- Darker blue > drawPoint color p The pixels on the screen don't match the region in the complex plane where the fractal is; we need to map them first. The region we are interested in is Im z = [-1,1], Re z = [-2,1]. > scale :: (Int, Int) -> FractalM (Complex Double) > scale (xi,yi) = do > (w,h) <- asks $ (fromIntegral . width) &&& (fromIntegral . height) > let (x,y) = (fromIntegral xi, fromIntegral yi) > let im = (-y + h / 2 ) / (h/2) > let re = ( x - w * 2 / 3 ) / (h/2) > return $ re :+ im Drawing a point is equivalent to drawing a line of length one. > drawPoint :: RGB -> (Int,Int) -> FractalM () > drawPoint color p@(x,y) = do > w <- asks window > let point = line (x,y) (x+1, y+1) > liftIO $ drawInWindow w $ mkPen Solid 1 color (flip withPen point) We may want to draw more than one point. However, if we just sequence the computations monadically, the first point that is not a member of the set will block the whole process. We need advance all the points at the same pace, by interleaving the computations. > drawMandelbrot :: FractalM () > drawMandelbrot = do > (w,h) <- asks $ width &&& height > let ps = [mandelbrotPoint (x,y) | x <- [0 .. (w-1)], y <- [0 .. (h-1)]] > interleave_ ps To run this computation, we can just use @retract@, which will run indefinitely: > runFractalM :: Canvas -> FractalM a -> IO a > runFractalM canvas = flip runReaderT canvas . retract Or, we can trade non-termination for getting an incomplete result, by cutting off after a certain number of steps. > runFractalM' :: Integer -> Canvas -> FractalM a -> IO (Maybe a) > runFractalM' n canvas = flip runReaderT canvas . retract . cutoff n Thanks to the 'IterT' transformer, we can separate timeout concerns from computational concerns. > main :: IO () > main = do > let windowWidth = 800 > let windowHeight = 480 > runGraphics $ do > w <- openWindowEx "Mandelbrot" Nothing (windowWidth, windowHeight) DoubleBuffered (Just 1) > let canvas = Canvas windowWidth windowHeight w > runFractalM' 100 canvas drawMandelbrot > putStrLn $ "Fin" -} -- END MandelbrotIter.lhs