module Data.IntervalMap.FingerTree (
Interval(..), point,
IntervalMap, empty, singleton, insert, union,
search, intersections, dominators
) where
import qualified Data.FingerTree as FT
import Data.FingerTree (FingerTree, Measured(..), ViewL(..), (<|), (><))
import Control.Applicative ((<$>))
import Data.Traversable (Traversable(traverse))
import Data.Foldable (Foldable(foldMap))
import Data.Monoid
data Interval v = Interval { low :: v, high :: v }
deriving (Eq, Ord, Show)
point :: v -> Interval v
point v = Interval v v
data Node v a = Node (Interval v) a
instance Functor (Node v) where
fmap f (Node i x) = Node i (f x)
instance Foldable (Node v) where
foldMap f (Node _ x) = f x
instance Traversable (Node v) where
traverse f (Node i x) = Node i <$> f x
data IntInterval v = NoInterval | IntInterval (Interval v) v
instance Ord v => Monoid (IntInterval v) where
mempty = NoInterval
NoInterval `mappend` i = i
i `mappend` NoInterval = i
IntInterval _ hi1 `mappend` IntInterval int2 hi2 =
IntInterval int2 (max hi1 hi2)
instance (Ord v) => Measured (IntInterval v) (Node v a) where
measure (Node i _) = IntInterval i (high i)
newtype IntervalMap v a =
IntervalMap (FingerTree (IntInterval v) (Node v a))
instance Functor (IntervalMap v) where
fmap f (IntervalMap t) = IntervalMap (FT.unsafeFmap (fmap f) t)
instance Foldable (IntervalMap v) where
foldMap f (IntervalMap t) = foldMap (foldMap f) t
instance Traversable (IntervalMap v) where
traverse f (IntervalMap t) =
IntervalMap <$> FT.unsafeTraverse (traverse f) t
instance (Ord v) => Monoid (IntervalMap v a) where
mempty = empty
mappend = union
empty :: (Ord v) => IntervalMap v a
empty = IntervalMap FT.empty
singleton :: (Ord v) => Interval v -> a -> IntervalMap v a
singleton i x = IntervalMap (FT.singleton (Node i x))
insert :: (Ord v) => Interval v -> a -> IntervalMap v a -> IntervalMap v a
insert (Interval lo hi) x m | lo > hi = m
insert i x (IntervalMap t) = IntervalMap (l >< Node i x <| r)
where (l, r) = FT.split larger t
larger (IntInterval k _) = k >= i
union :: (Ord v) => IntervalMap v a -> IntervalMap v a -> IntervalMap v a
union (IntervalMap xs) (IntervalMap ys) = IntervalMap (merge1 xs ys)
where merge1 as bs = case FT.viewl as of
EmptyL -> bs
a@(Node i _) :< as' -> l >< a <| merge2 as' r
where (l, r) = FT.split larger bs
larger (IntInterval k _) = k >= i
merge2 as bs = case FT.viewl bs of
EmptyL -> as
b@(Node i _) :< bs' -> l >< b <| merge1 r bs'
where (l, r) = FT.split larger as
larger (IntInterval k _) = k > i
intersections :: (Ord v) => Interval v -> IntervalMap v a -> [(Interval v, a)]
intersections i = inRange (low i) (high i)
dominators :: (Ord v) => Interval v -> IntervalMap v a -> [(Interval v, a)]
dominators i = inRange (high i) (low i)
search :: (Ord v) => v -> IntervalMap v a -> [(Interval v, a)]
search p = inRange p p
inRange :: (Ord v) => v -> v -> IntervalMap v a -> [(Interval v, a)]
inRange lo hi (IntervalMap t) = matches (FT.takeUntil (greater hi) t)
where matches xs = case FT.viewl (FT.dropUntil (atleast lo) xs) of
EmptyL -> []
Node i x :< xs' -> (i, x) : matches xs'
atleast :: (Ord v) => v -> IntInterval v -> Bool
atleast k (IntInterval _ hi) = k <= hi
greater :: (Ord v) => v -> IntInterval v -> Bool
greater k (IntInterval i _) = low i > k
mkMap :: (Ord v) => [(v, v, a)] -> IntervalMap v a
mkMap = foldr ins empty
where ins (lo, hi, n) = insert (Interval lo hi) n
composers :: IntervalMap Int String
composers = mkMap [
(1685, 1750, "Bach"),
(1685, 1759, "Handel"),
(1732, 1809, "Haydn"),
(1756, 1791, "Mozart"),
(1770, 1827, "Beethoven"),
(1782, 1840, "Paganini"),
(1797, 1828, "Schubert"),
(1803, 1869, "Berlioz"),
(1810, 1849, "Chopin"),
(1833, 1897, "Brahms"),
(1838, 1875, "Bizet")]
mathematicians :: IntervalMap Int String
mathematicians = mkMap [
(1642, 1727, "Newton"),
(1646, 1716, "Leibniz"),
(1707, 1783, "Euler"),
(1736, 1813, "Lagrange"),
(1777, 1855, "Gauss"),
(1811, 1831, "Galois")]