// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2017 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_INTEGRAL_CONSTANT_H #define EIGEN_INTEGRAL_CONSTANT_H namespace Eigen { namespace internal { template class FixedInt; template class VariableAndFixedInt; /** \internal * \class FixedInt * * This class embeds a compile-time integer \c N. * * It is similar to c++11 std::integral_constant but with some additional features * such as: * - implicit conversion to int * - arithmetic and some bitwise operators: -, +, *, /, %, &, | * - c++98/14 compatibility with fix and fix() syntax to define integral constants. * * It is strongly discouraged to directly deal with this class FixedInt. Instances are expcected to * be created by the user using Eigen::fix or Eigen::fix(). In C++98-11, the former syntax does * not create a FixedInt instance but rather a point to function that needs to be \em cleaned-up * using the generic helper: * \code * internal::cleanup_index_type::type * internal::cleanup_index_type::type * \endcode * where T can a FixedInt, a pointer to function FixedInt (*)(), or numerous other integer-like representations. * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. * * For convenience, you can extract the compile-time value \c N in a generic way using the following helper: * \code * internal::get_fixed_value::value * \endcode * that will give you \c N if T equals FixedInt or FixedInt (*)(), and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). * * \sa fix, class VariableAndFixedInt */ template class FixedInt { public: static const int value = N; operator int() const { return value; } FixedInt() {} FixedInt( VariableAndFixedInt other) { EIGEN_ONLY_USED_FOR_DEBUG(other); eigen_internal_assert(int(other)==N); } FixedInt<-N> operator-() const { return FixedInt<-N>(); } template FixedInt operator+( FixedInt) const { return FixedInt(); } template FixedInt operator-( FixedInt) const { return FixedInt(); } template FixedInt operator*( FixedInt) const { return FixedInt(); } template FixedInt operator/( FixedInt) const { return FixedInt(); } template FixedInt operator%( FixedInt) const { return FixedInt(); } template FixedInt operator|( FixedInt) const { return FixedInt(); } template FixedInt operator&( FixedInt) const { return FixedInt(); } #if EIGEN_HAS_CXX14 // Needed in C++14 to allow fix(): FixedInt operator() () const { return *this; } VariableAndFixedInt operator() (int val) const { return VariableAndFixedInt(val); } #else FixedInt ( FixedInt (*)() ) {} #endif #if EIGEN_HAS_CXX11 FixedInt(std::integral_constant) {} #endif }; /** \internal * \class VariableAndFixedInt * * This class embeds both a compile-time integer \c N and a runtime integer. * Both values are supposed to be equal unless the compile-time value \c N has a special * value meaning that the runtime-value should be used. Depending on the context, this special * value can be either Eigen::Dynamic (for positive quantities) or Eigen::DynamicIndex (for * quantities that can be negative). * * It is the return-type of the function Eigen::fix(int), and most of the time this is the only * way it is used. It is strongly discouraged to directly deal with instances of VariableAndFixedInt. * Indeed, in order to write generic code, it is the responsibility of the callee to properly convert * it to either a true compile-time quantity (i.e. a FixedInt), or to a runtime quantity (e.g., an Index) * using the following generic helper: * \code * internal::cleanup_index_type::type * internal::cleanup_index_type::type * \endcode * where T can be a template instantiation of VariableAndFixedInt or numerous other integer-like representations. * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. * * For convenience, you can also extract the compile-time value \c N using the following helper: * \code * internal::get_fixed_value::value * \endcode * that will give you \c N if T equals VariableAndFixedInt, and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). * * \sa fix(int), class FixedInt */ template class VariableAndFixedInt { public: static const int value = N; operator int() const { return m_value; } VariableAndFixedInt(int val) { m_value = val; } protected: int m_value; }; template struct get_fixed_value { static const int value = Default; }; template struct get_fixed_value,Default> { static const int value = N; }; #if !EIGEN_HAS_CXX14 template struct get_fixed_value (*)(),Default> { static const int value = N; }; #endif template struct get_fixed_value,Default> { static const int value = N ; }; template struct get_fixed_value,Default> { static const int value = N; }; template EIGEN_DEVICE_FUNC Index get_runtime_value(const T &x) { return x; } #if !EIGEN_HAS_CXX14 template EIGEN_DEVICE_FUNC Index get_runtime_value(FixedInt (*)()) { return N; } #endif // Cleanup integer/FixedInt/VariableAndFixedInt/etc types: // By default, no cleanup: template struct cleanup_index_type { typedef T type; }; // Convert any integral type (e.g., short, int, unsigned int, etc.) to Eigen::Index template struct cleanup_index_type::value>::type> { typedef Index type; }; #if !EIGEN_HAS_CXX14 // In c++98/c++11, fix is a pointer to function that we better cleanup to a true FixedInt: template struct cleanup_index_type (*)(), DynamicKey> { typedef FixedInt type; }; #endif // If VariableAndFixedInt does not match DynamicKey, then we turn it to a pure compile-time value: template struct cleanup_index_type, DynamicKey> { typedef FixedInt type; }; // If VariableAndFixedInt matches DynamicKey, then we turn it to a pure runtime-value (aka Index): template struct cleanup_index_type, DynamicKey> { typedef Index type; }; #if EIGEN_HAS_CXX11 template struct cleanup_index_type, DynamicKey> { typedef FixedInt type; }; #endif } // end namespace internal #ifndef EIGEN_PARSED_BY_DOXYGEN #if EIGEN_HAS_CXX14 template static const internal::FixedInt fix{}; #else template inline internal::FixedInt fix() { return internal::FixedInt(); } // The generic typename T is mandatory. Otherwise, a code like fix could refer to either the function above or this next overload. // This way a code like fix can only refer to the previous function. template inline internal::VariableAndFixedInt fix(T val) { return internal::VariableAndFixedInt(val); } #endif #else // EIGEN_PARSED_BY_DOXYGEN /** \var fix() * \ingroup Core_Module * * This \em identifier permits to construct an object embedding a compile-time integer \c N. * * \tparam N the compile-time integer value * * It is typically used in conjunction with the Eigen::seq and Eigen::seqN functions to pass compile-time values to them: * \code * seqN(10,fix<4>,fix<-3>) // <=> [10 7 4 1] * \endcode * * See also the function fix(int) to pass both a compile-time and runtime value. * * In c++14, it is implemented as: * \code * template static const internal::FixedInt fix{}; * \endcode * where internal::FixedInt is an internal template class similar to * \c std::integral_constant * Here, \c fix is thus an object of type \c internal::FixedInt. * * In c++98/11, it is implemented as a function: * \code * template inline internal::FixedInt fix(); * \endcode * Here internal::FixedInt is thus a pointer to function. * * If for some reason you want a true object in c++98 then you can write: \code fix() \endcode which is also valid in c++14. * * \sa fix(int), seq, seqN */ template static const auto fix(); /** \fn fix(int) * \ingroup Core_Module * * This function returns an object embedding both a compile-time integer \c N, and a fallback runtime value \a val. * * \tparam N the compile-time integer value * \param val the fallback runtime integer value * * This function is a more general version of the \ref fix identifier/function that can be used in template code * where the compile-time value could turn out to actually mean "undefined at compile-time". For positive integers * such as a size or a dimension, this case is identified by Eigen::Dynamic, whereas runtime signed integers * (e.g., an increment/stride) are identified as Eigen::DynamicIndex. In such a case, the runtime value \a val * will be used as a fallback. * * A typical use case would be: * \code * template void foo(const MatrixBase &mat) { * const int N = Derived::RowsAtCompileTime==Dynamic ? Dynamic : Derived::RowsAtCompileTime/2; * const int n = mat.rows()/2; * ... mat( seqN(0,fix(n) ) ...; * } * \endcode * In this example, the function Eigen::seqN knows that the second argument is expected to be a size. * If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed, and converted to an Eigen::Index of value \c n. * Otherwise, the runtime-value \c n will be dissmissed, and the returned ArithmeticSequence will be of the exact same type as seqN(0,fix) . * * \sa fix, seqN, class ArithmeticSequence */ template static const auto fix(int val); #endif // EIGEN_PARSED_BY_DOXYGEN } // end namespace Eigen #endif // EIGEN_INTEGRAL_CONSTANT_H