{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} -- -- Copyright (c) 2009-2011, ERICSSON AB -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are met: -- -- * Redistributions of source code must retain the above copyright notice, -- this list of conditions and the following disclaimer. -- * Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution. -- * Neither the name of the ERICSSON AB nor the names of its contributors -- may be used to endorse or promote products derived from this software -- without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -- -- | Operations on matrices (doubly-nested parallel vectors). All operations in -- this module assume rectangular matrices. module Feldspar.Matrix where import qualified Prelude as P import Feldspar.Prelude import Feldspar.Core import Feldspar.Vector.Internal type Matrix a = Vector2 a tMat :: Patch a a -> Patch (Matrix a) (Matrix a) tMat = tVec2 -- | Converts a matrix to a core array. freezeMatrix :: Type a => Matrix a -> Data [[a]] freezeMatrix = freezeVector . map freezeVector -- | Converts a core array to a matrix. thawMatrix :: Type a => Data [[a]] -> Matrix a thawMatrix = map thawVector . thawVector -- | Converts a core array to a matrix. The first length argument is the number -- of rows (outer vector), and the second argument is the number of columns -- (inner vector). thawMatrix' :: Type a => Length -> Length -> Data [[a]] -> Matrix a thawMatrix' y x = map (thawVector' x) . thawVector' y -- | Constructs a matrix. The elements are stored in a core array. matrix :: Type a => [[a]] -> Matrix a matrix = value -- | Constructing a matrix from an index function. -- -- @indexedMat m n ixf@: -- -- * @m@ is the number of rows. -- -- * @n@ is the number of columns. -- -- * @ifx@ is a function mapping indexes to elements (first argument is row -- index; second argument is column index). indexedMat :: Data Length -> Data Length -> (Data Index -> Data Index -> a) -> Vector (Vector a) indexedMat m n idx = indexed m $ \k -> indexed n $ \l -> idx k l -- | Transpose of a matrix. Assumes that the number of rows is > 0. transpose :: Syntax a => Vector (Vector a) -> Vector (Vector a) transpose a = indexedMat (length $ head a) (length a) $ \y x -> a ! x ! y -- TODO This assumes that (head a) can be used even if a is empty. -- | Concatenates the rows of a matrix. flatten :: Type a => Matrix a -> Vector (Data a) flatten matr = Indexed (m*n) ixf Empty where m = length matr n = (m==0) ? 0 $ length (head matr) ixf i = matr ! y ! x where y = i `div` n x = i `mod` n -- | The diagonal vector of a square matrix. It happens to work if the number of -- rows is less than the number of columns, but not the other way around (this -- would require some overhead). diagonal :: Type a => Matrix a -> Vector (Data a) diagonal m = zipWith (!) m (0 ... (length m - 1)) distributeL :: (a -> b -> c) -> a -> Vector b -> Vector c distributeL f = map . f distributeR :: (a -> b -> c) -> Vector a -> b -> Vector c distributeR = flip . distributeL . flip class Mul a b where type Prod a b -- | General multiplication operator (***) :: a -> b -> Prod a b instance Numeric a => Mul (Data a) (Data a) where type Prod (Data a) (Data a) = Data a (***) = (*) instance Numeric a => Mul (Data a) (Vector1 a) where type Prod (Data a) (Vector1 a) = Vector1 a (***) = distributeL (***) instance Numeric a => Mul (Vector1 a) (Data a) where type Prod (Vector1 a) (Data a) = Vector1 a (***) = distributeR (***) instance Numeric a => Mul (Data a) (Matrix a) where type Prod (Data a) (Matrix a) = Matrix a (***) = distributeL (***) instance Numeric a => Mul (Matrix a) (Data a) where type Prod (Matrix a) (Data a) = Matrix a (***) = distributeR (***) instance Numeric a => Mul (Vector1 a) (Vector1 a) where type Prod (Vector1 a) (Vector1 a) = Data a (***) = scalarProd instance Numeric a => Mul (Vector1 a) (Matrix a) where type Prod (Vector1 a) (Matrix a) = (Vector1 a) vec *** mat = distributeL (***) vec (transpose mat) instance Numeric a => Mul (Matrix a) (Vector1 a) where type Prod (Matrix a) (Vector1 a) = (Vector1 a) (***) = distributeR (***) instance Numeric a => Mul (Matrix a) (Matrix a) where type Prod (Matrix a) (Matrix a) = (Matrix a) (***) = distributeR (***) -- | Matrix multiplication mulMat :: Numeric a => Matrix a -> Matrix a -> Matrix a mulMat = (***) class Syntax a => ElemWise a where type Scalar a -- | Operator for general element-wise multiplication elemWise :: (Scalar a -> Scalar a -> Scalar a) -> a -> a -> a instance Type a => ElemWise (Data a) where type Scalar (Data a) = Data a elemWise = id instance (ElemWise a, Syntax (Vector a)) => ElemWise (Vector a) where type Scalar (Vector a) = Scalar a elemWise = zipWith . elemWise (.+) :: (ElemWise a, Num (Scalar a)) => a -> a -> a (.+) = elemWise (+) (.-) :: (ElemWise a, Num (Scalar a)) => a -> a -> a (.-) = elemWise (-) (.*) :: (ElemWise a, Num (Scalar a)) => a -> a -> a (.*) = elemWise (*)