{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} #if __GLASGOW_HASKELL__ >= 707 {-# LANGUAGE DeriveDataTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Comonad.Trans.Coiter -- Copyright : (C) 2008-2013 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : MPTCs, fundeps -- -- The coiterative comonad generated by a comonad ---------------------------------------------------------------------------- module Control.Comonad.Trans.Coiter ( -- | -- Coiterative comonads represent non-terminating, productive computations. -- -- They are the dual notion of iterative monads. While iterative computations -- produce no values or eventually terminate with one, coiterative -- computations constantly produce values and they never terminate. -- -- It's simpler form, 'Coiter', is an infinite stream of data. 'CoiterT' -- extends this so that each step of the computation can be performed in -- a comonadic context. -- * The coiterative comonad transformer CoiterT(..) -- * The coiterative comonad , Coiter, coiter, runCoiter -- * Generating coiterative comonads , unfold -- * Cofree comonads , ComonadCofree(..) -- * Example -- $example ) where import Control.Arrow hiding (second) import Control.Comonad import Control.Comonad.Cofree.Class import Control.Comonad.Env.Class import Control.Comonad.Hoist.Class import Control.Comonad.Store.Class import Control.Comonad.Traced.Class import Control.Comonad.Trans.Class import Control.Category import Data.Bifunctor import Data.Bifoldable import Data.Bitraversable import Data.Foldable import Data.Functor.Identity import Data.Traversable import Prelude hiding (id,(.)) #if defined(GHC_TYPEABLE) || __GLASGOW_HASKELL__ >= 707 import Data.Data #endif -- | This is the coiterative comonad generated by a comonad newtype CoiterT w a = CoiterT { runCoiterT :: w (a, CoiterT w a) } #if defined(GHC_TYPEABLE) && __GLASGOW_HASKELL__ >= 707 deriving Typeable #endif -- | The coiterative comonad type Coiter = CoiterT Identity -- | Prepends a result to a coiterative computation. -- -- prop> runCoiter . uncurry coiter == id coiter :: a -> Coiter a -> Coiter a coiter a as = CoiterT $ Identity (a,as) {-# INLINE coiter #-} -- | Extracts the first result from a coiterative computation. -- -- prop> uncurry coiter . runCoiter == id runCoiter :: Coiter a -> (a, Coiter a) runCoiter = runIdentity . runCoiterT {-# INLINE runCoiter #-} instance Functor w => Functor (CoiterT w) where fmap f = CoiterT . fmap (bimap f (fmap f)) . runCoiterT instance Comonad w => Comonad (CoiterT w) where extract = fst . extract . runCoiterT {-# INLINE extract #-} extend f = CoiterT . extend (\w -> (f (CoiterT w), extend f $ snd $ extract w)) . runCoiterT instance Foldable w => Foldable (CoiterT w) where foldMap f = foldMap (bifoldMap f (foldMap f)) . runCoiterT instance Traversable w => Traversable (CoiterT w) where traverse f = fmap CoiterT . traverse (bitraverse f (traverse f)) . runCoiterT instance ComonadTrans CoiterT where lower = fmap fst . runCoiterT instance Comonad w => ComonadCofree Identity (CoiterT w) where unwrap = Identity . snd . extract . runCoiterT {-# INLINE unwrap #-} instance ComonadEnv e w => ComonadEnv e (CoiterT w) where ask = ask . lower {-# INLINE ask #-} instance ComonadHoist CoiterT where cohoist g = CoiterT . fmap (second (cohoist g)) . g . runCoiterT instance ComonadTraced m w => ComonadTraced m (CoiterT w) where trace m = trace m . lower {-# INLINE trace #-} instance ComonadStore s w => ComonadStore s (CoiterT w) where pos = pos . lower peek s = peek s . lower peeks f = peeks f . lower seek = seek seeks = seeks experiment f = experiment f . lower {-# INLINE pos #-} {-# INLINE peek #-} {-# INLINE peeks #-} {-# INLINE seek #-} {-# INLINE seeks #-} {-# INLINE experiment #-} instance Show (w (a, CoiterT w a)) => Show (CoiterT w a) where showsPrec d w = showParen (d > 10) $ showString "CoiterT " . showsPrec 11 w instance Read (w (a, CoiterT w a)) => Read (CoiterT w a) where readsPrec d = readParen (d > 10) $ \r -> [(CoiterT w, t) | ("CoiterT", s) <- lex r, (w, t) <- readsPrec 11 s] instance Eq (w (a, CoiterT w a)) => Eq (CoiterT w a) where CoiterT a == CoiterT b = a == b {-# INLINE (==) #-} instance Ord (w (a, CoiterT w a)) => Ord (CoiterT w a) where compare (CoiterT a) (CoiterT b) = compare a b {-# INLINE compare #-} -- | Unfold a @CoiterT@ comonad transformer from a cokleisli arrow and an initial comonadic seed. unfold :: Comonad w => (w a -> a) -> w a -> CoiterT w a unfold psi = CoiterT . extend (extract &&& unfold psi . extend psi) #if defined(GHC_TYPEABLE) #if __GLASGOW_HASKELL__ < 707 instance Typeable1 w => Typeable1 (CoiterT w) where typeOf1 t = mkTyConApp coiterTTyCon [typeOf1 (w t)] where w :: CoiterT w a -> w a w = undefined coiterTTyCon :: TyCon #if __GLASGOW_HASKELL__ < 704 coiterTTyCon = mkTyCon "Control.Comonad.Trans.Coiter.CoiterT" #else coiterTTyCon = mkTyCon3 "free" "Control.Comonad.Trans.Coiter" "CoiterT" #endif {-# NOINLINE coiterTTyCon #-} #else #define Typeable1 Typeable #endif instance ( Typeable1 w, Typeable a , Data (w (a, CoiterT w a)) , Data a ) => Data (CoiterT w a) where gfoldl f z (CoiterT w) = z CoiterT `f` w toConstr _ = coiterTConstr gunfold k z c = case constrIndex c of 1 -> k (z CoiterT) _ -> error "gunfold" dataTypeOf _ = coiterTDataType dataCast1 f = gcast1 f coiterTConstr :: Constr coiterTConstr = mkConstr coiterTDataType "CoiterT" [] Prefix {-# NOINLINE coiterTConstr #-} coiterTDataType :: DataType coiterTDataType = mkDataType "Control.Comonad.Trans.Coiter.CoiterT" [coiterTConstr] {-# NOINLINE coiterTDataType #-} #endif -- BEGIN Coiter.lhs {- $example This is literate Haskell! To run the example, open the source and copy this comment block into a new file with '.lhs' extension. Many numerical approximation methods compute infinite sequences of results; each, hopefully, more accurate than the previous one. <https://en.wikipedia.org/wiki/Newton's_method Newton's method> to find zeroes of a function is one such algorithm. @ \{\-\# LANGUAGE FlexibleInstances, MultiParamTypeClasses, UndecidableInstances \#\-\} @ > {-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, UndecidableInstances #-} > import Control.Comonad.Trans.Coiter > import Control.Comonad.Env > import Control.Applicative > import Data.Foldable (toList, find) > data Function = Function { > -- Function to find zeroes of > function :: Double -> Double, > -- Derivative of the function > derivative :: Double -> Double > } > > data Result = Result { > -- Estimated zero of the function > value :: Double, > -- Estimated distance to the actual zero > xerror :: Double, > -- How far is value from being an actual zero; that is, > -- the difference between @0@ and @f value@ > ferror :: Double > } deriving (Show) > > data Outlook = Outlook { result :: Result, > -- Whether the result improves in future steps > progress :: Bool } deriving (Show) To make our lives easier, we will store the problem at hand using the Env environment comonad. > type Solution a = CoiterT (Env Function) a Problems consist of a function and its derivative as the environment, and an initial value. > type Problem = Env Function Double We can express an iterative algorithm using unfold over an initial environment. > newton :: Problem -> Solution Double > newton = unfold (\wd -> > let f = asks function wd in > let df = asks derivative wd in > let x = extract wd in > x - f x / df x) > > To estimate the error, we look forward one position in the stream. The next value will be much more precise than the current one, so we can consider it as the actual result. We know that the exact value of a function at one of it's zeroes is 0. So, @ferror@ can be computed exactly as @abs (f a - f 0) == abs (f a)@ > estimateError :: Solution Double -> Result > estimateError s = > let a:a':_ = toList s in > let f = asks function s in > Result { value = a, > xerror = abs $ a - a', > ferror = abs $ f a > } To get a sense of when the algorithm is making any progress, we can sample the future and check if the result improves at all. > estimateOutlook :: Int -> Solution Result -> Outlook > estimateOutlook sampleSize solution = > let sample = map ferror $ take sampleSize $ tail $ toList solution in > let result = extract solution in > Outlook { result = result, > progress = ferror result > minimum sample } To compute the square root of @c@, we solve the equation @x*x - c = 0@. We will stop whenever the accuracy of the result doesn't improve in the next 5 steps. The starting value for our algorithm is @c@ itself. One could compute a better estimate, but the algorithm converges fast enough that it's not really worth it. > squareRoot :: Double -> Maybe Result > squareRoot c = let problem = flip env c (Function { function = (\x -> x*x - c), > derivative = (\x -> 2*x) }) > in > fmap result $ find (not . progress) $ > newton problem =>> estimateError =>> estimateOutlook 5 This program will output the result together with the error. > main :: IO () > main = putStrLn $ show $ squareRoot 4 -} -- END Coiter.lhs