{-# LANGUAGE DataKinds #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -Wall #-} {-# OPTIONS_GHC -Werror=incomplete-patterns #-} {-| Module : Fcf.Alg.Tree Description : Tree-structures working with Algebras, ColAlgebras, and other stuff Copyright : (c) gspia 2020- License : BSD Maintainer : gspia = Fcf.Alg.Tree Type-level 'TreeF' and 'BTreeF' to be used with Cata, Ana and Hylo. This also provides some algorithms: general purpose sorting with 'Qsort', 'Size' of an Tree, Fibonaccis. -} -------------------------------------------------------------------------------- module Fcf.Alg.Tree where import qualified GHC.TypeLits as TL import Fcf import Fcf.Data.Nat import Fcf.Alg.List import Fcf.Alg.Morphism import Fcf.Data.Tree -------------------------------------------------------------------------------- -- | 'TreeF' is functor for 'Tree's. 'TreeF' has Map-instance (on structure). data TreeF a b = NodeF a [b] -- provide Map instances for TreeF. type instance Eval (Map f ('NodeF a '[])) = 'NodeF a '[] type instance Eval (Map f ('NodeF a (b ': bs))) = 'NodeF a (Eval (Map f (b ': bs))) -- | A function to transform a Tree into fixed structure that can be used -- by Cata and Ana. -- -- See the implementation of 'Size' for an example. data TreeToFix :: Tree a -> Exp (Fix (TreeF a)) type instance Eval (TreeToFix ('Node a '[])) = 'Fix ('NodeF a '[]) type instance Eval (TreeToFix ('Node a (b ': bs))) = 'Fix ('NodeF a (Eval (Map TreeToFix (b ': bs)))) -------------------------------------------------------------------------------- -- | Sum the nodes of TreeF containing Nats. -- -- See the implementation of 'Fib' for an example. data SumNodesAlg :: Algebra (TreeF Nat) Nat type instance Eval (SumNodesAlg ('NodeF x '[])) = x type instance Eval (SumNodesAlg ('NodeF x (b ': bs))) = x TL.+ (Eval (Sum (b ': bs))) -- | Count the nodes of TreeF. -- -- See the 'Size' for an example. data CountNodesAlg :: Algebra (TreeF a) Nat type instance Eval (CountNodesAlg ('NodeF x '[])) = 1 type instance Eval (CountNodesAlg ('NodeF x (b ': bs))) = 1 TL.+ (Eval (Sum (b ': bs))) -- | Size of the Tree is the number of nodes in it. -- -- __Example__ -- -- Size is defined as @ Cata CountNodesAlg =<< TreeToFix tr @ -- and can be used with the following. -- -- >>> data BuildNode :: Nat -> Exp (Nat,[Nat]) -- >>> :{ -- type instance Eval (BuildNode x) = -- If (Eval ((2 TL.* x TL.+ 1) >= 8)) -- '(x, '[]) -- '(x, '[ 2 TL.* x, (2 TL.* x) TL.+ 1 ]) -- :} -- -- >>> :kind! Eval (Size =<< UnfoldTree BuildNode 1) -- Eval (Size =<< UnfoldTree BuildNode 1) :: Nat -- = 7 data Size :: Tree a -> Exp Nat type instance Eval (Size tr) = Eval (Cata CountNodesAlg =<< TreeToFix tr) -- | CoAlgebra to build TreeF's. -- This is an example from containers-package. See 'Size' and example in there. -- -- :kind! Eval (Ana BuildNodeCoA 1) -- :kind! Eval (Hylo CountNodesAlg BuildNodeCoA 1) data BuildNodeCoA :: CoAlgebra (TreeF Nat) Nat type instance Eval (BuildNodeCoA n) = If (Eval (((2 TL.* n) TL.+ 1) >= 8)) ('NodeF n '[]) ('NodeF n '[ 2 TL.* n, (2 TL.* n) TL.+ 1 ]) -- | CoAlgebra for the Fib-function. data BuildFibTreeCoA :: CoAlgebra (TreeF Nat) Nat type instance Eval (BuildFibTreeCoA n) = If (Eval (n >= 2)) ('NodeF 0 '[n TL.- 1, n TL.- 2]) ('NodeF n '[]) -- | Fibonaccis with Hylo, not efficient -- -- __Example__ -- -- >>> :kind! Eval (Fib 10) -- Eval (Fib 10) :: Nat -- = 55 data Fib :: Nat -> Exp Nat type instance Eval (Fib n) = Eval (Hylo SumNodesAlg BuildFibTreeCoA n) -------------------------------------------------------------------------------- -- | BTreeF is a btree functor. At the moment, it is used to build sorting -- algorithms. data BTreeF a b = BEmptyF | BNodeF a b b -- functor type instance Eval (Map f 'BEmptyF) = 'BEmptyF type instance Eval (Map f ('BNodeF a b1 b2)) = 'BNodeF a (Eval (f b1)) (Eval (f b2)) -- helper data PartHlp :: (a -> a -> Exp Bool) -> CoAlgebra (BTreeF a) [a] type instance Eval (PartHlp _ '[]) = 'BEmptyF type instance Eval (PartHlp smaller (h ': t)) = 'BNodeF h (Eval (Filter (smaller h) t)) (Eval (Filter (Not <=< smaller h) t)) -- | Use this if you want to sort symbols into increasing order. data SymbolCompareInc :: TL.Symbol -> TL.Symbol -> Exp Bool type instance Eval (SymbolCompareInc n1 n2) = Eval (TyEq (TL.CmpSymbol n1 n2) 'LT) -- | Use this if you want to sort symbols into decreasing order. data SymbolCompareDec :: TL.Symbol -> TL.Symbol -> Exp Bool type instance Eval (SymbolCompareDec n1 n2) = Eval (TyEq (TL.CmpSymbol n1 n2) 'GT) -- helper data Inord :: Algebra (BTreeF a) [a] type instance Eval (Inord 'BEmptyF) = '[] type instance Eval (Inord ('BNodeF v l r)) = Eval (l ++ (Eval ('[v] ++ r))) -- | Qsort - give the comparison function @a -> a -> Exp Bool@ comparing your -- list elements and then Qsort will order the list. -- -- __Example__ -- -- >>> :kind! Eval (Qsort (<) '[5,3,1,9,4,6,3]) -- Eval (Qsort (<) '[5,3,1,9,4,6,3]) :: [Nat] -- = '[1, 3, 3, 4, 5, 6, 9] -- -- >>> :kind! Eval (Qsort SymbolCompareInc '[ "bb", "e", "a", "e", "d" ]) -- Eval (Qsort SymbolCompareInc '[ "bb", "e", "a", "e", "d" ]) :: [TL.Symbol] -- = '["a", "bb", "d", "e", "e"] data Qsort :: (a -> a -> Exp Bool) -> [a] -> Exp [a] type instance Eval (Qsort cmp lst) = Eval (Hylo Inord (PartCmp cmp) lst) -- Helper -- -- We use the Flip version so that using <-comparison will give an inreasing -- Nat-list. Sorting would work without PartCmp. data PartCmp :: (a -> a -> Exp Bool) -> CoAlgebra (BTreeF a) [a] type instance Eval (PartCmp cmp coalg) = Eval (PartHlp (Flip cmp) coalg)