{- Copyright (C) 2011-2015 Dr. Alistair Ward This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -} {- | [@AUTHOR@] Dr. Alistair Ward [@DESCRIPTION@] * Contains the entry-point to the program. * Facilitates testing. -} module Main(main) where import qualified Data.Default import qualified Data.Map import qualified Data.List import qualified Data.Version import qualified Factory.Math.Hyperoperation as Math.Hyperoperation import qualified Factory.Math.Implementations.Factorial as Math.Implementations.Factorial import qualified Factory.Math.Implementations.Primality as Math.Implementations.Primality import qualified Factory.Math.Implementations.PrimeFactorisation as Math.Implementations.PrimeFactorisation import qualified Factory.Math.Implementations.Primes.Algorithm as Math.Implementations.Primes.Algorithm import qualified Factory.Math.Implementations.SquareRoot as Math.Implementations.SquareRoot import qualified Factory.Math.Probability as Math.Probability import qualified Factory.Test.CommandOptions as Test.CommandOptions import qualified Factory.Test.Performance.Factorial as Test.Performance.Factorial import qualified Factory.Test.Performance.Hyperoperation as Test.Performance.Hyperoperation import qualified Factory.Test.Performance.Pi as Test.Performance.Pi import qualified Factory.Test.Performance.Primality as Test.Performance.Primality import qualified Factory.Test.Performance.PrimeFactorisation as Test.Performance.PrimeFactorisation import qualified Factory.Test.Performance.Primes as Test.Performance.Primes import qualified Factory.Test.Performance.SquareRoot as Test.Performance.SquareRoot import qualified Factory.Test.Performance.Statistics as Test.Performance.Statistics import qualified Paths_factory as Paths -- Either local stub, or package-instance autogenerated by 'Setup.hs build'. import qualified System.Console.GetOpt as G import qualified System.Environment import qualified System.Exit import qualified System.Info import qualified System.IO import qualified System.IO.Error import qualified System.Random -- Local convenience definitions. type PrimalityAlgorithm = Math.Implementations.Primality.Algorithm Math.Implementations.PrimeFactorisation.Algorithm type PiCategory = Test.Performance.Pi.Category Math.Implementations.SquareRoot.Algorithm Math.Implementations.Factorial.Algorithm -- | Used to thread user-defined command-line options, though the list of functions which implement them. type CommandLineAction = Test.CommandOptions.CommandOptions -> IO Test.CommandOptions.CommandOptions -- Supplied as the type-argument to 'G.OptDescr'. -- | On failure to parse the specified string, returns an explanatory error. read' :: Read a => String -> String -> a read' errorMessage s = case reads s of [(x, "")] -> x _ -> error $ errorMessage ++ show s -- | On failure to parse a command-line argument, returns an explanatory error. readCommandArg :: Read a => String -> a readCommandArg = read' "Failed to parse command-line argument " -- | Parses the command-line arguments, to determine 'Test.CommandOptions.CommandOptions'. main :: IO () main = do System.IO.hClose System.IO.stdin -- Nothing is read from standard input. progName <- System.Environment.getProgName let usageMessage :: String usageMessage = "Usage:\t" ++ G.usageInfo progName optDescrList optDescrList :: [G.OptDescr CommandLineAction] optDescrList = [ -- String [String] (G.ArgDescr CommandLineAction) String G.Option "?" ["help"] (G.NoArg $ const printUsage) "Display this help-text & then exit.", G.Option "" ["verbose"] (G.NoArg $ return {-to IO-monad-} . Test.CommandOptions.setVerbose) ("Provide additional information where available; default '" ++ show (Test.CommandOptions.verbose Data.Default.def) ++ "'."), G.Option "" ["version"] (G.NoArg $ const printVersion) "Print version-information & then exit.", G.Option "" ["carmichaelNumbersPerformance"] (carmichaelNumbersPerformance `G.ReqArg` "(Math.Implementations.Primality.Algorithm, Int)") "Test the performance of 'Math.Primality.carmichaelNumbers'.", G.Option "" ["factorialPerformance"] (factorialPerformance `G.ReqArg` "(Math.Implementations.Factorial.Algorithm, Integer)") "Test the performance of 'Math.Factorial.factorial'.", G.Option "" ["factorialPerformanceGraph"] (factorialPerformanceGraph `G.ReqArg` "Math.Implementations.Factorial.Algorithm") "Test the performance of 'Math.Factorial.factorial', with an exponentially increasing operand.", G.Option "" ["factorialPerformanceGraphControl"] (G.NoArg factorialPerformanceGraphControl) "Test the performance of a naive factorial-implementation, with an exponentially increasing operand.", G.Option "" ["hyperoperationPerformance"] (hyperoperationPerformance `G.ReqArg` "(Integer, Math.Hyperoperation.Base, Math.Hyperoperation.HyperExponent)") "Test the performance of 'Math.Hyperoperation.hyperoperation', against the specified rank, base and hyper-exponent.", G.Option "" ["hyperoperationPerformanceGraphRank"] (hyperoperationPerformanceGraphRank `G.ReqArg` "(Math.Hyperoperation.Base, Math.Hyperoperation.HyperExponent)") "Test the performance of 'Math.Hyperoperation.hyperoperation', for the specified base and hyper-exponent, and a linearly increasing rank.", G.Option "" ["hyperoperationPerformanceGraphExponent"] (hyperoperationPerformanceGraphExponent `G.ReqArg` "(Integer, Math.Hyperoperation.Base)") "Test the performance of 'Math.Hyperoperation.hyperoperation', for the specified rank and base, and a linearly increasing hyper-exponent.", G.Option "" ["isPrimePerformance"] (isPrimePerformance `G.ReqArg` "(Math.Implementations.Primality.Algorithm, Integer)") "Test the performance of 'Math.Primality.isPrime'.", G.Option "" ["isPrimePerformanceGraph"] (isPrimePerformanceGraph `G.ReqArg` "Math.Implementations.Primality.Algorithm") "Test the performance of 'Math.Primality.isPrime', against the prime-indexed Fibonacci-numbers.", G.Option "" ["mersenneNumbersPerformance"] (mersenneNumbersPerformance `G.ReqArg` "(Math.Implementations.Primes.Algorithm.Algorithm, Int)") "Test the performance of 'Math.Primes.mersenneNumbers'.", G.Option "" ["factorialPerformance"] (factorialPerformance `G.ReqArg` "(Math.Implementations.Factorial.Algorithm, Integer)") "Test the performance of 'Math.Factorial.factorial'.", G.Option "" ["nCrPerformance"] (nCrPerformance `G.ReqArg` "(Math.Implementations.Factorial.Algorithm, Integer, Integer)") "Test the performance of 'Math.Factorial.factorial'.", G.Option "" ["piPerformance"] (piPerformance `G.ReqArg` "(Math.Pi.Category, Math.Precision.DecimalDigits)") "Test the performance of 'Math.Pi.openI'.", G.Option "" ["piPerformanceGraph"] (piPerformanceGraph `G.ReqArg` "(Math.Pi.Category, Double, Math.Precision.DecimalDigits)") "Test the performance of 'Math.Pi.openI', with an exponential precision-requirement (of the specified exponent), up to the specified limit.", G.Option "" ["plotDiscreteDistribution"] (plotDiscreteDistribution `G.ReqArg` "(Int, Math.Probability.DiscreteDistribution)") "Plot the Probability Mass function for the specified discrete distribution.", G.Option "" ["primeFactorsPerformance"] (primeFactorsPerformance `G.ReqArg` "(Math.Implementations.PrimeFactorisation.Algorithm, Integer)") "Test the performance of 'Math.PrimeFactorisation.primeFactors'.", G.Option "" ["primeFactorsPerformanceGraph"] (primeFactorsPerformanceGraph `G.ReqArg` "(Math.Implementations.PrimeFactorisation.Algorithm, Int)") "Test the performance of 'Math.PrimeFactorisation.primeFactors', on the specified number of odd integers from the Fibonacci-sequence.", G.Option "" ["primesPerformance"] (primesPerformance `G.ReqArg` "(Math.Implementations.Primes.Algorithm.Algorithm, Int)") "Test the performance of 'Math.Primes.primes'.", G.Option "" ["squareRootPerformance"] (squareRootPerformance `G.ReqArg` "(Math.Implementations.SquareRoot.Algorithm, Rational, DecimalDigits)") "Test the performance of 'Math.SquareRoot.squareRoot'.", G.Option "" ["squareRootPerformanceGraph"] (squareRootPerformanceGraph `G.ReqArg` "(Math.Implementations.SquareRoot.Algorithm, Rational)") "Test the performance of 'Math.SquareRoot.squareRoot', with an exponentially increasing precision-requirement." ] where printVersion, printUsage :: IO Test.CommandOptions.CommandOptions printVersion = System.IO.hPutStrLn System.IO.stderr ( showString progName . showChar '-' . showsVersion Paths.version . showString "\n\nCompiled by " . showString System.Info.compilerName . showChar '-' . showsVersion System.Info.compilerVersion . showString ".\n\nCopyright (C) 2011-2017 " . showString author . showString ".\nThis program comes with ABSOLUTELY NO WARRANTY.\nThis is free software, and you are welcome to redistribute it under certain conditions.\n\nWritten by " $ showString author "." ) >> System.Exit.exitSuccess where author :: String author = "Dr. Alistair Ward" showsVersion :: Data.Version.Version -> ShowS showsVersion = foldr (.) id . Data.List.intersperse (showChar '.') . map shows . Data.Version.versionBranch printUsage = System.IO.hPutStrLn System.IO.stderr usageMessage >> System.Exit.exitSuccess factorialPerformanceGraphControl :: Test.CommandOptions.CommandOptions -> IO Test.CommandOptions.CommandOptions factorialPerformanceGraphControl commandOptions = Test.Performance.Factorial.factorialPerformanceGraphControl (Test.CommandOptions.verbose commandOptions) >> System.Exit.exitFailure carmichaelNumbersPerformance, factorialPerformance, factorialPerformanceGraph, hyperoperationPerformance, hyperoperationPerformanceGraphRank, hyperoperationPerformanceGraphExponent, isPrimePerformance, isPrimePerformanceGraph, mersenneNumbersPerformance, piPerformance, piPerformanceGraph, plotDiscreteDistribution, primeFactorsPerformance, primesPerformance, squareRootPerformance, squareRootPerformanceGraph :: String -> CommandLineAction carmichaelNumbersPerformance arg _ = Test.Performance.Primality.carmichaelNumbersPerformance algorithm i >>= print >> System.Exit.exitSuccess where algorithm :: PrimalityAlgorithm (algorithm, i) = readCommandArg arg factorialPerformance arg _ = Test.Performance.Factorial.factorialPerformance algorithm i >>= print >> System.Exit.exitSuccess where algorithm :: Math.Implementations.Factorial.Algorithm i :: Integer (algorithm, i) = readCommandArg arg factorialPerformanceGraph arg commandOptions = Test.Performance.Factorial.factorialPerformanceGraph (Test.CommandOptions.verbose commandOptions) (readCommandArg arg :: Math.Implementations.Factorial.Algorithm) >> System.Exit.exitFailure hyperoperationPerformance arg _ = Test.Performance.Hyperoperation.hyperoperationPerformance rank base hyperExponent >>= print >> System.Exit.exitSuccess where rank :: Integer base :: Math.Hyperoperation.Base hyperExponent :: Math.Hyperoperation.HyperExponent (rank, base, hyperExponent) = readCommandArg arg hyperoperationPerformanceGraphRank arg commandOptions = Test.Performance.Hyperoperation.hyperoperationPerformanceGraphRank (Test.CommandOptions.verbose commandOptions) base hyperExponent >> System.Exit.exitFailure where base :: Math.Hyperoperation.Base hyperExponent :: Math.Hyperoperation.HyperExponent (base, hyperExponent) = readCommandArg arg hyperoperationPerformanceGraphExponent arg commandOptions = Test.Performance.Hyperoperation.hyperoperationPerformanceGraphExponent (Test.CommandOptions.verbose commandOptions) rank base >> System.Exit.exitFailure where rank :: Integer base :: Math.Hyperoperation.Base (rank, base) = readCommandArg arg isPrimePerformance arg _ = Test.Performance.Primality.isPrimePerformance algorithm i >>= print >> System.Exit.exitSuccess where algorithm :: PrimalityAlgorithm i :: Integer (algorithm, i) = readCommandArg arg isPrimePerformanceGraph arg _ = Test.Performance.Primality.isPrimePerformanceGraph (readCommandArg arg :: Math.Implementations.Primality.Algorithm Math.Implementations.PrimeFactorisation.Algorithm) >> System.Exit.exitFailure mersenneNumbersPerformance arg _ = Test.Performance.Primes.mersenneNumbersPerformance algorithm i >>= print >> System.Exit.exitSuccess where algorithm :: Math.Implementations.Primes.Algorithm.Algorithm (algorithm, i) = readCommandArg arg nCrPerformance arg _ = Test.Performance.Statistics.nCrPerformance algorithm n r >>= print >> System.Exit.exitSuccess where algorithm :: Math.Implementations.Factorial.Algorithm n, r :: Integer (algorithm, n, r) = readCommandArg arg piPerformance arg _ = Test.Performance.Pi.piPerformance category decimalDigits >>= print >> System.Exit.exitSuccess where category :: PiCategory (category, decimalDigits) = readCommandArg arg piPerformanceGraph arg commandOptions = Test.Performance.Pi.piPerformanceGraph category factor maxDecimalDigits (Test.CommandOptions.verbose commandOptions) >> System.Exit.exitFailure where category :: PiCategory factor :: Double (category, factor, maxDecimalDigits) = readCommandArg arg plotDiscreteDistribution arg _ = let distribution :: Math.Probability.DiscreteDistribution Double (n, distribution) = readCommandArg arg in do System.Random.getStdGen >>= print . Data.Map.toList . Data.Map.map ((/ (fromIntegral n :: Double)) . fromInteger) . Data.Map.fromListWith (+) . (`zip` repeat 1) . (take n :: [Integer] -> [Integer]) . Math.Probability.generateDiscretePopulation distribution System.Exit.exitSuccess primeFactorsPerformance arg _ = Test.Performance.PrimeFactorisation.primeFactorsPerformance algorithm i >>= print >> System.Exit.exitSuccess where algorithm :: Math.Implementations.PrimeFactorisation.Algorithm (algorithm, i) = readCommandArg arg primeFactorsPerformanceGraph arg _ = Test.Performance.PrimeFactorisation.primeFactorsPerformanceGraph algorithm index >> System.Exit.exitFailure where algorithm :: Math.Implementations.PrimeFactorisation.Algorithm (algorithm, index) = readCommandArg arg primesPerformance arg _ = ( ( {- Hard-code specific algorithms, so the simplifier triggers rewrite-rules in "Math.Implementations.Primes", ready for run-time definitions of 'algorithm' to exploit as appropriate. CAVEAT: fragile. -} case algorithm of Math.Implementations.Primes.Algorithm.SieveOfEratosthenes wheelSize -> Test.Performance.Primes.primesPerformance $ Math.Implementations.Primes.Algorithm.SieveOfEratosthenes wheelSize Math.Implementations.Primes.Algorithm.SieveOfAtkin maxPrime -> Test.Performance.Primes.primesPerformance $ Math.Implementations.Primes.Algorithm.SieveOfAtkin maxPrime _ -> Test.Performance.Primes.primesPerformance algorithm ) index :: IO ( Double, -- Integer Int -- Exploits rewrite-rules in "Math.Implementations.Primes.*". ) ) >>= print >> System.Exit.exitSuccess where algorithm :: Math.Implementations.Primes.Algorithm.Algorithm (algorithm, index) = readCommandArg arg squareRootPerformance arg _ = Test.Performance.SquareRoot.squareRootPerformance algorithm operand decimalDigits >>= print >> System.Exit.exitSuccess where algorithm :: Math.Implementations.SquareRoot.Algorithm operand :: Rational (algorithm, operand, decimalDigits) = readCommandArg arg squareRootPerformanceGraph arg _ = Test.Performance.SquareRoot.squareRootPerformanceGraph algorithm operand >> System.Exit.exitFailure where algorithm :: Math.Implementations.SquareRoot.Algorithm operand :: Rational (algorithm, operand) = readCommandArg arg args <- System.Environment.getArgs -- G.getOpt :: G.ArgOrder CommandLineAction -> [G.OptDescr Action] -> [String] -> ([Action], [String], [String]) case G.getOpt G.RequireOrder optDescrList args of (commandLineActions, _, []) -> Data.List.foldl' (>>=) (return {-to IO-monad-} Data.Default.def) commandLineActions >> System.Exit.exitSuccess (_, _, errors) -> System.IO.Error.ioError . System.IO.Error.userError $ concat errors ++ usageMessage -- Throw.