module Data.EnumSet (
T(Cons, decons),
fromEnum,
fromEnums,
toEnums,
intToEnums,
mostSignificantPosition,
singletonByPosition,
null,
empty,
singleton,
disjoint,
subset,
(.&.),
(.-.),
(.|.),
xor,
unions,
get,
put,
accessor,
set,
clear,
flip,
fromBool,
) where
import qualified Data.Bits as B
import Data.Bits (Bits, )
import qualified Data.EnumSet.Utility as U
import Data.Monoid (Monoid(mempty, mappend), )
import qualified Foreign.Storable.Newtype as Store
import Foreign.Storable (Storable(sizeOf, alignment, peek, poke), )
import qualified Data.Accessor.Basic as Acc
import qualified Prelude as P
import Prelude hiding (fromEnum, toEnum, null, flip, )
newtype T word index = Cons {decons :: word}
deriving (Eq)
instance (Enum a, Storable w) => Storable (T w a) where
sizeOf = Store.sizeOf decons
alignment = Store.alignment decons
peek = Store.peek Cons
poke = Store.poke decons
instance (Enum a, Bits w) => Monoid (T w a) where
mempty = empty
mappend = (.|.)
fromEnum :: (Enum a, Bits w) => a -> T w a
fromEnum = Cons . B.bit . P.fromEnum
fromEnums :: (Enum a, Bits w) => [a] -> T w a
fromEnums = Cons . foldl B.setBit U.empty . map P.fromEnum
toEnums :: (Enum a, Bits w) => T w a -> [a]
toEnums =
map fst . filter (P.flip B.testBit 0 . snd) .
zip [P.toEnum 0 ..] .
takeWhile (U.empty /= ) . iterate (P.flip B.shiftR 1) .
decons
intToEnums :: (Enum a, Integral w) => T w a -> [a]
intToEnums =
map fst . filter (odd . snd) .
zip [P.toEnum 0 ..] .
takeWhile (0/=) . iterate (P.flip div 2) .
decons
mostSignificantPosition :: (Bits w, Storable w) => T w a -> Int
mostSignificantPosition (Cons x) =
snd $
foldl
(\(x0,pos) testPos ->
let x1 = B.shiftR x0 testPos
in if x1 == U.empty
then (x0, pos)
else (x1, pos+testPos))
(x,0) $
reverse $
takeWhile (< sizeOf x * 8) $
iterate (2*) 1
singletonByPosition :: (Bits w) => Int -> T w a
singletonByPosition = Cons . B.setBit U.empty
null :: (Enum a, Bits w) => T w a -> Bool
null (Cons x) = x==U.empty
empty :: (Enum a, Bits w) => T w a
empty = Cons U.empty
disjoint :: (Enum a, Bits w) => T w a -> T w a -> Bool
disjoint x y = null (x .&. y)
subset :: (Enum a, Bits w) => T w a -> T w a -> Bool
subset x y = null (x .-. y)
lift2 :: (w -> w -> w) -> (T w a -> T w a -> T w a)
lift2 f (Cons x) (Cons y) = Cons (f x y)
infixl 7 .&., .-.
infixl 5 .|.
(.&.), (.-.), (.|.), xor :: (Enum a, Bits w) => T w a -> T w a -> T w a
(.&.) = lift2 (B..&.)
(.|.) = lift2 (B..|.)
(.-.) = lift2 (\x y -> x B..&. B.complement y)
xor = lift2 B.xor
unions :: (Enum a, Bits w) => [T w a] -> T w a
unions = foldl (.|.) empty
get :: (Enum a, Bits w) => a -> T w a -> Bool
get n = P.flip B.testBit (P.fromEnum n) . decons
put :: (Enum a, Bits w) => a -> Bool -> T w a -> T w a
put n b s =
fromBool n b .|. clear n s
accessor :: (Enum a, Bits w) => a -> Acc.T (T w a) Bool
accessor x = Acc.fromSetGet (put x) (get x)
lift1 ::
(Enum a, Bits w) =>
(w -> Int -> w) -> (a -> T w a -> T w a)
lift1 f n (Cons vec) = Cons (f vec (P.fromEnum n))
singleton :: (Enum a, Bits w) => a -> T w a
singleton = P.flip set empty
set :: (Enum a, Bits w) => a -> T w a -> T w a
set = lift1 B.setBit
clear :: (Enum a, Bits w) => a -> T w a -> T w a
clear = lift1 B.clearBit
flip :: (Enum a, Bits w) => a -> T w a -> T w a
flip = lift1 B.complementBit
fromBool :: (Enum a, Bits w) => a -> Bool -> T w a
fromBool n b =
Cons $ if b then B.bit (P.fromEnum n) else U.empty