{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE UnboxedTuples #-} -- |Encoding Primitives module Data.Flat.Encoder.Prim ( eBitsF, eFloatF, eDoubleF, eUTF16F, eUTF8F, eCharF, eNaturalF, eIntegerF, eInt64F, eInt32F, eIntF, eInt16F, eInt8F, eWordF, eWord64F, eWord32F, eWord16F, eBytesF, eLazyBytesF, eShortBytesF, eWord8F, eFillerF, eBoolF, eTrueF, eFalseF, varWordF, w7l, ) where import Control.Monad import qualified Data.ByteString as B import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Lazy.Internal as L import qualified Data.ByteString.Short.Internal as SBS import Data.Char import Data.Flat.Encoder.Types import Data.Flat.Memory import Data.Flat.Types import Data.FloatCast import Data.Primitive.ByteArray import qualified Data.Text as T import qualified Data.Text.Array as TA import qualified Data.Text.Encoding as T import qualified Data.Text.Internal as T import Data.ZigZag import Foreign import System.Endian -- import Debug.Trace #include "MachDeps.h" -- traceShowId :: a -> a -- traceShowId = id {-# INLINE eFloatF #-} eFloatF :: Float -> Prim eFloatF = eWord32BEF . floatToWord {-# INLINE eDoubleF #-} eDoubleF :: Double -> Prim eDoubleF = eWord64BEF . doubleToWord {-# INLINE eWord64BEF #-} eWord64BEF :: Word64 -> Prim eWord64BEF = eWord64E toBE64 {-# INLINE eWord32BEF #-} eWord32BEF :: Word32 -> Prim eWord32BEF = eWord32E toBE32 {-# INLINE eCharF #-} eCharF :: Char -> Prim eCharF = eWord32F . fromIntegral . ord {-# INLINE eWordF #-} eWordF :: Word -> Prim {-# INLINE eIntF #-} eIntF :: Int -> Prim #if WORD_SIZE_IN_BITS == 64 eWordF = eWord64F . (fromIntegral :: Word -> Word64) eIntF = eInt64F . (fromIntegral :: Int -> Int64) #elif WORD_SIZE_IN_BITS == 32 eWordF = eWord32F . (fromIntegral :: Word -> Word32) eIntF = eInt32F . (fromIntegral :: Int -> Int32) #else #error expected WORD_SIZE_IN_BITS to be 32 or 64 #endif {-# INLINE eInt8F #-} eInt8F :: Int8 -> Prim eInt8F = eWord8F . zzEncode {-# INLINE eInt16F #-} eInt16F :: Int16 -> Prim eInt16F = eWord16F . zzEncode {-# INLINE eInt32F #-} eInt32F :: Int32 -> Prim eInt32F = eWord32F . zzEncode {-# INLINE eInt64F #-} eInt64F :: Int64 -> Prim eInt64F = eWord64F . zzEncode {-# INLINE eIntegerF #-} eIntegerF :: Integer -> Prim eIntegerF = eIntegralF . zzEncodeInteger {-# INLINE eNaturalF #-} eNaturalF :: Natural -> Prim eNaturalF = eIntegralF . toInteger {-# INLINE eIntegralF #-} eIntegralF :: (Bits t, Integral t) => t -> Prim eIntegralF t = let vs = w7l t in eIntegralW vs w7l :: (Bits t, Integral t) => t -> [Word8] w7l t = let l = low7 t t' = t `shiftR` 7 in if t' == 0 then [l] else w7 l : w7l t' where {-# INLINE w7 #-} --lowByte :: (Bits t, Num t) => t -> Word8 w7 :: Word8 -> Word8 w7 l = l .|. 0x80 -- Encode as data NEList = Elem Word7 | Cons Word7 List {-# INLINE eIntegralW #-} eIntegralW :: [Word8] -> Prim eIntegralW vs s@(S op _ o) | o == 0 = foldM pokeWord' op vs >>= \op' -> return (S op' 0 0) | otherwise = foldM (flip eWord8F) s vs {-# INLINE eWord8F #-} eWord8F :: Word8 -> Prim eWord8F t s@(S op _ o) | o==0 = pokeWord op t | otherwise = pokeByteUnaligned t s {-# INLINE eWord32E #-} eWord32E :: (Word32 -> Word32) -> Word32 -> Prim eWord32E conv t (S op w o) | o==0 = pokeW conv op t >> skipBytes op 4 | otherwise = pokeW conv op (fromIntegral w `shiftL` 24 .|. t `shiftR` o) >> return (S (plusPtr op 4) (fromIntegral t `shiftL` (8-o)) o) {-# INLINE eWord64E #-} eWord64E :: (Word64 -> Word64) -> Word64 -> Prim eWord64E conv t (S op w o) | o==0 = pokeW conv op t >> skipBytes op 8 | otherwise = pokeW conv op (fromIntegral w `shiftL` 56 .|. t `shiftR` o) >> return (S (plusPtr op 8) (fromIntegral t `shiftL` (8-o)) o) {-# INLINE eWord16F #-} eWord16F :: Word16 -> Prim eWord16F = varWordF {-# INLINE eWord32F #-} eWord32F :: Word32 -> Prim eWord32F = varWordF {-# INLINE eWord64F #-} eWord64F :: Word64 -> Prim eWord64F = varWordF {-# INLINE varWordF #-} varWordF :: (Bits t, Integral t) => t -> Prim varWordF t s@(S _ _ o) | o == 0 = varWord pokeByteAligned t s | otherwise = varWord pokeByteUnaligned t s {-# INLINE varWord #-} varWord :: (Bits t, Integral t) => (Word8 -> Prim) -> t -> Prim varWord writeByte t s | t < 128 = writeByte (fromIntegral t) s | t < 16384 = varWord2_ writeByte t s | t < 2097152 = varWord3_ writeByte t s | otherwise = varWordN_ writeByte t s where {-# INLINE varWord2_ #-} -- TODO: optimise, using a single Write16? varWord2_ writeByte t s = writeByte (fromIntegral t .|. 0x80) s >>= writeByte (fromIntegral (t `shiftR` 7) .&. 0x7F) {-# INLINE varWord3_ #-} varWord3_ writeByte t s = writeByte (fromIntegral t .|. 0x80) s >>= writeByte (fromIntegral (t `shiftR` 7) .|. 0x80) >>= writeByte (fromIntegral (t `shiftR` 14) .&. 0x7F) -- {-# INLINE varWordN #-} varWordN_ :: (Bits t, Integral t) => (Word8 -> Prim) -> t -> Prim varWordN_ writeByte = go where go !v !st = let !l = low7 v !v' = v `shiftR` 7 in if v' == 0 then writeByte l st else writeByte (l .|. 0x80) st >>= go v' {-# INLINE low7 #-} low7 :: (Integral a) => a -> Word8 low7 t = fromIntegral t .&. 0x7F -- PROB: encodeUtf8 calls a C primitive, not compatible with GHCJS eUTF8F :: T.Text -> Prim eUTF8F = eBytesF . T.encodeUtf8 eUTF16F :: T.Text -> Prim eUTF16F t = eFillerF >=> eUTF16F_ t where eUTF16F_ !(T.Text (TA.Array array) w16Off w16Len) s = writeArray array (2 * w16Off) (2 * w16Len) (nextPtr s) eLazyBytesF :: L.ByteString -> Prim eLazyBytesF bs = eFillerF >=> \s -> write bs (nextPtr s) where -- Single copy write lbs op = do case lbs of L.Chunk h t -> writeBS h op >>= write t L.Empty -> pokeWord op 0 {-# INLINE eShortBytesF #-} eShortBytesF :: SBS.ShortByteString -> Prim eShortBytesF bs = eFillerF >=> eShortBytesF_ bs eShortBytesF_ :: SBS.ShortByteString -> Prim eShortBytesF_ bs@(SBS.SBS arr) = \(S op _ 0) -> writeArray arr 0 (SBS.length bs) op -- data Array a = Array0 | Array1 a ... | Array255 ... writeArray :: ByteArray# -> Int -> Int -> Ptr Word8 -> IO S writeArray arr soff slen sop = do op' <- go soff slen sop pokeWord op' 0 where go !off !len !op | len == 0 = return op | otherwise = let l = min 255 len in pokeWord' op (fromIntegral l) >>= pokeByteArray arr off l >>= go (off+l) (len - l) eBytesF :: B.ByteString -> Prim eBytesF bs = eFillerF >=> eBytesF_ where eBytesF_ s = do op' <- writeBS bs (nextPtr s) pokeWord op' 0 {- eBits Example: Before: n = 6 t = 00.101011 o = 3 w = 111.00000 After: [ptr] = w(111)t(10101) w' = t(1)0000000 o'= 1 o'=3+6=9 f = 8-9 = -1 o'' = 1 8-o''=7 if n=8,o=3: o'=11 f=8-11=-3 o''=3 8-o''=5 -} -- CHECK: might get rid of this altogether and in Class encode in terms of eTrue/eFalse only -- |Encode up to 8 bits. {-# INLINE eBitsF #-} eBitsF :: NumBits -> Word8 -> Prim eBitsF 1 0 = eFalseF eBitsF 1 1 = eTrueF eBitsF 2 0 = eFalseF >=> eFalseF eBitsF 2 1 = eFalseF >=> eTrueF eBitsF 2 2 = eTrueF >=> eFalseF eBitsF 2 3 = eTrueF >=> eTrueF eBitsF n t = \(S op w o) -> let o' = o + n -- used bits f = 8 - o' -- remaining free bits in if | f > 0 -> return $ S op (w .|. (t `shiftL` f)) o' | f == 0 -> pokeWord op (w .|. t) | otherwise -> let o'' = -f in poke op (w .|. (t `shiftR` o'')) >> return (S (plusPtr op 1) (t `shiftL` (8-o'')) o'') {-# INLINE eBoolF #-} eBoolF :: Bool -> Prim eBoolF False = eFalseF eBoolF True = eTrueF {-# INLINE eTrueF #-} eTrueF :: Prim eTrueF (S op w o) | o == 7 = pokeWord op (w .|. 1) | otherwise = return (S op (setBit w (7-o)) (o+1)) {-# INLINE eFalseF #-} eFalseF :: Prim eFalseF (S op w o) | o == 7 = pokeWord op w | otherwise = return (S op w (o+1)) {-# INLINE eFillerF #-} eFillerF :: Prim eFillerF (S op w _) = pokeWord op (w .|. 1) -- {-# INLINE poke16 #-} -- TODO TEST -- poke16 :: Word16 -> Prim -- poke16 t (S op w o) | o == 0 = poke op w >> skipBytes op 2 {-# INLINE pokeByteUnaligned #-} pokeByteUnaligned :: Word8 -> Prim pokeByteUnaligned t (S op w o) = poke op (w .|. (t `shiftR` o)) >> return (S (plusPtr op 1) (t `shiftL` (8-o)) o) {-# INLINE pokeByteAligned #-} pokeByteAligned :: Word8 -> Prim pokeByteAligned t (S op _ _) = pokeWord op t {-# INLINE pokeWord #-} pokeWord :: Storable a => Ptr a -> a -> IO S pokeWord op w = poke op w >> skipByte op {-# INLINE pokeWord' #-} pokeWord' :: Storable a => Ptr a -> a -> IO (Ptr b) pokeWord' op w = poke op w >> return (plusPtr op 1) {-# INLINE pokeW #-} pokeW :: Storable a => (t -> a) -> Ptr a1 -> t -> IO () pokeW conv op t = poke (castPtr op) (conv t) {-# INLINE skipByte #-} skipByte :: Monad m => Ptr a -> m S skipByte op = return (S (plusPtr op 1) 0 0) {-# INLINE skipBytes #-} skipBytes :: Monad m => Ptr a -> Int -> m S skipBytes op n = return (S (plusPtr op n) 0 0) --{-# INLINE nextByteW #-} --nextByteW op w = return (S (plusPtr op 1) 0 0) writeBS :: B.ByteString -> Ptr Word8 -> IO (Ptr Word8) writeBS bs op -- @(BS.PS foreignPointer sourceOffset sourceLength) op | B.length bs == 0 = return op | otherwise = let (h, t) = B.splitAt 255 bs in pokeWord' op (fromIntegral $ B.length h :: Word8) >>= pokeByteString h >>= writeBS t -- 2X slower (why?) -- withForeignPtr foreignPointer goS -- where -- goS sourcePointer = go op (sourcePointer `plusPtr` sourceOffset) sourceLength -- where -- go !op !off !len | len == 0 = return op -- | otherwise = do -- let l = min 255 len -- op' <- pokeWord' op (fromIntegral l) -- BS.memcpy op' off l -- go (op' `plusPtr` l) (off `plusPtr` l) (len-l)