{-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE Trustworthy #-} {-# OPTIONS_HADDOCK not-home #-} -------------------------------------------------------------------- -- | -- Copyright : © Edward Kmett 2010-2014, Johan Kiviniemi 2013 -- License : BSD3 -- Maintainer: Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability: non-portable -- -------------------------------------------------------------------- module Ersatz.Internal.Formula ( -- * Clauses Clause(..), clauseLiterals -- * Formulas , Formula(..) , formulaEmpty, formulaLiteral , formulaNot, formulaAnd, formulaOr, formulaXor, formulaMux ) where import Control.Applicative import Data.IntSet (IntSet) import qualified Data.IntSet as IntSet import qualified Data.List as List (intersperse) import Data.Monoid import Data.Set (Set) import qualified Data.Set as Set import Data.Typeable import Ersatz.Internal.Literal ------------------------------------------------------------------------------ -- Clauses ------------------------------------------------------------------------------ -- | A disjunction of possibly negated atoms. Negated atoms are represented -- by negating the identifier. newtype Clause = Clause { clauseSet :: IntSet } deriving (Eq, Ord, Monoid, Typeable) -- | Extract the (possibly negated) atoms referenced by a 'Clause'. clauseLiterals :: Clause -> [Literal] clauseLiterals (Clause is) = Literal <$> IntSet.toList is ------------------------------------------------------------------------------ -- Formulas ------------------------------------------------------------------------------ -- | A conjunction of clauses newtype Formula = Formula { formulaSet :: Set Clause } deriving (Eq, Ord, Monoid, Typeable) instance Show Formula where showsPrec p = showParen (p > 2) . foldr (.) id . List.intersperse (showString " & ") . map (showsPrec 3) . Set.toList . formulaSet instance Show Clause where showsPrec p = showParen (p > 1) . foldr (.) id . List.intersperse (showString " | ") . map (showsPrec 2) . IntSet.toList . clauseSet -- | A formula with no clauses formulaEmpty :: Formula formulaEmpty = Formula Set.empty -- | Assert a literal formulaLiteral :: Literal -> Formula formulaLiteral (Literal l) = Formula (Set.singleton (Clause (IntSet.singleton l))) -- | The boolean /not/ operation -- -- Derivation of the Tseitin transformation: -- -- @ -- O ≡ ¬A -- (O → ¬A) & (¬O → A) -- (¬O | ¬A) & (O | A) -- @ formulaNot :: Literal -- ^ Output -> Literal -- ^ Input -> Formula formulaNot (Literal out) (Literal inp) = formulaFromList cls where cls = [ [-out, -inp], [out, inp] ] -- | The boolean /and/ operation -- -- Derivation of the Tseitin transformation: -- -- @ -- O ≡ (A & B & C) -- (O → (A & B & C)) & (¬O → ¬(A & B & C)) -- (¬O | (A & B & C)) & (O | ¬(A & B & C)) -- (¬O | A) & (¬O | B) & (¬O | C) & (O | ¬A | ¬B | ¬C) -- @ formulaAnd :: Literal -- ^ Output -> [Literal] -- ^ Inputs -> Formula formulaAnd (Literal out) inpLs = formulaFromList cls where cls = (out : map negate inps) : map (\inp -> [-out, inp]) inps inps = map literalId inpLs -- | The boolean /or/ operation -- -- Derivation of the Tseitin transformation: -- -- @ -- O ≡ (A | B | C) -- (O → (A | B | C)) & (¬O → ¬(A | B | C)) -- (¬O | (A | B | C)) & (O | ¬(A | B | C)) -- (¬O | A | B | C) & (O | (¬A & ¬B & ¬C)) -- (¬O | A | B | C) & (O | ¬A) & (O | ¬B) & (O | ¬C) -- @ formulaOr :: Literal -- ^ Output -> [Literal] -- ^ Inputs -> Formula formulaOr (Literal out) inpLs = formulaFromList cls where cls = (-out : inps) : map (\inp -> [out, -inp]) inps inps = map literalId inpLs -- | The boolean /xor/ operation -- -- Derivation of the Tseitin transformation: -- -- @ -- O ≡ A ⊕ B -- O ≡ ((¬A & B) | (A & ¬B)) -- (O → ((¬A & B) | (A & ¬B))) & (¬O → ¬((¬A & B) | (A & ¬B))) -- @ -- -- Left hand side: -- -- @ -- O → ((¬A & B) | (A & ¬B)) -- ¬O | ((¬A & B) | (A & ¬B)) -- ¬O | ((¬A | A) & (¬A | ¬B) & (A | B) & (¬B | B)) -- ¬O | ((¬A | ¬B) & (A | B)) -- (¬O | ¬A | ¬B) & (¬O | A | B) -- @ -- -- Right hand side: -- -- @ -- ¬O → ¬((¬A & B) | (A & ¬B)) -- O | ¬((¬A & B) | (A & ¬B)) -- O | (¬(¬A & B) & ¬(A & ¬B)) -- O | ((A | ¬B) & (¬A | B)) -- (O | ¬A | B) & (O | A | ¬B) -- @ -- -- Result: -- -- @ -- (¬O | ¬A | ¬B) & (¬O | A | B) & (O | ¬A | B) & (O | A | ¬B) -- @ formulaXor :: Literal -- ^ Output -> Literal -- ^ Input -> Literal -- ^ Input -> Formula formulaXor (Literal out) (Literal inpA) (Literal inpB) = formulaFromList cls where cls = [ [-out, -inpA, -inpB] , [-out, inpA, inpB] , [ out, -inpA, inpB] , [ out, inpA, -inpB] ] -- | The boolean /else-then-if/ or /mux/ operation -- -- Derivation of the Tseitin transformation: -- -- @ -- O ≡ (F & ¬P) | (T & P) -- (O → ((F & ¬P) | (T & P))) & (¬O → ¬((F & ¬P) | (T & P))) -- @ -- -- Left hand side: -- -- @ -- O → ((F & ¬P) | (T & P)) -- ¬O | ((F & ¬P) | (T & P)) -- ¬O | ((F | T) & (F | P) & (T | ¬P) & (¬P | P)) -- ¬O | ((F | T) & (F | P) & (T | ¬P)) -- (¬O | F | T) & (¬O | F | P) & (¬O | T | ¬P) -- @ -- -- Right hand side: -- -- @ -- ¬O → ¬((F & ¬P) | (T & P)) -- O | ¬((F & ¬P) | (T & P)) -- O | (¬(F & ¬P) & ¬(T & P)) -- O | ((¬F | P) & (¬T | ¬P)) -- (O | ¬F | P) & (O | ¬T | ¬P) -- @ -- -- Result: -- -- @ -- (¬O | F | T) & (¬O | F | P) & (¬O | T | ¬P) & (O | ¬F | P) & (O | ¬T | ¬P) -- @ formulaMux :: Literal -- ^ Output -> Literal -- ^ False branch -> Literal -- ^ True branch -> Literal -- ^ Predicate/selector -> Formula formulaMux (Literal out) (Literal inpF) (Literal inpT) (Literal inpP) = formulaFromList cls where cls = [ [-out, inpF, inpT] , [-out, inpF, inpP] , [-out, inpT, -inpP] , [ out, -inpF, inpP] , [ out, -inpT, -inpP] ] formulaFromList :: [[Int]] -> Formula formulaFromList = Formula . Set.fromList . map (Clause . IntSet.fromList)