{- Copyright (C) 2011 Dr. Alistair Ward This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. -} {- | [@AUTHOR@] Dr. Alistair Ward [@DESCRIPTION@] Defines the unit with which precision is measured, and operations on it. -} module Factory.Math.Precision( -- * Types -- ** Type-synonyms ConvergenceOrder, ConvergenceRate, DecimalDigits, -- * Constants linearConvergence, quadraticConvergence, cubicConvergence, quarticConvergence, -- * Functions getIterationsRequired, getTermsRequired, roundTo, promote, simplify ) where import qualified Data.Ratio -- | The /order of convergence/; <http://en.wikipedia.org/wiki/Rate_of_convergence>. type ConvergenceOrder = Int -- | The /rate of convergence/; <http://en.wikipedia.org/wiki/Rate_of_convergence>. type ConvergenceRate = Double -- | A number of decimal digits; presumably positive. type DecimalDigits = Int -- | /Linear/ convergence-rate; which may be qualified by the /rate of convergence/. linearConvergence :: ConvergenceOrder linearConvergence = 1 -- | /Quadratic/ convergence-rate. quadraticConvergence :: ConvergenceOrder quadraticConvergence = 2 -- | /Cubic/ convergence-rate. cubicConvergence :: ConvergenceOrder cubicConvergence = 3 -- | /Quartic/ convergence-rate. quarticConvergence :: ConvergenceOrder quarticConvergence = 4 -- | The predicted number of iterations, required to achieve a specific accuracy, at a given /order of convergence/. getIterationsRequired :: Integral i => ConvergenceOrder -> DecimalDigits -- ^ The precision of the initial estimate. -> DecimalDigits -- ^ The required precision. -> i getIterationsRequired convergenceOrder initialDecimalDigits requiredDecimalDigits | initialDecimalDigits <= 0 = error $ "Factory.Math.Precision.getIterationsRequired:\tinsufficient 'initialDecimalDigits'; " ++ show initialDecimalDigits | precisionRatio <= 1 = 0 | otherwise = ceiling $ fromIntegral convergenceOrder `logBase` precisionRatio where precisionRatio :: Double precisionRatio = fromIntegral requiredDecimalDigits / fromIntegral initialDecimalDigits {- | * The predicted number of terms which must be extracted from a series, if it is to converge to the required accuracy, at the specified linear /convergence-rate/. * The /convergence-rate/ of a series, is the error in the series after summation of @(n+1)th@ terms, divided by the error after only @n@ terms, as the latter tends to infinity. As such, for a /convergent/ series (in which the error get smaller with successive terms), it's value lies in the range @0 .. 1@. * <http://en.wikipedia.org/wiki/Rate_of_convergence>. -} getTermsRequired :: Integral i => ConvergenceRate -> DecimalDigits -- ^ The additional number of correct decimal digits. -> i getTermsRequired _ 0 = 0 getTermsRequired convergenceRate requiredDecimalDigits | convergenceRate <= 0 || convergenceRate >= 1 = error $ "Factory.Math.Precision.getTermsRequired:\t(0 < convergence-rate < 1); " ++ show convergenceRate | requiredDecimalDigits < 0 = error $ "Factory.Math.Precision.getTermsRequired:\t'requiredDecimalDigits' must be positive; " ++ show requiredDecimalDigits | otherwise = ceiling $ fromIntegral requiredDecimalDigits / negate (logBase 10 convergenceRate) -- | Rounds the specified number, to a positive number of 'DecimalDigits'. roundTo :: (RealFrac a, Fractional f) => DecimalDigits -> a -> f roundTo decimals = (/ fromInteger promotionFactor) . fromInteger . round . (* fromInteger promotionFactor) where promotionFactor :: Integer promotionFactor = 10 ^ decimals -- | Promotes the specified number, by a positive number of 'DecimalDigits'. promote :: Num n => n -> DecimalDigits -> n promote x = (* x) . (10 ^) {- | * Reduces a 'Rational' to the minimal form required for the specified number of /fractional/ decimal places; irrespective of the number of integral decimal places. * A 'Rational' approximation to an irrational number, may be very long, and provide an unknown excess precision. Whilst this doesn't sound harmful, it costs in performance and memory-requirement, and being unpredictable isn't actually useful. -} simplify :: RealFrac operand => DecimalDigits -- ^ The number of places after the decimal point, which are required. -> operand -> Rational simplify decimalDigits operand = Data.Ratio.approxRational operand . recip $ 4 * 10 ^ succ decimalDigits -- Tolerate any error less than half the least significant digit required.