#include #include "../ge.h" #include "curve_sigs.h" #include "../nacl_includes/crypto_sign.h" #include "crypto_hash_sha512.h" void curve25519_private_keygen(const unsigned char* random, unsigned char* curve25519_privkey_out) { memmove(curve25519_privkey_out, random, 32); curve25519_privkey_out[0] &= 248; curve25519_privkey_out[31] &= 127; curve25519_privkey_out[31] |= 64; } void curve25519_keygen(unsigned char* curve25519_pubkey_out, const unsigned char* curve25519_privkey_in) { ge_p3 ed; /* Ed25519 pubkey point */ fe ed_y, ed_y_plus_one, one_minus_ed_y, inv_one_minus_ed_y; fe mont_x; /* Perform a fixed-base multiplication of the Edwards base point, (which is efficient due to precalculated tables), then convert to the Curve25519 montgomery-format public key. In particular, convert Curve25519's "montgomery" x-coordinate into an Ed25519 "edwards" y-coordinate: mont_x = (ed_y + 1) / (1 - ed_y) with projective coordinates: mont_x = (ed_y + ed_z) / (ed_z - ed_y) NOTE: ed_y=1 is converted to mont_x=0 since fe_invert is mod-exp */ ge_scalarmult_base(&ed, curve25519_privkey_in); fe_add(ed_y_plus_one, ed.Y, ed.Z); fe_sub(one_minus_ed_y, ed.Z, ed.Y); fe_invert(inv_one_minus_ed_y, one_minus_ed_y); fe_mul(mont_x, ed_y_plus_one, inv_one_minus_ed_y); fe_tobytes(curve25519_pubkey_out, mont_x); } int curve25519_sign(unsigned char* signature_out, const unsigned char* curve25519_privkey, const unsigned char* msg, const unsigned long msg_len, const unsigned char* random) { ge_p3 ed_pubkey_point; /* Ed25519 pubkey point */ unsigned char ed_pubkey[32]; /* Ed25519 encoded pubkey */ unsigned char sigbuf[MAX_MSG_LEN + 128]; /* working buffer */ unsigned char sign_bit = 0; if (msg_len > MAX_MSG_LEN) { memset(signature_out, 0, 64); return -1; } /* Convert the Curve25519 privkey to an Ed25519 public key */ ge_scalarmult_base(&ed_pubkey_point, curve25519_privkey); ge_p3_tobytes(ed_pubkey, &ed_pubkey_point); sign_bit = ed_pubkey[31] & 0x80; /* Perform an Ed25519 signature with explicit private key */ crypto_sign_modified(sigbuf, msg, msg_len, curve25519_privkey, ed_pubkey, random); memmove(signature_out, sigbuf, 64); /* Encode the sign bit into signature (in unused high bit of S) */ signature_out[63] &= 0x7F; /* bit should be zero already, but just in case */ signature_out[63] |= sign_bit; return 0; } int curve25519_verify(const unsigned char* signature, const unsigned char* curve25519_pubkey, const unsigned char* msg, const unsigned long msg_len) { fe mont_x, mont_x_minus_one, mont_x_plus_one, inv_mont_x_plus_one; fe one; fe ed_y; unsigned char ed_pubkey[32]; unsigned long long some_retval; unsigned char verifybuf[MAX_MSG_LEN + 64]; /* working buffer */ unsigned char verifybuf2[MAX_MSG_LEN + 64]; /* working buffer #2 */ if (msg_len > MAX_MSG_LEN) { return -1; } /* Convert the Curve25519 public key into an Ed25519 public key. In particular, convert Curve25519's "montgomery" x-coordinate into an Ed25519 "edwards" y-coordinate: ed_y = (mont_x - 1) / (mont_x + 1) NOTE: mont_x=-1 is converted to ed_y=0 since fe_invert is mod-exp Then move the sign bit into the pubkey from the signature. */ fe_frombytes(mont_x, curve25519_pubkey); fe_1(one); fe_sub(mont_x_minus_one, mont_x, one); fe_add(mont_x_plus_one, mont_x, one); fe_invert(inv_mont_x_plus_one, mont_x_plus_one); fe_mul(ed_y, mont_x_minus_one, inv_mont_x_plus_one); fe_tobytes(ed_pubkey, ed_y); /* Copy the sign bit, and remove it from signature */ ed_pubkey[31] &= 0x7F; /* bit should be zero already, but just in case */ ed_pubkey[31] |= (signature[63] & 0x80); memmove(verifybuf, signature, 64); verifybuf[63] &= 0x7F; memmove(verifybuf+64, msg, msg_len); /* Then perform a normal Ed25519 verification, return 0 on success */ /* The below call has a strange API: */ /* verifybuf = R || S || message */ /* verifybuf2 = internal to next call gets a copy of verifybuf, S gets replaced with pubkey for hashing, then the whole thing gets zeroized (if bad sig), or contains a copy of msg (good sig) */ return crypto_sign_open(verifybuf2, &some_retval, verifybuf, 64 + msg_len, ed_pubkey); }