// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H #define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H namespace Eigen { /** \class TensorPadding * \ingroup CXX11_Tensor_Module * * \brief Tensor padding class. * At the moment only padding with a constant value is supported. * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template struct eval, Eigen::Dense> { typedef const TensorPaddingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorPaddingOp type; }; } // end namespace internal template class TensorPaddingOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value) : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC const PaddingDimensions& padding() const { return m_padding_dims; } EIGEN_DEVICE_FUNC Scalar padding_value() const { return m_padding_value; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const PaddingDimensions m_padding_dims; const Scalar m_padding_value; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorPaddingOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::value; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = internal::unpacket_traits::size; enum { IsAligned = true, PacketAccess = TensorEvaluator::PacketAccess, Layout = TensorEvaluator::Layout, CoordAccess = true, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()) { // The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead // to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector // of 1 element first and then pad. EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); // Compute dimensions m_dimensions = m_impl.dimensions(); for (int i = 0; i < NumDims; ++i) { m_dimensions[i] += m_padding[i].first + m_padding[i].second; } const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); if (static_cast(Layout) == static_cast(ColMajor)) { m_inputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; } m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1]; } else { m_inputStrides[NumDims - 1] = 1; m_outputStrides[NumDims] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1]; } m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { eigen_assert(index < dimensions().TotalSize()); Index inputIndex = 0; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (isPaddingAtIndexForDim(idx, i)) { return m_paddingValue; } inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } if (isPaddingAtIndexForDim(index, 0)) { return m_paddingValue; } inputIndex += (index - m_padding[0].first); } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i+1]; if (isPaddingAtIndexForDim(idx, i)) { return m_paddingValue; } inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i+1]; } if (isPaddingAtIndexForDim(index, NumDims-1)) { return m_paddingValue; } inputIndex += (index - m_padding[NumDims-1].first); } return m_impl.coeff(inputIndex); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { if (static_cast(Layout) == static_cast(ColMajor)) { return packetColMajor(index); } return packetRowMajor(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { TensorOpCost cost = m_impl.costPerCoeff(vectorized); if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = 0; i < NumDims; ++i) updateCostPerDimension(cost, i, i == 0); } else { for (int i = NumDims - 1; i >= 0; --i) updateCostPerDimension(cost, i, i == NumDims - 1); } return cost; } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } private: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim( Index index, int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return (!internal::index_pair_first_statically_eq(dim_index, 0) && index < m_padding[dim_index].first) || (!internal::index_pair_second_statically_eq(dim_index, 0) && index >= m_dimensions[dim_index] - m_padding[dim_index].second); #else return (index < m_padding[dim_index].first) || (index >= m_dimensions[dim_index] - m_padding[dim_index].second); #endif } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero( int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return internal::index_pair_first_statically_eq(dim_index, 0); #else EIGEN_UNUSED_VARIABLE(dim_index); return false; #endif } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero( int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return internal::index_pair_second_statically_eq(dim_index, 0); #else EIGEN_UNUSED_VARIABLE(dim_index); return false; #endif } void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const { const double in = static_cast(m_impl.dimensions()[i]); const double out = in + m_padding[i].first + m_padding[i].second; if (out == 0) return; const double reduction = in / out; cost *= reduction; if (first) { cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost() + reduction * (1 * TensorOpCost::AddCost())); } else { cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost() + 2 * TensorOpCost::MulCost() + reduction * (2 * TensorOpCost::MulCost() + 1 * TensorOpCost::DivCost())); } } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index initialIndex = index; Index inputIndex = 0; for (int i = NumDims - 1; i > 0; --i) { const Index first = index; const Index last = index + PacketSize - 1; const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i]; const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i]; const Index lastPaddedRight = m_outputStrides[i+1]; if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. const Index idx = index / m_outputStrides[i]; inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } else { // Every other case return packetWithPossibleZero(initialIndex); } } const Index last = index + PacketSize - 1; const Index first = index; const Index lastPaddedLeft = m_padding[0].first; const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second); const Index lastPaddedRight = m_outputStrides[1]; if (!isLeftPaddingCompileTimeZero(0) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(0) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. inputIndex += (index - m_padding[0].first); return m_impl.template packet(inputIndex); } // Every other case return packetWithPossibleZero(initialIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index initialIndex = index; Index inputIndex = 0; for (int i = 0; i < NumDims - 1; ++i) { const Index first = index; const Index last = index + PacketSize - 1; const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1]; const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1]; const Index lastPaddedRight = m_outputStrides[i]; if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. const Index idx = index / m_outputStrides[i+1]; inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i+1]; } else { // Every other case return packetWithPossibleZero(initialIndex); } } const Index last = index + PacketSize - 1; const Index first = index; const Index lastPaddedLeft = m_padding[NumDims-1].first; const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second); const Index lastPaddedRight = m_outputStrides[NumDims-1]; if (!isLeftPaddingCompileTimeZero(NumDims-1) && last < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(NumDims-1) && first >= firstPaddedRight && last < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (first >= lastPaddedLeft && last < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. inputIndex += (index - m_padding[NumDims-1].first); return m_impl.template packet(inputIndex); } // Every other case return packetWithPossibleZero(initialIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload(values); return rslt; } Dimensions m_dimensions; array m_outputStrides; array m_inputStrides; TensorEvaluator m_impl; PaddingDimensions m_padding; Scalar m_paddingValue; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H