module Data.Fold.R
( R(..)
) where
import Control.Applicative
import Control.Comonad
import Control.Lens
import Control.Monad.Zip
import Data.Foldable hiding (sum, product)
import Data.Fold.Class
import Data.Fold.Internal
import Data.Functor.Extend
import Data.Functor.Bind
import Data.Profunctor.Unsafe
import Unsafe.Coerce
import Prelude hiding (foldr, sum, product, length)
data R a b = forall r. R (r -> b) (a -> r -> r) r
instance Scan R where
run1 t (R k h z) = k (h t z)
prefix1 a = extend (run1 a)
postfix1 t a = run1 a (duplicate t)
interspersing a (R k h z) = R (maybe' (k z) k) h' Nothing' where
h' b Nothing' = Just' (h b z)
h' b (Just' x) = Just' (h b (h a x))
instance Folding R where
run t (R k h z) = k (foldr h z t)
runOf l s (R k h z) = k (foldrOf l h z s)
prefix s = extend (run s)
prefixOf l s = extend (runOf l s)
postfix t s = run s (duplicate t)
postfixOf l t s = runOf l s (duplicate t)
filtering p (R k h z) = R k (\a r -> if p a then h a r else r) z
instance Profunctor R where
dimap f g (R k h z) = R (g.k) (h.f) z
rmap g (R k h z) = R (g.k) h z
lmap f (R k h z) = R k (h.f) z
(#.) _ = unsafeCoerce
x .# _ = unsafeCoerce x
instance Choice R where
left' (R k h z) = R (_Left %~ k) step (Left z) where
step (Left x) (Left y) = Left (h x y)
step (Right c) _ = Right c
step _ (Right c) = Right c
right' (R k h z) = R (_Right %~ k) step (Right z) where
step (Right x) (Right y) = Right (h x y)
step (Left c) _ = Left c
step _ (Left c) = Left c
instance Functor (R a) where
fmap f (R k h z) = R (f.k) h z
(<$) b = \_ -> pure b
instance Comonad (R a) where
extract (R k _ z) = k z
duplicate (R k h z) = R (R k h) h z
extend f (R k h z) = R (f . R k h) h z
instance Bind (R a) where
(>>-) = (>>=)
instance Monad (R a) where
return b = R (\() -> b) (\_ () -> ()) ()
m >>= f = R (\xs a -> run xs (f a)) (:) [] <*> m
_ >> n = n
instance MonadZip (R a) where
mzipWith = liftA2
instance Applicative (R a) where
pure b = R (\() -> b) (\_ () -> ()) ()
R xf bxx xz <*> R ya byy yz = R
(\(Pair' x y) -> xf x $ ya y)
(\b ~(Pair' x y) -> Pair' (bxx b x) (byy b y))
(Pair' xz yz)
(<*) m = \_ -> m
_ *> m = m
instance Extend (R a) where
extended = extend
duplicated = duplicate
instance Apply (R a) where
(<.>) = (<*>)
(<.) m = \_ -> m
_ .> m = m
instance ComonadApply (R a) where
(<@>) = (<*>)
(<@) m = \_ -> m
_ @> m = m