{-# LANGUAGE CPP #-} #ifndef MIN_VERSION_base #define MIN_VERSION_base(x,y,z) 1 #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.TH -- Copyright : (C) 2008-2013 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : MPTCs, fundeps -- -- Automatic generation of free monadic actions. -- ---------------------------------------------------------------------------- module Control.Monad.Free.TH ( -- * Free monadic actions makeFree, makeFree_, makeFreeCon, makeFreeCon_, -- * Documentation -- $doc -- * Examples -- $examples ) where import Control.Arrow import Control.Monad import Data.Char (toLower) import Language.Haskell.TH #if !(MIN_VERSION_base(4,8,0)) import Control.Applicative #endif data Arg = Captured Type Exp | Param Type deriving (Show) params :: [Arg] -> [Type] params [] = [] params (Param t : xs) = t : params xs params (_ : xs) = params xs captured :: [Arg] -> [(Type, Exp)] captured [] = [] captured (Captured t e : xs) = (t, e) : captured xs captured (_ : xs) = captured xs zipExprs :: [Exp] -> [Exp] -> [Arg] -> [Exp] zipExprs (p:ps) cs (Param _ : as) = p : zipExprs ps cs as zipExprs ps (c:cs) (Captured _ _ : as) = c : zipExprs ps cs as zipExprs _ _ _ = [] tyVarBndrName :: TyVarBndr -> Name tyVarBndrName (PlainTV name) = name tyVarBndrName (KindedTV name _) = name findTypeOrFail :: String -> Q Name findTypeOrFail s = lookupTypeName s >>= maybe (fail $ s ++ " is not in scope") return findValueOrFail :: String -> Q Name findValueOrFail s = lookupValueName s >>= maybe (fail $ s ++ "is not in scope") return -- | Pick a name for an operation. -- For normal constructors it lowers first letter. -- For infix ones it omits the first @:@. mkOpName :: String -> Q String mkOpName (':':name) = return name mkOpName ( c :name) = return $ toLower c : name mkOpName _ = fail "null constructor name" -- | Check if parameter is used in type. usesTV :: Name -> Type -> Bool usesTV n (VarT name) = n == name usesTV n (AppT t1 t2) = any (usesTV n) [t1, t2] usesTV n (SigT t _ ) = usesTV n t usesTV n (ForallT bs _ t) = usesTV n t && n `notElem` map tyVarBndrName bs usesTV _ _ = False -- | Analyze constructor argument. mkArg :: Name -> Type -> Q Arg mkArg n t | usesTV n t = case t of -- if parameter is used as is, the return type should be () -- as well as the corresponding expression VarT _ -> return $ Captured (TupleT 0) (TupE []) -- if argument is of type (a1 -> ... -> aN -> param) then the -- return type is N-tuple (a1, ..., aN) and the corresponding -- expression is an N-tuple secion (,...,). AppT (AppT ArrowT _) _ -> do (ts, name) <- arrowsToTuple t when (name /= n) $ fail "return type is not the parameter" let tup = foldl AppT (TupleT $ length ts) ts xs <- mapM (const $ newName "x") ts return $ Captured tup (LamE (map VarP xs) (TupE (map VarE xs))) _ -> fail "don't know how to make Arg" | otherwise = return $ Param t where arrowsToTuple (AppT (AppT ArrowT t1) (VarT name)) = return ([t1], name) arrowsToTuple (AppT (AppT ArrowT t1) t2) = do (ts, name) <- arrowsToTuple t2 return (t1:ts, name) arrowsToTuple _ = fail "return type is not a variable" -- | Apply transformation to the return value independently of how many -- parameters does @e@ have. -- E.g. @mapRet Just (\x y z -> x + y * z)@ goes to -- @\x y z -> Just (x + y * z)@ mapRet :: (Exp -> Exp) -> Exp -> Exp mapRet f (LamE ps e) = LamE ps $ mapRet f e mapRet f e = f e -- | Unification of two types. -- @next@ with @a -> next@ gives @Maybe a@ return type -- @a -> next@ with @b -> next@ gives @Either a b@ return type unifyT :: (Type, Exp) -> (Type, Exp) -> Q (Type, [Exp]) unifyT (TupleT 0, _) (TupleT 0, _) = fail "can't accept 2 mere parameters" unifyT (TupleT 0, _) (t, e) = do maybe' <- ConT <$> findTypeOrFail "Maybe" nothing' <- ConE <$> findValueOrFail "Nothing" just' <- ConE <$> findValueOrFail "Just" return (AppT maybe' t, [nothing', mapRet (AppE just') e]) unifyT x y@(TupleT 0, _) = second reverse <$> unifyT y x unifyT (t1, e1) (t2, e2) = do either' <- ConT <$> findTypeOrFail "Either" left' <- ConE <$> findValueOrFail "Left" right' <- ConE <$> findValueOrFail "Right" return (AppT (AppT either' t1) t2, [mapRet (AppE left') e1, mapRet (AppE right') e2]) -- | Unifying a list of types (possibly refining expressions). -- Name is used when the return type is supposed to be arbitrary. unifyCaptured :: Name -> [(Type, Exp)] -> Q (Type, [Exp]) unifyCaptured a [] = return (VarT a, []) unifyCaptured _ [(t, e)] = return (t, [e]) unifyCaptured _ [x, y] = unifyT x y unifyCaptured _ _ = fail "can't unify more than 2 arguments that use type parameter" liftCon' :: Bool -> [TyVarBndr] -> Cxt -> Type -> Name -> [Name] -> Name -> [Type] -> Q [Dec] liftCon' typeSig tvbs cx f n ns cn ts = do -- prepare some names opName <- mkName <$> mkOpName (nameBase cn) m <- newName "m" a <- newName "a" monadFree <- findTypeOrFail "MonadFree" liftF <- findValueOrFail "liftF" -- look at the constructor parameters args <- mapM (mkArg n) ts let ps = params args -- these are not using type parameter cs = captured args -- these capture it somehow -- based on cs we get return type and refined expressions -- (e.g. with Nothing/Just or Left/Right tags) (retType, es) <- unifyCaptured a cs -- operation type is (a1 -> a2 -> ... -> aN -> m r) let opType = foldr (AppT . AppT ArrowT) (AppT (VarT m) retType) ps -- picking names for the implementation xs <- mapM (const $ newName "p") ps let pat = map VarP xs -- this is LHS exprs = zipExprs (map VarE xs) es args -- this is what ctor would be applied to fval = foldl AppE (ConE cn) exprs -- this is RHS without liftF q = tvbs ++ map PlainTV (qa ++ m : ns) qa = case retType of VarT b | a == b -> [a]; _ -> [] f' = foldl AppT f (map VarT ns) return $ concat [ if typeSig #if MIN_VERSION_template_haskell(2,10,0) then [ SigD opName (ForallT q (cx ++ [ConT monadFree `AppT` f' `AppT` VarT m]) opType) ] #else then [ SigD opName (ForallT q (cx ++ [ClassP monadFree [f', VarT m]]) opType) ] #endif else [] , [ FunD opName [ Clause pat (NormalB $ AppE (VarE liftF) fval) [] ] ] ] -- | Provide free monadic actions for a single value constructor. liftCon :: Bool -> [TyVarBndr] -> Cxt -> Type -> Name -> [Name] -> Con -> Q [Dec] liftCon typeSig ts cx f n ns con = case con of NormalC cName fields -> liftCon' typeSig ts cx f n ns cName $ map snd fields RecC cName fields -> liftCon' typeSig ts cx f n ns cName $ map (\(_, _, ty) -> ty) fields InfixC (_,t1) cName (_,t2) -> liftCon' typeSig ts cx f n ns cName [t1, t2] ForallC ts' cx' con' -> liftCon typeSig (ts ++ ts') (cx ++ cx') f n ns con' -- | Provide free monadic actions for a type declaration. liftDec :: Bool -- ^ Include type signature? -> Maybe [Name] -- ^ Include only mentioned constructor names. Use all constructors when @Nothing@. -> Dec -- ^ Data type declaration. -> Q [Dec] liftDec typeSig onlyCons (DataD _ tyName tyVarBndrs cons _) | null tyVarBndrs = fail $ "Type " ++ show tyName ++ " needs at least one free variable" | otherwise = concat <$> mapM (liftCon typeSig [] [] con nextTyName (init tyNames)) cons' where cons' = case onlyCons of Nothing -> cons Just ns -> filter (\c -> constructorName c `elem` ns) cons tyNames = map tyVarBndrName tyVarBndrs nextTyName = last tyNames con = ConT tyName liftDec _ _ dec = fail $ "liftDec: Don't know how to lift " ++ show dec -- | Get construstor name. constructorName :: Con -> Name constructorName (NormalC name _) = name constructorName (RecC name _) = name constructorName (InfixC _ name _) = name constructorName (ForallC _ _ c) = constructorName c -- | Generate monadic actions for a data type. genFree :: Bool -- ^ Include type signature? -> Maybe [Name] -- ^ Include only mentioned constructor names. Use all constructors when @Nothing@. -> Name -- ^ Type name. -> Q [Dec] -- ^ Generated declarations. genFree typeSig cnames tyCon = do info <- reify tyCon case info of TyConI dec -> liftDec typeSig cnames dec _ -> fail "makeFree expects a type constructor" -- | Generate monadic action for a single constructor of a data type. genFreeCon :: Bool -- ^ Include type signature? -> Name -- ^ Constructor name. -> Q [Dec] -- ^ Generated declarations. genFreeCon typeSig cname = do info <- reify cname case info of DataConI _ _ tname _ -> genFree typeSig (Just [cname]) tname _ -> fail "makeFreeCon expects a data constructor" -- | @$('makeFree' ''T)@ provides free monadic actions for the -- constructors of the given data type @T@. makeFree :: Name -> Q [Dec] makeFree = genFree True Nothing -- | Like 'makeFreeCon', but does not provide type signatures. -- This can be used to attach Haddock comments to individual arguments -- for each generated function. -- -- @ -- data LangF x = Output String x -- -- makeFree_ 'LangF -- -- -- | Output a string. -- output :: MonadFree LangF m => -- String -- ^ String to output. -- -> m () -- ^ No result. -- @ -- -- 'makeFree_' must be called *before* the explicit type signatures. makeFree_ :: Name -> Q [Dec] makeFree_ = genFree False Nothing -- | @$('makeFreeCon' 'Con)@ provides free monadic action for a data -- constructor @Con@. Note that you can attach Haddock comment to the -- generated function by placing it before the top-level invocation of -- 'makeFreeCon': -- -- @ -- -- | Output a string. -- makeFreeCon 'Output -- @ makeFreeCon :: Name -> Q [Dec] makeFreeCon = genFreeCon True -- | Like 'makeFreeCon', but does not provide a type signature. -- This can be used to attach Haddock comments to individual arguments. -- -- @ -- data LangF x = Output String x -- -- makeFreeCon_ 'Output -- -- -- | Output a string. -- output :: MonadFree LangF m => -- String -- ^ String to output. -- -> m () -- ^ No result. -- @ -- -- 'makeFreeCon_' must be called *before* the explicit type signature. makeFreeCon_ :: Name -> Q [Dec] makeFreeCon_ = genFreeCon False {- $doc To generate free monadic actions from a @Type@, it must be a @data@ declaration (maybe GADT) with at least one free variable. For each constructor of the type, a new function will be declared. Consider the following generalized definitions: > data Type a1 a2 … aN param = … > | FooBar t1 t2 t3 … tJ > | (:+) t1 t2 t3 … tJ > | t1 :* t2 > | t1 `Bar` t2 > | Baz { x :: t1, y :: t2, …, z :: tJ } > | forall b1 b2 … bN. cxt => Qux t1 t2 … tJ > | … where each of the constructor arguments @t1, …, tJ@ is either: 1. A type, perhaps depending on some of the @a1, …, aN@. 2. A type dependent on @param@, of the form @s1 -> … -> sM -> param@, M ≥ 0. At most 2 of the @t1, …, tJ@ may be of this form. And, out of these two, at most 1 of them may have @M == 0@; that is, be of the form @param@. For each constructor, a function will be generated. First, the name of the function is derived from the name of the constructor: * For prefix constructors, the name of the constructor with the first letter in lowercase (e.g. @FooBar@ turns into @fooBar@). * For infix constructors, the name of the constructor with the first character (a colon @:@), removed (e.g. @:+@ turns into @+@). Then, the type of the function is derived from the arguments to the constructor: > … > fooBar :: (MonadFree Type m) => t1' -> … -> tK' -> m ret > (+) :: (MonadFree Type m) => t1' -> … -> tK' -> m ret > bar :: (MonadFree Type m) => t1 -> … -> tK' -> m ret > baz :: (MonadFree Type m) => t1' -> … -> tK' -> m ret > qux :: (MonadFree Type m, cxt) => t1' -> … -> tK' -> m ret > … The @t1', …, tK'@ are those @t1@ … @tJ@ that only depend on the @a1, …, aN@. The type @ret@ depends on those constructor arguments that reference the @param@ type variable: 1. If no arguments to the constructor depend on @param@, @ret ≡ a@, where @a@ is a fresh type variable. 2. If only one argument in the constructor depends on @param@, then @ret ≡ (s1, …, sM)@. In particular, if @M == 0@, then @ret ≡ ()@; if @M == 1@, @ret ≡ s1@. 3. If two arguments depend on @param@, (e.g. @u1 -> … -> uL -> param@ and @v1 -> … -> vM -> param@, then @ret ≡ Either (u1, …, uL) (v1, …, vM)@. Note that @Either a ()@ and @Either () a@ are both isomorphic to @Maybe a@. Because of this, when @L == 0@ or @M == 0@ in case 3., the type of @ret@ is simplified: * @ret ≡ Either (u1, …, uL) ()@ is rewritten to @ret ≡ Maybe (u1, …, uL)@. * @ret ≡ Either () (v1, …, vM)@ is rewritten to @ret ≡ Maybe (v1, …, vM)@. -} {- $examples <examples/Teletype.lhs Teletype> (regular data type declaration) <examples/RetryTH.hs Retry> (GADT declaration) -}