module Data.FixedLength (
T, Position, List, Length,
Index, Zero, Succ(Stop, Succ),
toList, showsPrec,
map, zipWith, sequenceA, repeat,
index, update, indices, indicesInt, numFromIndex,
GE1, GE2, GE3, GE4, GE5, GE6, GE7, GE8,
i0, i1, i2, i3, i4, i5, i6, i7,
fromFixedList, toFixedList,
(!:), end, singleton,
viewL, switchL, head, tail, switchEnd,
Curried, uncurry,
minimum, maximum,
) where
import qualified Type.Data.Num.Unary as Unary
import Type.Data.Num.Unary.Literal (U1)
import Type.Data.Num.Unary (Positive, Natural, switchNat)
import qualified Data.NonEmpty as NonEmpty
import qualified Data.Empty as Empty
import qualified Control.Applicative as App
import qualified Data.Traversable as Trav
import qualified Data.Foldable as Fold
import qualified Data.List as List
import Control.Applicative (Applicative, liftA2)
import Data.Traversable (Traversable, foldMapDefault)
import Data.Foldable (Foldable, foldMap)
import Data.List ((++))
import Data.Word (Word)
import Data.Function (($), (.))
import Data.Bool (Bool(False, True))
import Data.Ord (Ord, Ordering(LT,EQ,GT), compare, (>))
import Data.Eq (Eq, (==))
import Text.Show.HT (concatS)
import qualified Prelude as P
import Prelude (Functor, fmap, Show, ShowS, Int, (+), error)
type family List n :: * -> *
type instance List Unary.Zero = Empty.T
type instance List (Unary.Succ n) = NonEmpty.T (List n)
type family Length (f :: * -> *)
type instance Length Empty.T = Unary.Zero
type instance Length (NonEmpty.T f) = Unary.Succ (Length f)
newtype T n a = Cons (List n a)
fromFixedList :: List n a -> T n a
fromFixedList = Cons
toFixedList :: T n a -> List n a
toFixedList (Cons xs) = xs
end :: T Unary.Zero a
end = Cons Empty.Cons
infixr 5 !:
(!:) :: a -> T n a -> T (Unary.Succ n) a
x !: Cons xs = Cons $ NonEmpty.Cons x xs
viewL :: T (Unary.Succ n) a -> (a, T n a)
viewL (Cons (NonEmpty.Cons x xs)) = (x, Cons xs)
switchL :: (a -> T n a -> b) -> (T (Unary.Succ n) a -> b)
switchL f = P.uncurry f . viewL
switchEnd :: b -> T Unary.Zero a -> b
switchEnd x (Cons Empty.Cons) = x
newtype WithPos a b n = WithPos {runWithPos :: T n a -> b}
withPos ::
(Positive n) =>
(forall m. Natural m => T (Unary.Succ m) a -> b) -> T n a -> b
withPos f = runWithPos $ Unary.switchPos (WithPos f)
head :: (Positive n) => T n a -> a
head = withPos (P.fst . viewL)
tail :: T (Unary.Succ n) a -> T n a
tail = P.snd . viewL
singleton :: a -> T U1 a
singleton x = x!:end
minimum :: (Positive n, Ord a) => T n a -> a
minimum = withPos (NonEmpty.minimum . switchL NonEmpty.cons)
maximum :: (Positive n, Ord a) => T n a -> a
maximum = withPos (NonEmpty.maximum . switchL NonEmpty.cons)
instance (Natural n, Eq a) => Eq (T n a) where
xs == ys = Fold.and $ zipWith (==) xs ys
showsPrec :: (Natural n, Show a) => Int -> T n a -> ShowS
showsPrec p =
P.showParen (p>5) . concatS .
List.intersperse (P.showString "!:") .
(++ [P.showString "end"]) .
List.map (P.showsPrec 6) . toList
instance (Natural n, Show a) => Show (T n a) where
showsPrec = showsPrec
toList :: (Natural n) => T n a -> [a]
toList = Fold.toList
newtype Map a b n = Map {runMap :: T n a -> T n b}
map :: Natural n => (a -> b) -> T n a -> T n b
map f =
runMap $
switchNat
(Map $ switchEnd end)
(Map $ switchL $ \x xs -> f x !: map f xs)
newtype Sequence f a n = Sequence {runSequence :: T n (f a) -> f (T n a)}
sequenceA :: (Applicative f, Natural n) => T n (f a) -> f (T n a)
sequenceA =
runSequence $
switchNat
(Sequence $ switchEnd $ App.pure end)
(Sequence $ switchL $ \x xs -> liftA2 (!:) x $ sequenceA xs)
newtype Repeat a n = Repeat {runRepeat :: T n a}
repeat :: Natural n => a -> T n a
repeat a =
runRepeat $
switchNat
(Repeat end)
(Repeat $ a !: repeat a)
newtype Zip a b c n = Zip {runZip :: T n a -> T n b -> T n c}
zipWith :: Natural n => (a -> b -> c) -> T n a -> T n b -> T n c
zipWith f =
runZip $
switchNat
(Zip $ switchEnd $ switchEnd end)
(Zip $ switchL $ \a as -> switchL $ \b bs -> f a b !: zipWith f as bs)
instance Natural n => Functor (T n) where
fmap = map
instance Natural n => Foldable (T n) where
foldMap = foldMapDefault
instance Natural n => Traversable (T n) where
sequenceA = sequenceA
instance Natural n => Applicative (T n) where
pure = repeat
f <*> x = zipWith ($) f x
type family Position n :: *
type instance Position Unary.Zero = Zero
type instance Position (Unary.Succ n) = Succ (Position n)
data Zero
data Succ pos = Stop | Succ pos deriving (Eq, Ord, Show)
instance Eq Zero where _==_ = True
instance Ord Zero where compare _ _ = EQ
newtype Index n = Index (Position n)
unpackSucc :: Index (Unary.Succ n) -> Succ (Index n)
unpackSucc (Index n1) =
case n1 of
Stop -> Stop
Succ n0 -> Succ $ Index n0
newtype Update a n = Update {runUpdate :: Index n -> T n a -> T n a}
update :: Natural n => (a -> a) -> Index n -> T n a -> T n a
update f =
runUpdate $
switchNat
(Update $ \ _ xs -> xs)
(Update $ \pos0 -> switchL $ \x xs ->
case unpackSucc pos0 of
Stop -> f x !: xs
Succ pos1 -> x !: update f pos1 xs)
newtype PeekIndex a n = PeekIndex {runIndex :: Index n -> T n a -> a}
index :: Natural n => Index n -> T n a -> a
index =
runIndex $
switchNat
(PeekIndex $ \ _ -> switchEnd $ error "impossible index")
(PeekIndex $ \pos0 -> switchL $ \x xs ->
case unpackSucc pos0 of
Stop -> x
Succ pos1 -> index pos1 xs)
newtype Indices n = Indices {runIndices :: T n (Index n)}
indices :: Natural n => T n (Index n)
indices =
runIndices $
switchNat
(Indices end)
(Indices $ i0 !: map succ indices)
indicesInt :: Natural n => T n Int
indicesInt =
NonEmpty.init $ NonEmpty.scanl (+) 0 $ App.pure 1
newtype NumFromIndex n = NumFromIndex {runNumFromIndex :: Index n -> Word}
numFromIndex :: Natural n => Index n -> Word
numFromIndex =
runNumFromIndex $
switchNat
(NumFromIndex $ \_ -> error "numFromIndex")
(NumFromIndex $ \n ->
case unpackSucc n of
Stop -> 0
Succ m -> 1 + numFromIndex m)
newtype Compare a n =
Compare {runCompare :: Index n -> Index n -> a}
instance (Natural n) => Eq (Index n) where
(==) =
runCompare $
switchNat
(Compare $ \_ _ -> error "equalIndex")
(Compare $ \i j ->
case (unpackSucc i, unpackSucc j) of
(Succ k, Succ l) -> k == l
(Stop, Stop) -> True
_ -> False)
instance (Natural n) => Ord (Index n) where
compare =
runCompare $
switchNat
(Compare $ \_ _ -> error "compareIndex")
(Compare $ \i j ->
case (unpackSucc i, unpackSucc j) of
(Succ k, Succ l) -> compare k l
(Stop, Stop) -> EQ
(Stop, Succ _) -> LT
(Succ _, Stop) -> GT)
type GE1 n = Unary.Succ n
type GE2 n = Unary.Succ (GE1 n)
type GE3 n = Unary.Succ (GE2 n)
type GE4 n = Unary.Succ (GE3 n)
type GE5 n = Unary.Succ (GE4 n)
type GE6 n = Unary.Succ (GE5 n)
type GE7 n = Unary.Succ (GE6 n)
type GE8 n = Unary.Succ (GE7 n)
succ :: Index n -> Index (Unary.Succ n)
succ (Index n) = Index (Succ n)
i0 :: Index (GE1 n); i0 = Index Stop
i1 :: Index (GE2 n); i1 = succ i0
i2 :: Index (GE3 n); i2 = succ i1
i3 :: Index (GE4 n); i3 = succ i2
i4 :: Index (GE5 n); i4 = succ i3
i5 :: Index (GE6 n); i5 = succ i4
i6 :: Index (GE7 n); i6 = succ i5
i7 :: Index (GE8 n); i7 = succ i6
newtype
Uncurry a b n =
Uncurry {
runUncurry :: Curried n a b -> T n a -> b
}
type family Curried n a b
type instance Curried Unary.Zero a b = b
type instance Curried (Unary.Succ n) a b = a -> Curried n a b
uncurry :: (Unary.Natural n) => Curried n a b -> T n a -> b
uncurry =
runUncurry $
Unary.switchNat
(Uncurry switchEnd)
(Uncurry $ \f -> switchL (\x -> uncurry (f x)))