// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2014 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H #define EIGEN_SPARSE_SELFADJOINTVIEW_H namespace Eigen { /** \ingroup SparseCore_Module * \class SparseSelfAdjointView * * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. * * \param MatrixType the type of the dense matrix storing the coefficients * \param Mode can be either \c #Lower or \c #Upper * * This class is an expression of a sefladjoint matrix from a triangular part of a matrix * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() * and most of the time this is the only way that it is used. * * \sa SparseMatrixBase::selfadjointView() */ namespace internal { template struct traits > : traits { }; template void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm = 0); template void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm = 0); } template class SparseSelfAdjointView : public EigenBase > { public: enum { Mode = _Mode, TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0), RowsAtCompileTime = internal::traits::RowsAtCompileTime, ColsAtCompileTime = internal::traits::ColsAtCompileTime }; typedef EigenBase Base; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef Matrix VectorI; typedef typename internal::ref_selector::non_const_type MatrixTypeNested; typedef typename internal::remove_all::type _MatrixTypeNested; explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) { eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); } inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } /** \internal \returns a reference to the nested matrix */ const _MatrixTypeNested& matrix() const { return m_matrix; } typename internal::remove_reference::type& matrix() { return m_matrix; } /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. * * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. */ template Product operator*(const SparseMatrixBase& rhs) const { return Product(*this, rhs.derived()); } /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. * * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. */ template friend Product operator*(const SparseMatrixBase& lhs, const SparseSelfAdjointView& rhs) { return Product(lhs.derived(), rhs); } /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ template Product operator*(const MatrixBase& rhs) const { return Product(*this, rhs.derived()); } /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ template friend Product operator*(const MatrixBase& lhs, const SparseSelfAdjointView& rhs) { return Product(lhs.derived(), rhs); } /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. * * \returns a reference to \c *this * * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply * call this function with u.adjoint(). */ template SparseSelfAdjointView& rankUpdate(const SparseMatrixBase& u, const Scalar& alpha = Scalar(1)); /** \returns an expression of P H P^-1 */ // TODO implement twists in a more evaluator friendly fashion SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix& perm) const { return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm); } template SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct& permutedMatrix) { internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); return *this; } SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) { PermutationMatrix pnull; return *this = src.twistedBy(pnull); } template SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) { PermutationMatrix pnull; return *this = src.twistedBy(pnull); } void resize(Index rows, Index cols) { EIGEN_ONLY_USED_FOR_DEBUG(rows); EIGEN_ONLY_USED_FOR_DEBUG(cols); eigen_assert(rows == this->rows() && cols == this->cols() && "SparseSelfadjointView::resize() does not actually allow to resize."); } protected: MatrixTypeNested m_matrix; //mutable VectorI m_countPerRow; //mutable VectorI m_countPerCol; private: template void evalTo(Dest &) const; }; /*************************************************************************** * Implementation of SparseMatrixBase methods ***************************************************************************/ template template typename SparseMatrixBase::template ConstSelfAdjointViewReturnType::Type SparseMatrixBase::selfadjointView() const { return SparseSelfAdjointView(derived()); } template template typename SparseMatrixBase::template SelfAdjointViewReturnType::Type SparseMatrixBase::selfadjointView() { return SparseSelfAdjointView(derived()); } /*************************************************************************** * Implementation of SparseSelfAdjointView methods ***************************************************************************/ template template SparseSelfAdjointView& SparseSelfAdjointView::rankUpdate(const SparseMatrixBase& u, const Scalar& alpha) { SparseMatrix tmp = u * u.adjoint(); if(alpha==Scalar(0)) m_matrix = tmp.template triangularView(); else m_matrix += alpha * tmp.template triangularView(); return *this; } namespace internal { // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> // in the future selfadjoint-ness should be defined by the expression traits // such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) template struct evaluator_traits > { typedef typename storage_kind_to_evaluator_kind::Kind Kind; typedef SparseSelfAdjointShape Shape; }; struct SparseSelfAdjoint2Sparse {}; template<> struct AssignmentKind { typedef SparseSelfAdjoint2Sparse Kind; }; template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment { typedef typename DstXprType::StorageIndex StorageIndex; typedef internal::assign_op AssignOpType; template static void run(SparseMatrix &dst, const SrcXprType &src, const AssignOpType&/*func*/) { internal::permute_symm_to_fullsymm(src.matrix(), dst); } // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to: template static void run(SparseMatrix &dst, const SrcXprType &src, const AssignFunc& func) { SparseMatrix tmp(src.rows(),src.cols()); run(tmp, src, AssignOpType()); call_assignment_no_alias_no_transpose(dst, tmp, func); } template static void run(SparseMatrix &dst, const SrcXprType &src, const internal::add_assign_op& /* func */) { SparseMatrix tmp(src.rows(),src.cols()); run(tmp, src, AssignOpType()); dst += tmp; } template static void run(SparseMatrix &dst, const SrcXprType &src, const internal::sub_assign_op& /* func */) { SparseMatrix tmp(src.rows(),src.cols()); run(tmp, src, AssignOpType()); dst -= tmp; } template static void run(DynamicSparseMatrix& dst, const SrcXprType &src, const AssignOpType&/*func*/) { // TODO directly evaluate into dst; SparseMatrix tmp(dst.rows(),dst.cols()); internal::permute_symm_to_fullsymm(src.matrix(), tmp); dst = tmp; } }; } // end namespace internal /*************************************************************************** * Implementation of sparse self-adjoint time dense matrix ***************************************************************************/ namespace internal { template inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) { EIGEN_ONLY_USED_FOR_DEBUG(alpha); typedef typename internal::nested_eval::type SparseLhsTypeNested; typedef typename internal::remove_all::type SparseLhsTypeNestedCleaned; typedef evaluator LhsEval; typedef typename LhsEval::InnerIterator LhsIterator; typedef typename SparseLhsType::Scalar LhsScalar; enum { LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit, ProcessFirstHalf = ((Mode&(Upper|Lower))==(Upper|Lower)) || ( (Mode&Upper) && !LhsIsRowMajor) || ( (Mode&Lower) && LhsIsRowMajor), ProcessSecondHalf = !ProcessFirstHalf }; SparseLhsTypeNested lhs_nested(lhs); LhsEval lhsEval(lhs_nested); // work on one column at once for (Index k=0; k::ReturnType rhs_j(alpha*rhs(j,k)); // accumulator for partial scalar product typename DenseResType::Scalar res_j(0); for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) { LhsScalar lhs_ij = i.value(); if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); res_j += lhs_ij * rhs.coeff(i.index(),k); res(i.index(),k) += numext::conj(lhs_ij) * rhs_j; } res.coeffRef(j,k) += alpha * res_j; // handle diagonal coeff if (ProcessFirstHalf && i && (i.index()==j)) res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k); } } } template struct generic_product_impl : generic_product_impl_base > { template static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) { typedef typename LhsView::_MatrixTypeNested Lhs; typedef typename nested_eval::type LhsNested; typedef typename nested_eval::type RhsNested; LhsNested lhsNested(lhsView.matrix()); RhsNested rhsNested(rhs); internal::sparse_selfadjoint_time_dense_product(lhsNested, rhsNested, dst, alpha); } }; template struct generic_product_impl : generic_product_impl_base > { template static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) { typedef typename RhsView::_MatrixTypeNested Rhs; typedef typename nested_eval::type LhsNested; typedef typename nested_eval::type RhsNested; LhsNested lhsNested(lhs); RhsNested rhsNested(rhsView.matrix()); // transpose everything Transpose dstT(dst); internal::sparse_selfadjoint_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); } }; // NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix // TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore template struct product_evaluator, ProductTag, SparseSelfAdjointShape, SparseShape> : public evaluator::PlainObject> { typedef Product XprType; typedef typename XprType::PlainObject PlainObject; typedef evaluator Base; product_evaluator(const XprType& xpr) : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) { ::new (static_cast(this)) Base(m_result); generic_product_impl::evalTo(m_result, m_lhs, xpr.rhs()); } protected: typename Rhs::PlainObject m_lhs; PlainObject m_result; }; template struct product_evaluator, ProductTag, SparseShape, SparseSelfAdjointShape> : public evaluator::PlainObject> { typedef Product XprType; typedef typename XprType::PlainObject PlainObject; typedef evaluator Base; product_evaluator(const XprType& xpr) : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) { ::new (static_cast(this)) Base(m_result); generic_product_impl::evalTo(m_result, xpr.lhs(), m_rhs); } protected: typename Lhs::PlainObject m_rhs; PlainObject m_result; }; } // namespace internal /*************************************************************************** * Implementation of symmetric copies and permutations ***************************************************************************/ namespace internal { template void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm) { typedef typename MatrixType::StorageIndex StorageIndex; typedef typename MatrixType::Scalar Scalar; typedef SparseMatrix Dest; typedef Matrix VectorI; typedef evaluator MatEval; typedef typename evaluator::InnerIterator MatIterator; MatEval matEval(mat); Dest& dest(_dest.derived()); enum { StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) }; Index size = mat.rows(); VectorI count; count.resize(size); count.setZero(); dest.resize(size,size); for(Index j = 0; jc) || ( Mode==Upper && r(it.index()); Index r = it.row(); Index c = it.col(); StorageIndex jp = perm ? perm[j] : j; StorageIndex ip = perm ? perm[i] : i; if(Mode==(Upper|Lower)) { Index k = count[StorageOrderMatch ? jp : ip]++; dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; dest.valuePtr()[k] = it.value(); } else if(r==c) { Index k = count[ip]++; dest.innerIndexPtr()[k] = ip; dest.valuePtr()[k] = it.value(); } else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm) { typedef typename MatrixType::StorageIndex StorageIndex; typedef typename MatrixType::Scalar Scalar; SparseMatrix& dest(_dest.derived()); typedef Matrix VectorI; typedef evaluator MatEval; typedef typename evaluator::InnerIterator MatIterator; enum { SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, StorageOrderMatch = int(SrcOrder) == int(DstOrder), DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode, SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode }; MatEval matEval(mat); Index size = mat.rows(); VectorI count(size); count.setZero(); dest.resize(size,size); for(StorageIndex j = 0; jj)) continue; StorageIndex ip = perm ? perm[i] : i; count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; } } dest.outerIndexPtr()[0] = 0; for(Index j=0; jj)) continue; StorageIndex jp = perm ? perm[j] : j; StorageIndex ip = perm? perm[i] : i; Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); if(!StorageOrderMatch) std::swap(ip,jp); if( ((int(DstMode)==int(Lower) && ipjp))) dest.valuePtr()[k] = numext::conj(it.value()); else dest.valuePtr()[k] = it.value(); } } } } // TODO implement twists in a more evaluator friendly fashion namespace internal { template struct traits > : traits { }; } template class SparseSymmetricPermutationProduct : public EigenBase > { public: typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::StorageIndex StorageIndex; enum { RowsAtCompileTime = internal::traits::RowsAtCompileTime, ColsAtCompileTime = internal::traits::ColsAtCompileTime }; protected: typedef PermutationMatrix Perm; public: typedef Matrix VectorI; typedef typename MatrixType::Nested MatrixTypeNested; typedef typename internal::remove_all::type NestedExpression; SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) : m_matrix(mat), m_perm(perm) {} inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } const NestedExpression& matrix() const { return m_matrix; } const Perm& perm() const { return m_perm; } protected: MatrixTypeNested m_matrix; const Perm& m_perm; }; namespace internal { template struct Assignment, internal::assign_op, Sparse2Sparse> { typedef SparseSymmetricPermutationProduct SrcXprType; typedef typename DstXprType::StorageIndex DstIndex; template static void run(SparseMatrix &dst, const SrcXprType &src, const internal::assign_op &) { // internal::permute_symm_to_fullsymm(m_matrix,_dest,m_perm.indices().data()); SparseMatrix tmp; internal::permute_symm_to_fullsymm(src.matrix(),tmp,src.perm().indices().data()); dst = tmp; } template static void run(SparseSelfAdjointView& dst, const SrcXprType &src, const internal::assign_op &) { internal::permute_symm_to_symm(src.matrix(),dst.matrix(),src.perm().indices().data()); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H