{-# LANGUAGE TypeOperators #-} -- | First-class type families -- -- For example, here is a regular type family: -- -- @ -- type family FromMaybe (a :: k) (m :: Maybe k) :: k -- type instance FromMaybe a 'Nothing = a -- type instance FromMaybe a ('Just b) = b -- @ -- -- With @Fcf@, it translates to a @data@ declaration: -- -- @ -- data FromMaybe :: k -> Maybe k -> 'Exp' k -- type instance 'Eval' (FromMaybe a 'Nothing) = a -- type instance 'Eval' (FromMaybe a ('Just b)) = b -- @ -- -- - Fcfs can be higher-order. -- - The kind constructor 'Exp' is a monad: there's @('=<<')@ and 'Pure'. -- -- Essential language extensions for "Fcf": -- -- > {-# LANGUAGE -- > DataKinds, -- > PolyKinds, -- > TypeFamilies, -- > TypeOperators, -- > UndecidableInstances #-} module Fcf ( -- * First-class type families Exp , Eval , type (@@) -- ** Functional combinators , Pure , Pure1 , Pure2 , Pure3 , type (=<<) , type (<=<) , LiftM , LiftM2 , LiftM3 , Join , type (<$>) , type (<*>) , Flip , ConstFn , type ($) -- * Operations on common types -- ** Pairs , Uncurry , Fst , Snd , type (***) -- ** Either , UnEither , IsLeft , IsRight -- ** Maybe , UnMaybe , FromMaybe , IsNothing , IsJust -- ** Lists , Foldr , UnList , type (++) , Filter , Head , Tail , Null , Length , Find , FindIndex , Lookup , SetIndex , ZipWith , Zip , Unzip , Cons2 -- ** Bool , UnBool , type (||) , type (&&) , Not -- ** Case splitting , Case , Match() , type (-->) , Is , Any , Else -- ** Nat , type (+) , type (-) , type (Fcf.Data.Nat.*) , type (^) , type (<=) , type (>=) , type (<) , type (>) -- * Overloaded operations , Map , Bimap -- * Miscellaneous , Error , Constraints , TyEq , Stuck , IsBool(_If) , If ) where import Fcf.Core import Fcf.Combinators import Fcf.Data.Bool import Fcf.Data.Common import Fcf.Data.List import Fcf.Data.Nat import Fcf.Class.Functor import Fcf.Class.Bifunctor import Fcf.Utils