module Data.ExactPi
(
ExactPi(..),
approximateValue,
isExactZero,
isExactOne
)
where
import Data.Monoid
import Data.Group
import Prelude
data ExactPi = Exact Integer Rational
| Approximate (forall a.Floating a => a)
approximateValue :: Floating a => ExactPi -> a
approximateValue (Exact z q) = (pi ^ z) * (fromRational q)
approximateValue (Approximate x) = x
isExactZero :: ExactPi -> Bool
isExactZero (Exact _ 0) = True
isExactZero _ = False
isExactOne :: ExactPi -> Bool
isExactOne (Exact 0 1) = True
isExactOne _ = False
instance Show ExactPi where
show (Exact z q) | z == 0 = "Exactly " ++ show q
| z == 1 = "Exactly pi * " ++ show q
| otherwise = "Exactly pi^" ++ show z ++ " * " ++ show q
show (Approximate x) = "Approximately " ++ show (x :: Double)
instance Num ExactPi where
fromInteger n = Exact 0 (fromInteger n)
(Exact z1 q1) * (Exact z2 q2) = Exact (z1 + z2) (q1 * q2)
(Exact _ 0) * _ = 0
_ * (Exact _ 0) = 0
x * y = Approximate $ approximateValue x * approximateValue y
(Exact z1 q1) + (Exact z2 q2) | z1 == z2 = Exact z1 (q1 + q2)
x + y = Approximate $ approximateValue x + approximateValue y
abs (Exact z q) = Exact z (abs q)
abs (Approximate x) = Approximate $ abs x
signum (Exact _ q) = Exact 0 (signum q)
signum (Approximate x) = Approximate $ signum x
negate x = (1) * x
instance Fractional ExactPi where
fromRational = Exact 0
recip (Exact z q) = Exact z (recip q)
instance Floating ExactPi where
pi = Exact 1 1
exp x | isExactZero x = 1
| otherwise = approx1 exp x
log (Exact 0 1) = 0
log x = approx1 log x
sin = approx1 sin
cos = approx1 cos
tan = approx1 tan
asin = approx1 asin
atan = approx1 atan
acos = approx1 acos
sinh = approx1 sinh
cosh = approx1 cosh
tanh = approx1 tanh
asinh = approx1 asinh
acosh = approx1 acosh
atanh = approx1 atanh
approx1 :: (forall a.Floating a => a -> a) -> ExactPi -> ExactPi
approx1 f x = Approximate (f (approximateValue x))
instance Monoid ExactPi where
mempty = 1
mappend = (*)
instance Group ExactPi where
invert = recip
instance Abelian ExactPi