#if __GLASGOW_HASKELL__ >= 702
#endif
module Data.Graph.Inductive.PatriciaTree
( Gr
, UGr
)
where
import Data.Graph.Inductive.Graph
import Control.Applicative (liftA2)
import Data.IntMap (IntMap)
import qualified Data.IntMap as IM
import Data.List (foldl', sort)
import Data.Maybe (fromMaybe)
#if MIN_VERSION_containers (0,4,2)
import Control.DeepSeq (NFData(..))
#endif
#if MIN_VERSION_containers(0,5,0)
import qualified Data.IntMap.Strict as IMS
#else
import qualified Data.IntMap as IMS
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
#if MIN_VERSION_base (4,8,0)
import Data.Bifunctor
#else
import Control.Arrow (second)
#endif
newtype Gr a b = Gr (GraphRep a b)
#if __GLASGOW_HASKELL__ >= 702
deriving (Generic)
#endif
type GraphRep a b = IntMap (Context' a b)
type Context' a b = (IntMap [b], a, IntMap [b])
type UGr = Gr () ()
instance (Eq a, Ord b) => Eq (Gr a b) where
(Gr g1) == (Gr g2) = fmap sortAdj g1 == fmap sortAdj g2
where
sortAdj (p,n,s) = (fmap sort p,n,fmap sort s)
instance (Show a, Show b) => Show (Gr a b) where
showsPrec d g = showParen (d > 10) $
showString "mkGraph "
. shows (labNodes g)
. showString " "
. shows (labEdges g)
instance (Read a, Read b) => Read (Gr a b) where
readsPrec p = readParen (p > 10) $ \ r -> do
("mkGraph", s) <- lex r
(ns,t) <- reads s
(es,u) <- reads t
return (mkGraph ns es, u)
instance Graph Gr where
empty = Gr IM.empty
isEmpty (Gr g) = IM.null g
match = matchGr
mkGraph vs es = insEdges es
. Gr
. IM.fromList
. map (second (\l -> (IM.empty,l,IM.empty)))
$ vs
labNodes (Gr g) = [ (node, label)
| (node, (_, label, _)) <- IM.toList g ]
noNodes (Gr g) = IM.size g
nodeRange (Gr g) = fromMaybe (error "nodeRange of empty graph")
$ liftA2 (,) (ix (IM.minViewWithKey g))
(ix (IM.maxViewWithKey g))
where
ix = fmap (fst . fst)
labEdges (Gr g) = do (node, (_, _, s)) <- IM.toList g
(next, labels) <- IM.toList s
label <- labels
return (node, next, label)
instance DynGraph Gr where
(p, v, l, s) & (Gr g)
= let !g1 = IM.insert v (preds, l, succs) g
!(np, preds) = fromAdjCounting p
!(ns, succs) = fromAdjCounting s
!g2 = addSucc g1 v np preds
!g3 = addPred g2 v ns succs
in Gr g3
#if MIN_VERSION_containers (0,4,2)
instance (NFData a, NFData b) => NFData (Gr a b) where
rnf (Gr g) = rnf g
#endif
#if MIN_VERSION_base (4,8,0)
instance Bifunctor Gr where
bimap = fastNEMap
first = fastNMap
second = fastEMap
#endif
matchGr :: Node -> Gr a b -> Decomp Gr a b
matchGr node (Gr g)
= case IM.lookup node g of
Nothing
-> (Nothing, Gr g)
Just (p, label, s)
-> let !g1 = IM.delete node g
!p' = IM.delete node p
!s' = IM.delete node s
!g2 = clearPred g1 node s'
!g3 = clearSucc g2 node p'
in (Just (toAdj p', node, label, toAdj s), Gr g3)
fastInsNode :: LNode a -> Gr a b -> Gr a b
fastInsNode (v, l) (Gr g) = g' `seq` Gr g'
where
g' = IM.insert v (IM.empty, l, IM.empty) g
fastInsEdge :: LEdge b -> Gr a b -> Gr a b
fastInsEdge (v, w, l) (Gr g) = g2 `seq` Gr g2
where
g1 = IM.adjust addS' v g
g2 = IM.adjust addP' w g1
addS' (ps, l', ss) = (ps, l', IM.insertWith addLists w [l] ss)
addP' (ps, l', ss) = (IM.insertWith addLists v [l] ps, l', ss)
fastGMap :: forall a b c d. (Context a b -> Context c d) -> Gr a b -> Gr c d
fastGMap f (Gr g) = Gr (IM.mapWithKey f' g)
where
f' :: Node -> Context' a b -> Context' c d
f' = ((fromContext . f) .) . toContext
fastNMap :: forall a b c. (a -> c) -> Gr a b -> Gr c b
fastNMap f (Gr g) = Gr (IM.map f' g)
where
f' :: Context' a b -> Context' c b
f' (ps, a, ss) = (ps, f a, ss)
fastEMap :: forall a b c. (b -> c) -> Gr a b -> Gr a c
fastEMap f (Gr g) = Gr (IM.map f' g)
where
f' :: Context' a b -> Context' a c
f' (ps, a, ss) = (IM.map (map f) ps, a, IM.map (map f) ss)
fastNEMap :: forall a b c d. (a -> c) -> (b -> d) -> Gr a b -> Gr c d
fastNEMap fn fe (Gr g) = Gr (IM.map f g)
where
f :: Context' a b -> Context' c d
f (ps, a, ss) = (IM.map (map fe) ps, fn a, IM.map (map fe) ss)
toAdj :: IntMap [b] -> Adj b
toAdj = concatMap expand . IM.toList
where
expand (n,ls) = map (flip (,) n) ls
fromAdj :: Adj b -> IntMap [b]
fromAdj = IM.fromListWith addLists . map (second (:[]) . swap)
data FromListCounting a = FromListCounting !Int !(IntMap a)
deriving (Eq, Show, Read)
getFromListCounting :: FromListCounting a -> (Int, IntMap a)
getFromListCounting (FromListCounting i m) = (i, m)
fromListWithKeyCounting :: (Int -> a -> a -> a) -> [(Int, a)] -> (Int, IntMap a)
fromListWithKeyCounting f = getFromListCounting . foldl' ins (FromListCounting 0 IM.empty)
where
ins (FromListCounting i t) (k,x) = FromListCounting (i + 1) (IM.insertWithKey f k x t)
fromListWithCounting :: (a -> a -> a) -> [(Int, a)] -> (Int, IntMap a)
fromListWithCounting f = fromListWithKeyCounting (\_ x y -> f x y)
fromAdjCounting :: Adj b -> (Int, IntMap [b])
fromAdjCounting = fromListWithCounting addLists . map (second (:[]) . swap)
bulkThreshold :: Int
bulkThreshold = 5
toContext :: Node -> Context' a b -> Context a b
toContext v (ps, a, ss) = (toAdj ps, v, a, toAdj ss)
fromContext :: Context a b -> Context' a b
fromContext (ps, _, a, ss) = (fromAdj ps, a, fromAdj ss)
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)
addLists :: [a] -> [a] -> [a]
addLists [a] as = a : as
addLists as [a] = a : as
addLists xs ys = xs ++ ys
addSucc :: forall a b . GraphRep a b -> Node -> Int -> IM.IntMap [b] -> GraphRep a b
addSucc g0 v numAdd xs
| numAdd < bulkThreshold = foldlWithKey' go g0 xs
where
go :: GraphRep a b -> Node -> [b] -> GraphRep a b
go g p l = IMS.adjust f p g
where f (ps, l', ss) = let !ss' = IM.insertWith addLists v l ss
in (ps, l', ss')
addSucc g v _ xs = IMS.differenceWith go g xs
where
go :: Context' a b -> [b] -> Maybe (Context' a b)
go (ps, l', ss) l = let !ss' = IM.insertWith addLists v l ss
in Just (ps, l', ss')
foldlWithKey' :: (a -> IM.Key -> b -> a) -> a -> IntMap b -> a
foldlWithKey' =
#if MIN_VERSION_containers (0,4,2)
IM.foldlWithKey'
#else
IM.foldWithKey . adjustFunc
where
adjustFunc f k b a = f a k b
#endif
addPred :: forall a b . GraphRep a b -> Node -> Int -> IM.IntMap [b] -> GraphRep a b
addPred g0 v numAdd xs
| numAdd < bulkThreshold = foldlWithKey' go g0 xs
where
go :: GraphRep a b -> Node -> [b] -> GraphRep a b
go g p l = IMS.adjust f p g
where f (ps, l', ss) = let !ps' = IM.insertWith addLists v l ps
in (ps', l', ss)
addPred g v _ xs = IMS.differenceWith go g xs
where
go :: Context' a b -> [b] -> Maybe (Context' a b)
go (ps, l', ss) l = let !ps' = IM.insertWith addLists v l ps
in Just (ps', l', ss)
clearSucc :: forall a b x . GraphRep a b -> Node -> IM.IntMap x -> GraphRep a b
clearSucc g v = IMS.differenceWith go g
where
go :: Context' a b -> x -> Maybe (Context' a b)
go (ps, l, ss) _ = let !ss' = IM.delete v ss
in Just (ps, l, ss')
clearPred :: forall a b x . GraphRep a b -> Node -> IM.IntMap x -> GraphRep a b
clearPred g v = IMS.differenceWith go g
where
go :: Context' a b -> x -> Maybe (Context' a b)
go (ps, l, ss) _ = let !ps' = IM.delete v ps
in Just (ps', l, ss)